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Abstract Two similar code segments, or clones, form a clone pair within a software
system. The changes to the clones over time create a clone evolution history. Late
propagation is a specific pattern of clone evolution. In late propagation, one clone in
the clone pair is modified, causing the clone pair to become inconsistent. The code
segments are then re-synchronized in a later revision. Existing work has established
late propagation as a clone evolution pattern, and suggested that the pattern is related
to a high number of faults. In this chapter, we replicate and extend the work by
Barbour et al. (2011 27th IEEE International Conference on Software Maintenance
(ICSM). IEEE (2011) [1]) by examining the characteristics of late propagation in
10 long-lived open-source software systems using the iClones clone detection tool.
We identify eight types of late propagation and investigate their fault-proneness. Our
results confirm that late propagation is the more harmful clone evolution pattern
and that some specific cases of late propagations are more harmful than others. We
trained machine learning models using 18 clone evolution related features to predict
the evolution of late propagation and achieved high precision within the range of
0.91-0.94 and AUC within the range of 0.87-0.91.

0. Ehsan (X)) - L. Barbour - Y. Zou
Queen’s University, Kingston, Canada
e-mail: osama.ehsan@queensu.ca

L. Barbour
e-mail: L.barbour@queensu.ca

Y. Zou
e-mail: ying.zou@queensu.ca

F. Khomh
Polytechnique Montréal, Quebec City, Canada
e-mail: foutse.khomh@polymtl.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 151
K. Inoue and C. K. Roy (eds.), Code Clone Analysis,
https://doi.org/10.1007/978-981-16-1927-4_11



152 O. Ehsan et al.

1 Introduction

A code segment is labeled as a code clone if it is identical or highly similar to another
code segment. Similar code segments form a clone pair. Clone pairs can be intro-
duced into systems deliberately (e.g., “copy-and-paste” actions) or inadvertently by
a developer during development and maintenance activities. Like all code segments,
code clones are not immune to change. Large software systems undergo thousands
of revisions over their lifecycles. Each revision can involve modifications to code
clones. As the clones in a clone pair are modified, a change evolution history, known
as a clone genealogy [2], is generated.

In a previous study on clone genealogies, Kim et al. [2] define two types of evo-
Iutionary changes that can affect a clone pair: a consistent change or an inconsistent
change. During a consistent change, both clones in a clone pair are modified in par-
allel, preserving the clone pair. In an inconsistent change, one or both of the clones
evolve independently, destroying the clone pair relationship. Inconsistent changes
can occur deliberately, such as when code is copied and pasted and then subse-
quently modified to fit the new context. For example, if a driver is required for a new
printer model, a developer could copy the driver code from an older printer model
and then modify it. Inconsistent changes can also occur accidentally. A developer
may be unaware of a clone pair and cause an inconsistency by changing only one
half of the clone pair. This inconsistency could cause a software fault. If a fault is
found in one clone and fixed, but not propagated to the other clone in the clone pair,
the fault remains in the system. For example, a fault might be found in the old printer
driver code and fixed, but the fix is not propagated to the new printer driver. For these
reasons, a previous study [2] has argued that accidental inconsistent changes make
code clones more prone to faults.

Late propagation occurs when a clone pair undergoes one or more inconsistent
changes followed by a re-synchronizing change [3]. The re-synchronization of the
code clones indicates that the gap in consistency is accidental. Since accidental
inconsistencies are considered risky [4], the presence of late propagation in clone
genealogies can be an indicator of risky, fault-prone code.

Many studies have been performed on the evolution of clones. A few (e.g., [3,
4]) have studied late propagation and indicated that late propagation genealogies are
more fault-prone than other clone genealogies. Thummalapenta et al. began the initial
work in examining the characteristics of late propagation. The authors measured the
delay between an inconsistent change and a re-synchronizing change and related
the delay to software faults. In our chapter, we examine more characteristics of late
propagation to determine if only a subset of late propagation genealogies are at risk of
faults. Developers are interested in identifying which clones are most at risk of faults.
Our goal is to support developers in their allocation of limited code testing and review
resources toward the most risky late propagation genealogies. To achieve this goal,
we first study the prevalence and fault-proneness of late propagation genealogies, and
secondly we train multiple machine learning models to predict whether a clone pair
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would have late propagation. Early diagnosis of late propagation can help developers
in addressing the clones with late propagation fast before they become buggy.

