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ABSTRACT
Software entities (e.g., files or classes) do not have the same density
of defects and therefore do not require the same amount of effort for
inspection. With limited resources, it is critical to reveal as many
defects as possible. To satisfy such need, effort-aware defect pre-
diction models have been proposed. However, the performance of
prediction models is commonly affected by a large amount of pos-
sible variability in the training data. Prior studies have inspected
whether using a subset of the original training data (i.e., local mod-
els) could improve the performance of prediction models in the
context of defect prediction and effort estimation in comparison
with global models (i.e., trained on the whole dataset). However,
no consensus has been reached and the comparison has not been
performed in the context of effort-aware defect prediction.

In this study, we compare local and global effort-aware defect
prediction models using 15 projects from the widely used AEEEM
and PROMISE datasets. We observe that although there is at least
one local model that can outperform the global model, there al-
ways exists another local model that performs very poorly in all the
projects. We further find that the poor performing local model is
built on the subset of the training set with a low ratio of defective
entities. By excluding such subset of the training set and building a
local effort-aware model with the remaining training set, the local
model usually underperforms the global model in 11 out of the 15
studied projects. A close inspection on the failure of local effort-
aware models reveals that the major challenge comes from defective
entities with small size (i.e., few lines of code), as such entities tend
to be correctly predicted by the global model but missed by the local
model. Further work should pay special attention to the small but
defective entities.

1. INTRODUCTION
Defects in a software system increase the maintenance cost. It

is estimated that fixing defects consumes between 50-80% of the
software development resources of companies [11]. It is vital to the
success of a software organization to maximize the utilization of
the limited resources for developing and testing. To this end, defect
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prediction models have been extensively studied [19, 5, 29, 44].
Due to the limited resources for developing and testing software, it

may be impractical to inspect all files that are predicted as defective
[38, 1, 2, 3]. Effort-aware1 defect prediction models are therefore
proposed [16, 26, 37], aiming to reduce the candidate set of files to
inspect. Effort-aware defect prediction models rank entities based
on the predicted defect density (i.e., the ratio of the number of pre-
dicted defects in a file to the number of lines of code in the file)
so that developers could select the entities with the highest defect
density for further inspection (e.g., code reviews). For example,
given two classes MainPreferencePage (71 lines of Java code) and
ProductExportOperation (613 lines of Java code) from the Eclipse
PDE project, the number of predicted defects in these two classes
are three and six, respectively; a traditional defect prediction model
would suggest to give a higher priority to the class ProductExpor-
tOperation as it has more predicted defects, but an effort-aware
model would rank the classMainPreferencePage higher because its
defect density is greater (i.e., 0.04 versus 0.01). Indeed, it is more
efficient to review 71 lines of code and detect three defects than to
review 671 lines of code to locate six defects.

Software engineering data (e.g., source code descriptive metrics)
is clearly crucial to train high quality defect prediction models. Be-
sides studies investigating how to remove noise from the training
data [20, 21], researchers have also looked into using local regions
of the training data that have similar properties to build models
(i.e., local models) [7, 27]. While prior studies have found that
local models could result in a better fit to the underlying data [7],
they also find that local models show only small improvements over
global models, with respect to prediction errors. In this study, we
complement this line of work by further investigating local regions
in the training data in terms of their predictive performance and
characteristics, in the context of effort-aware defect prediction. To
the best of our knowledge, no prior study has looked into the suit-
ability of local models for the task of effort-aware defect prediction
modelling.

We conduct an empirical study using five projects from AEEEM
dataset [12] and ten projects from PROMISE dataset [15]. To obtain
the training for building local models, we apply the off-the-shelf
clustering method (i.e., partitioning around medoids [34]). Local
prediction models are built within each cluster. We investigate the
variance in the performance of the local models and compare local
models with global models. We then study the characteristics of
their associated clusters. Accordingly, we investigate the following
two research questions:

(RQ1) How do local models compare to global models, with
1Same as the work by Mende and Koshke [26], this study uses lines
of code as a proxy of the effort for inspecting a particular file.
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Table 1: Description of the 15 subject projects.

Project name Project description

Ant (ant.apache.org) Ant is a known Java-based, shell independent build tool.
Camel (camel.apache.org) Apache Camel is a powerful open source integration framework.
Ivy (ant.apache.org/ivy) Ivy is a dependency manager focusing on flexibility and simplicity.
Jedit (www.jedit.org) jEdit is a mature programmer’s text editor.
Log4j (logging.apache.org/log4j) Log4j is a well known logging framework.

POI (poi.apache.org) The POI project consists of APIs for manipulating various file formats based upon Microsoft’s OLE 2 Compound Document format,
and Office OpenXML format.

Tomcat (tomcat.apache.org) Apache Tomcat is an open source software implementation of the Java Servlet, JavaServer Pages, Java Expression Language and Java
WebSocket technologies.

Xalan (xml.apache.org/xalan-j) Xalan is an XSLT processor for transforming XML documents into HTML, text, or other XML document types.
Xerces (xerces.apache.org/xerces-j) Xerces is a Parser that supports the XML 1.0 recommendation and contains advanced parser functionality.
Eclipse JDT Core
(www.eclipse.org/jdt/core)

Eclipse JDT Core provides the tool plug-ins that implement a Java IDE supporting the development of any Java application, including
Eclipse plug-ins.

Eclipse PDE UI
(www.eclipse.org/pde/pde-ui)

Eclipse PDE UI provides tools to create, develop, test, debug, build and deploy Eclipse plug-ins, fragments, features, update sites and
RCP products.

Equinox Framework
(www.eclipse.org/equinox)

Equinox is an implementation of the OSGi core framework specification, a set of bundles that implement various optional OSGi servi-
ces and other infrastructure for running OSGi-based systems.

Mylyn (www.eclipse.org/mylyn) Mylyn is a Task-Focused Interface for Eclipse that reduces information overload and makes multi-tasking easy.

Apache Lucene (lucene.apache.org) Lucene provides Java-based indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokeni-
zation capabilities - Present in both AEEEM and Promise datasets.

respect to prediction performance?
In this question, we explore the performance of local defect
prediction models (i.e., built upon a cluster of files) and
global defect prediction models (i.e., built upon the original
dataset of the entire project). We observe that there always
exists one local defect predictionmodel that yields poor per-
formance. Moreover, we find that such cluster usually has
the characteristics that they have a lower ratio of defective
files, a smaller size of files, and lower code complexity.

(RQ2) Can we improve the performance of effort-aware defect
prediction by training the model using only the high
performing cluster?
In most of the studied projects (i.e., 11 out of 15), our
results show a superiority of the global effort-aware models
trained on the whole training data; thus showing that larger
and more diversified training samples are better suited to
train effort-aware defect prediction models. We further
investigate the reasons behind the superiority of the global
model. We find that the local model marks many of the
small but defective files as clean. Such misclassification
significantly downgrades the performance of local effort-
aware defect prediction models, as the small defective files
require few effort for exposing defects.

As a summary, the major contribution of this work is three-fold:

• Conduct comparisons on local and global models in the con-
text of effort-aware defect prediction using different clustering
algorithms than prior studies, with further understanding on
the characteristics of the local clusters. Although some lo-
cal defect prediction models can outperform the global defect
prediction models, there always exists at least one local defect
prediction model that fails to compete with the global defect
prediction model.

• Explore the possibility of building effort-aware defect predic-
tion models using the only the high performing cluster. We
find that the global model is generally superior.

• Investigate the reasons behind the superiority of