In this chapter, we replicate and extend the analysis of late propagation performed
by Barbour et al. [1]. We study the characteristics of late propagation genealogies
and estimate the likelihood of faults. We used 10 open-source projects from GitHub
instead of only two projects as in the original study. We also include an additional
research question aimed at predicting occurrences of late propagation genealogies.

2 Experimental Setup

The goal of our study is to investigate the fault-proneness of clone pairs that undergo
late propagation. The guality focus is to lower the maintenance effort and cost due
to the presence of late propagated clone pairs in software systems. The perspective
is that of researchers interested in studying the effects of late propagation on clone
pairs. The results may also be of interest to developers who perform development
or maintenance activities. The results will provide insight in deciding which code
segments are most at risk for faults and in prioritizing the code for testing.

The context of this study consists of the change history of open-source software
projects, which have different sizes and belong to different domains. This section
describes the setup used to perform our study which aims to address the following
four research questions:

e RQI1: Are there different types of late propagation?,

e RQ2: Are some types of late propagation more fault-prone than others?,

e RQ3: Which type of late propagation experiences the highest proportion of faults?,
and

e RQ4: Can we predict whether a clone pair would experience late propagation?.

2.1 Project Selection

We use GHTorrent on the Google Cloud' to extract all projects that have more than
1,000 commits, 1,000 issues, and 1,000 pull requests. We use such a high number
of commits, pull requests, and issues to ensure that we have enough history of clone
genealogies. We limit our study to Java projects. Our selection criteria provide us with
66 Java projects. Then, we discard the projects that are younger than 5 years (created
after June 2015). If a project has more source lines of code (SLOC), the probability
of having code clones increases. A recent study suggests [5] to include projects with
more than 100K source lines of code. We remove the projects with less than 100K

Uhttps://ghtorrent.org/gcloud.html.



154 O. Ehsan et al.

Table 1 Description of selected projects

Project name | # of commits | # of issues SLOC % of java files | # of clone
(%) genealogies
Druid 10,496 1,657 1.2m 94.50 61,718
Netty 9,910 4,174 476.2k 98.60 6,576
Muikku 16,970 2,696 318.4k 50.4 23,836
Framework 18,969 1,788 867.9k 95.50 11,961
Checkstyle 9,454 2,198 457.4k 97.80 7,705
Gatk 4,173 2,736 2.2m 93.70 22,651
Realm 8,318 3,358 199.9k 83.80 13,540
Nd4j 7,021 1,238 467.0k 99.80 45,413
Rxjava 5,762 1,950 474.9k 99.90 8,866
K 15,997 1,134 243.3k 83.50 6,026

SLOC by using the GitHub project SLOC calculator extension.” Furthermore, we
remove the forked projects and the projects which have less than 70% of Java files.
The percentage of Java files is calculated using GitHub’s language information of
each project. Finally, after applying all the selection criteria, we retain the top 10
projects used in this study. Table 1 provides the description of the selected projects.

2.2 Building Clone Genealogies

The selected projects are all Git-based projects. Git provides multiple functions to
extract the history of the projects. The history includes the renamed files, changed
files, and changes made to each file using the blame function. We perform the
following steps on each of the projects in our dataset. After downloading the repos-
itories, we use the following command to extract the identifier, committer email,
commit date, and the message of each commit:

git log — pretty=format:" %h,%ae, %ai, %s"

2.2.1 Detecting Code Clones

We use the latest version of the iCLONES clone detection [6] to identify the clones
from the projects. We select iCLONES because it is recommended by Svajlenko et
al. [7] who evaluate the performance of 11 different clone detection tools. iCLONES
uses a hybrid approach to detect clones. We use the settings used by Svajlenko et al.
[7] as the recommended settings are reported to achieve higher precision and recall

2 https://github.com/artem-solovev/gloc.
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values. We use the git checkout command to extract a snapshot of a project at
a specific commit. We sort all commits chronologically and run the clone detection
on each commit.

2.2.2 Extracting Clone Genealogies

Code clones may experience changes during the development and maintenance
phases of the project. Such changes can be consistent or inconsistent based on a
relative similarity score. Inconsistent clones can be later synchronized to become
consistent. The set of states and the history of changes to any clone pairs are known
as clone pair genealogy. We identify clone genealogies of all the clones in the studied
projects. Our approach for generating clone genealogies is similar to the approaches
used in other studies [8, 9]. Both Gode and Krinke track clones over time by acquiring
a list of changes from the source code repositories of the subject systems.

The iCLONES tool produces a list of clones that exist in a project at any specific
commit. We link the clone pairs between each commit to create a set of genealogies.
A change to a clone can affect its size while a change to a file containing the clone
can shift the position of the clone (i.e., changes its line numbers). To address this
issue, we use the git diff command to detect all the changes to a specific file.
We track the clone positional changes affected by the changes to the non-clone part
of the file. We include only the changes to the clone contents rather than the clone
line number since a shift in the line numbers does not change the state of the clone.

We build a clone genealogy for each clone pair detected by the iCLONES tool.
We start by extracting the commit sequence of each project under study. We use the
commit sequence to identify the modifications in the clone pairs of each commit. If
a commit C2 changes a file that contains code in the clone pair, we use the diff
command to compare the changes to a previous commit C1. If a clone snippet is
changed in C2, we update the start and end line numbers of the clone from C2. To
generate the mapping and to check the modifications, we used a third-party Python
patching parser called whatthepatch [10]. If the start or the end of the clone
snippet is deleted, we move the clone line numbers accordingly to address the deleted
lines. Krinke [9] made several assumptions when updating line numbers of clones
between revisions. We use the same assumptions in our study:

1. If a change occurs before the start of the clone, or after the end of the clone, the
clone is not modified.

2. If an addition occurs starting at the first line number of a clone, the clone shifts
within the method but is not modified.

3. If a deletion occurs anywhere within the clone boundaries, the clone is modified
and its size shrinks.

4. If a deletion followed by an addition overlaps the clone boundaries, we assume
that the clone size shrinks because of the deletion, and the new lines do not makeup
part of the clone.
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In the last assumption, it is possible that there exists a clone containing both our
updated reference clone and the newly added lines. We use the strictest assumption
that the new lines are not included. When determining consistent and inconsistent
changes, we look for clones in the clone list that contain our updated reference clone.
Therefore, this scenario would still be considered a consistent change. In addition,
we also track changes to the names of the clone files.

2.3 Classification of Genealogies

In the current state of the art, late propagation is defined as a clone pair that expe-
riences one or more inconsistent changes followed by a re-synchronizing change
[4]. For example, consider two clones that call a method. A developer modifies the
call parameters of the method and updates one of the clones to reflect the change.
This causes the clone pair to become inconsistent. Using all combinations of the
inconsistent phases described by Barbour et al. [1], we identify eight possible types
of late propagation (LP) genealogies. The detail of the eight types of late propaga-
tion are described in [1]. The eight types are organized in three groups based on
the occurrence or not of a change propagation: (1) propagation always occurs (three
types named LP1, LP2, and LP3), (2) propagation may or may not occur (four types
named LP4, LPS, LP6, and LP7), and (3) propagation never occurs (one type named
LP8). In this study, we examine if the cases that always involve propagation (i.e.,
LP1, LP2, and LP3) or never involve propagation (i.e., LP8) are more prone to faults
than the other types of late propagation. We made a slight modification in the def-
inition of LP7 to include cases where during divergence either A or B is changed,
instead of considering only instances in which both A and B are changed during
divergence.

2.4 Detecting Faulty Clones

We use the SZZ algorithm [11] to identify the changes that introduced faults. First,
we use the Fischer et al. [12] heuristic to identify fault-fixing commits using a regular
expression. The regular expression identifies the bug-ID in the commit messages. If
a bug-ID appears in the commit message, we map the commit to the bug as a bug-
fixing commit. Second, we mine the issue reports of each project from GitHub. For
the issues that are closed, we identify if there are any pull requests associated with
such issues. If there is a pull request associated with an issue, we identify all the
commits included in the pull request and map the commits to the issue as a bug-
fixing commit. Once we have a list of all bug-fixing commits, we use the following
command to identify all the modified files in each commit.
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git log [commit-id]-n 1—name-status

We consider only changes to Java files in a commit. A commit is a set of changes
to the file(s) in the software repository. For all changes to a specific file of a bug-
fixing commit, we use the git blame command to identify all the commits when
the same snippet was changed. We consider such commits as the “candidate faulty
changes.” We exclude the changes that are blank lines or comments.

Finally, we filter the commits that are submitted before the creation date of the
bugs. We then check whether the commits identified as bug-inducing commits include
clone pairs. If a clone snippet is included in the bug-inducing commits, we label the
clone change as “buggy.”

3 Case Study Results

This section reports and discusses the results of our study.

3.1 RQI: Are There Different Types of Late Propagation?

Motivation. This question is preliminary to questions RQ2 and RQ3. It provides
quantitative data on the percentages with which different types of late propagation
occur in our studied systems.

Approach. We address this question by classifying all instances of late propagation
as described in Sect. 2.3. For each type of late propagation, we report the number of
occurrences in the systems. Table 2 lists each of the categories and the proportion of
occurrences in our dataset, both as a numerical value and a percentage of the overall
number of late propagation instances for the systems.

Results. As summarized in Table 2, four types of late propagation are dominant
across all systems when using the iClones clone detection tool (i.e., LP1, LP3, LP7,
and LPS8). The four dominant types represent the three late propagation categories.
Only LP3 (instead of LP6) is more dominant as compared to the results of Barbour
etal. [1]. As shown in Table 2, LP7 occurs in an average of 40.5% of instances of late
propagation, so it is the most common form of late propagation across all systems.
However, LP7 is also the least understood of the types of late propagation. Since both
clones in LP7 clone pairs can be modified during all three steps of late propagation
(i.e., experiencing a diverging change, a change during the period of divergence, a
re-synchronizing change), it is unclear in which direction changes are propagated
during the evolution of the clone pair. A few types of late propagation (i.e., LP2,
LP4, and LP5) contribute minutely to the number of late propagation genealogies.
Other than the one project (Muikku), all the other projects include almost all types of
late propagation. Our further investigation shows that only 1% (297 out of 23,836)
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of the clone genealogies experience late propagation which is the lowest among all
the projects and this might be the reason for the absence of half of LP types.

Overall, we conclude that there is representation from multiple types of late propa-
gation and across all categories of late propagation. In the next two research questions,
we examine the types in more detail to determine if some types are more risky than
others.

Summary of RQ1

Late propagation types LP1, LP3, LP7, and LP8 are the most commonly
occurring type of late propagation in the 10 studied open-source projects
from GitHub. The results are consistent with the previous study except that
LP3 is more frequent instead of LP6. Most of the projects include all types
of late propagations.

3.2 RQ2: Are Some Types of Late Propagation More
Fault-Prone than Others?

Motivation. Previous researchers have determined that late propagation is more
prone to faults than other clone genealogies [3]. Using the classification of late prop-
agation clone genealogies proposed by Barbour et al. [ 1], we evaluate late propagation
in greater depth and examine if the risk of faults remains consistent across all types
of late propagation.

Approach. We compute the number of fault-containing and fault-free genealogies in
each late propagation category. We compute the same values for non-late propagation
clone genealogies that experience at least one change. For the remainder of this
chapter, we use the abbreviation “Non-LP” for clone pairs that experience at least one
change but are not involved in any type of late propagation. We test the following null
hypothesis® Hy,: Each type of late propagation genealogy has the same proportion
of clone pairs that experience a fault fix.

We use the Chi-square test [13] and compute the odds ratio (OR) [13]. The Chi-
square test is a statistical test used to determine if there are non-random associations
between two categorical variables. The odds ratio indicates the likelihood of an
event to occur. It is defined as the ratio of the odds p of an event (i.e., fault-fixing
change) occurring in one sample (i.e., experimental group), to the odds ¢ of the event
occurring in the other sample (i.e., control group): OR = %. An OR = 1 indi-
cates that the event is equally likely in both samples; an O R > 1 shows that the event
is more likely in the experimental group while an OR < 1 indicates that it is more
likely in the control group. Specifically, we compute two sets of odds ratios. First,

3 There is no Hy; because RQ1 is exploratory.
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Table 3 Contingency table, Chi-square tests results for clone genealogies with and without late
propagation. The table shows the values for all the combinations of late propagations and faults

LP-faults LP-no faults | No LP-faults |No LP-no p-value OR
faults
1,851 1,929 42,526 48,928 <0.05 1.8

we select the clone pairs that underwent a late propagation as an experimental group.
Second, we form one experimental group for each type L P; of late propagation and
re-compute the odds ratios. In both cases, we select the non-LP genealogies as the
control group.

Results. Previous researchers [4] have studied the relationship between late propa-
gation and faults. In this research question, we first replicate the earlier studies and
then extend the study to include the different categories of late propagation.

(a) Fault-proneness of late propagation. Table 3 summarizes the results of the tests
described above for instances of late propagation compared to non-late propagation
(LP) genealogies. The first and second columns show the number of LP genealogies
with and without faults. The third and fourth columns in the table list the number of
non-LP genealogies that experience fault fixes and the number that is free of fault
fixes. The last column of the table lists the odds ratio test results for each system.
All of our results pass the Chi-square test with a p-value less than 0.05 and are
therefore significant. Where there are few data points, we use Fisher’s exact test to
confirm the results from the Chi-Square test. Fisher’s exact test is more accurate than
the Chi-square test when sample sizes are small [13]. In this study, the Fisher test
provides the same information as the Chi-square test, so we do not present the Fisher
test results in the tables. Table 4 shows the percentage of fault-prone late propagation
in each of the studied projects. In all the significant cases, the odds ratio is greater
than 1, indicating that late propagation genealogies are more fault-prone than non-LP
genealogies. Overall, our results agree with previous studies [4] that found that late
propagation is more at risk of faults.

(b) Fault-proneness of late propagation types. We repeat the previous tests, divid-
ing the instances of late propagation into their respective late propagation types. We
compare each type of late propagation to genealogies with no late propagation. For
each type of late propagation, Table 5 lists the number of instances that experience a
fault fix, the number of instances with a no-fault fix, the result from the Chi-square
test, and the odds ratio using the control group composed of non-LP genealogies.
An examination of the significant cases in Tables 5 reveals that the odds ratios
are greater than 1, so each type of late propagation is more fault-prone than non-LP
genealogies. There are two exceptions to this observation, LP2 and LP3 in Table 5.
All exceptions belong to the “propagation always occurs” category. Thus, in general,
these late propagation types are not more fault-prone than non-LP genealogies. Our
observation is consistent with the previous findings by Barbour et al. [1].
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Table 4 Contingency table, Chi-square tests results for clone genealogies with and without late
propagation

Projects LP-faults LP-no faults % of faulty LPs (%)
Druid 970 440 67
Netty 1 136 0.5
Muikku 145 157 48
Framework 3 152 2
Checkstyle 78 54 60
Gatk 134 209 39
Realm 135 186 42
Nd4j 283 325 47
Rxjava 0 103 0
K 102 167 38

Table 5 Contingency table with the Chi-square test for different late propagation types

Propagation |LP type Faults No faults p-value OR
category
No LP 42,526 48,928 <0.01 1
Propagation | LP1 244 246 < 0.01 3.953
always occurs
LP2 20 32 <0.01 0.672
LP3 224 227 <0.01 0.922
Propagation |LP4 23 50 < 0.01 2.256
may or may
not occur
LP5 68 52 <0.01 1.765
LP6 216 161 <0.01 6.179
LP7 803 724 <0.01 1.277
Propagation | LP8 253 437 <0.01 32

never occurs

We conclude that there are many types that make up a small proportion of LP
instances and have a very high odds ratio. Thus, when one of these LP types occurs,
the risk of fault introduction is high. For example, LP6 has a high odds ratio (e.g.,
6.17 in Table 5) but accounts for less than 5% of all late propagation instances in
Table 2.

The two most common late propagation types in the previous research question,
LP7 and LP8, in general, have low odds ratios in Table 5. This indicates that although
they occur frequently, they are less fault-prone than other less common late propaga-
tion types (e.g., LP6). The result is consistent with the previous findings by Barbour et
al. [1]. Overall, each type of late propagation has a different level of fault-proneness.
Thus, we reject Hy, in general.
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Summary of RQ2

The most commonly occurring late propagation types (i.e., LP7 and LP8)
are less fault-prone than the less commonly occurring late propagation (i.e.,
LP6). The result is consistent with the previous study and shows that each
propagation type is different from others.

3.3 RQ3: Which Type of Late Propagation Experiences the
Highest Proportion of Faults?

Motivation. In the previous research question (i.e., RQ2), we identify the fault-
proneness of late propagation types as compared to the no-LP clone pairs. The results
show that fault-proneness is not related to the frequency of LP type. In this research
question, we want to identify which type of late propagation experiences the highest
proportion of faults. In other words, we examine if, when faults occur, do they occur
in large numbers?

Approach. We test the following null hypothesis Hys: Different types of late propa-
gation have the same proportion of clone pairs that experience a fault fix. For each
type of late propagation, we calculate the sum of all faults experienced by instances
of that type of late propagation. We use the non-parametric Kruskal-Wallis test to
investigate if the number of faults for the different types of late propagation is iden-
tical.

Results. Table 6 presents the distribution of faults for different types of late propaga-
tion. The “Total” row represents the total numbers of faults over all late propagation
genealogies. To validate the results, we perform the non-parametric Kruskal-Wallis
test which compares the distribution of faults between groups of different types of
late propagation. The results of the Kruskal-Wallis test is statistically significant with
a p-value of 2.89~15. Hence, there is a statistically significant difference between the
distribution of faults across all types of late propagations.

Examining the results in Table 6 for the significant cases, we see that, in general,
LP7 and LPS contribute to a large proportion of the faults. In the previous question,
LP7 and LP8 have lower odds ratios. Although they are less prone to faults, when
they do experience faults, the faults are likely to occur in large numbers. The change
causing the inconsistency may lead to faults in the system, which may explain why
the change is reverted instead of being propagated to the other clone in the clone
pair. Overall, we can conclude that types LP7 and LP8 are the most dangerous. The
level of fault-proneness of the other types is system-dependant. The proportion of
faults for each type of late propagation is, therefore, very different. Thus, we reject
Hys. This result is consistent with the findings of Barbour et al. [1].
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Table 6 Proportion of faults for each type of late propagation

Propagation category | LP type # of faults % of faults (%)
Propagation always LP1 244 13.2
occurs

LP2 20 1.1

LP3 224 12
Propagation may or Lp4 23 1.2
may not occur

LP5 68 3.7

LP6 216 11.7

LP7 803 433
Propagation never LP8 253 13.8
occurs

TOTAL 1851 100.00

Summary of RQ3

In terms of the proportion of faults, LP7 and LP8 are more risky and should
be monitored carefully and/or refactored if possible. The risk for the other
types of late propagation is system-dependant.

3.4 RQ4: Can We Predict Whether a Clone Pair Would
Experience Late Propagation?

Motivation. In this research question, we use machine learning algorithms to train
models that can help developers predict which clone pair will experience late prop-
agation and have faults in the future. Using these predictions, developers would be
able to refactor risky clone pair early on and/or keep them in check before the clone
pair becomes inconsistent or a fault is introduced. This information about risky clone
pairs will help developers in making better use of their time and resources.

Approach. For each instance in the clone pair genealogy, we calculate multiple
features that may help with training the models for predicting whether a clone pair
would experience late propagation or not. The features are used in a prior study by
Barbour et al. [5]. Table 7 presents the description of our collected features.

We train models for two different behaviors; (1) presence of late propagation
(ML p) and (2) fault-prone late propagation (Mpy ). For every change experienced
by a clone pair, we calculate 18 features as described in Table 7. We also examined
the fault-proneness of the clone pairs, as described in Sect. 2.
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Table 7 Description of clone genealogies features from [5] used to build the models

Metric Description

Product metrics
CLOC The number of cloned lines of code

CPathDepth The number of common folders within the project directory structure

CCurSt The current state of the clone pair (consistent or inconsistent)

CommiterExp | The experience of committer (i.e., the number of previous commits submitted
before a specific commit.)

Process metrics

EFltDens The number of fault fix modifications to the clone pair since it was created

divided by the total number of commits that modified the clone pair
TChurn The sum of added and the changed lines of code in the history of a clone
TPC The total number of changes in the history of a clone

NumOfBursts | The number of change bursts on a clone. A change burst is a sequence of
consecutive changes with a maximum distance of one day between the changes

SLBurst The number of consecutive changes in the last change burst on a clone

CFltRate The number of fault-prone modifications to the clone pair divided by the total
number of commits that modified the clone pair

Genealogy metrics

EConChg The number of consistent changes experienced by the clone pair

ElncChg The number of inconsistent changes experienced by the clone pair

EConStChg The number of consistent change of state within the clone pair genealogy

ElncStChg The number of inconsistent change of state within the clone pair genealogy
EFltConStChg | The number of re-synchronizing changes (i.e., RESYNC) that were a fault fix
EFltincSChg | The number of diverging changes (i.e., DIV) that were a fault fix

EChgTimelnt | The time interval in days since the previous change to the clone pair

We use logistic regression, SVM classifier, Random Forrest, and XGBOOST
to classify the clone pairs data. Logistic regression is a statistical model that uses
a logistic function to model a binary-dependant variable. Support vector machine
(SVM) is a supervised model associated with learning algorithms that analyze data
for classification. Random forrest is an ensemble learning method for classification
that operates by constructing several decision trees. XGBOOST [14] is an optimized
gradient boosting library designed to be highly efficient and flexible. Recent studies
[15, 16] have used XGBOOST for training the models for classification problems.
We split the data into training (70%) and testing (30%) to train and test the models.
We make sure that our data splitting is time consistent i.e., we do not use future late
propagations data to predict past late propagations.

Results. Table 8 shows the results of model training using the four machine learning
algorithms. We evaluate the models using three performance metrics commonly used
for assessing trained machine learning models, including precision, f1-score, and
AUC. Precision is the fraction of relevant instances among the retrieved instances. F1-
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Table 8 Evaluation metrics for the machine learning algorithms

ML algorithm Mpp Mpuc

Precision | Fl-score | AUC Precision |Fl-score | AUC
Logistic Regression | 0.81 0.68 0.76 0.78 0.71 0.75
SVM Classifier 0.87 0.72 0.80 0.78 0.72 0.76
Random Forrest 0.89 0.80 0.85 0.94 0.93 0.93
XGBOOST 0.91 0.72 0.87 0.91 0.75 0.90

score is the harmonic mean between precision and recall. AUC provides an aggregate
measure of performance across all possible classification thresholds. Results show
that XGBOOST outperforms all the algorithms in terms of precision and AUC.
However, Random Forrest achieves the highest value among the four models.

Furthermore, we analyze the most important predictors for both behaviors (i.e.,
late propagation occurrence and fault occurrence in late propagation). For My p, the
number of consistent state changes (EConStChg) (37.5%), the number of consistent
changes (EConChg) (32%), and the sum of added or changed lines (Tchurn) (23.2%)
are the most significant features having more than 90% effect in the model. The
number of consistent state changes (EConStChg) has a negative effect, meaning that
if a genealogy experience more inconsistent changes than consistent changes, then it
can be an indicator of late propagation introduction in clone genealogies. For Mpy ¢,
number of fault-prone modifications in the history (CFltRate) (65%), number of
previous commits by a specific developer (CommitterExp) (17%), and time interval in
days since last change (EChgTime) (8 %) are the most significant features having more
than 90% effect in the model. The number of faulty changes divided by the number
of changes (CFltRate) has a positive effect. A higher number of erroneous changes
in clone genealogy history is an indicator of future fault occurrences. Experience
has a negative effect, which suggests that late propagation genealogies changed by
less experienced developers are more fault-prone. Developers can benefit from these
results as they can leverage the trained machine learning models to assess the risks
of the clone pairs.

Summary of RQ4

For M, p, XGBOOST achieves the highest precision (0.91) and AUC (0.87)
with consistent state changes (EConStChg) being the most significant feature.
For My, Random Forrest achieves the highest precision (0.94) and AUC
(0.93) with the number of past fault-fixing changes (CFltRate) being the most
significant feature.
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4 Threats to Validity

We now discuss the threats to the validity of our study. Construct validity threats in
this study are mainly due to measurement errors possibly introduced by our chosen
clone detection tool. To reduce the possibility of misclassification of code fragment
as clones, we chose the best configuration for clone detection tool that has been
recommended by the recent evaluation of code clone tools [7]. Another construct
validity threat stems from the SZZ heuristics used to identify fault-fixing changes
[11]. Although this heuristic does not achieve a 100% accuracy, it has been success-
fully employed and reported to achieve good results in multiple studies [17]. Reli-
ability validity threats concern the possibility of replicating this study.* We attempt
to provide all the details needed to replicate our study. Also, the source code and git
repositories of the studied systems are publicly available.

5 Conclusion

In this chapter, we replicate a previous study by Barbour et al. [1] to examine late
propagation in more detail. We first confirm the conclusion from the previous study
that late propagation is more risky than other clone genealogies. We then identify
eight types of late propagation and study them in detail to identify which types of
late propagation contribute the most to faults in the systems. Overall, we find that
two types of late propagation (i.e., LP7 and LP8) are riskier than the others, in terms
of their fault-proneness and the magnitude of their contribution toward faults. LP7
occurs when both clones are modified, causing a divergence and then at least one of
the two clones in the pair is modified to re-synchronize the clone pair. LP8 involves
no propagation at all and occurs when a clone diverges and then re-synchronizes
itself without changes to the other clone in a clone pair. The contribution of other
types of late propagation is found to be system-dependent. From this study, we
can conclude that late propagation types are not equally risky. We train machine
learning models to identify the clone genealogies with late propagation (M p) and
fault-prone late propagations (M gy ) early on. We use 18 different clone genealogy-
related features to train four different machine learning models. For the occurrence of
late propagation (M, p), XGBOOST achieves the highest precision (0.91) and AUC
(0.87) with consistent state changes (EConStChg) being the most significant feature.
For the fault-prone late propagations (Mpy ), Random Forrest achieves the highest
precision (0.94) and AUC (0.93) with the number of fault-prone changes (CFltRate)
being the most significant feature.

4 https://github.com/qecelab/latepropagation.
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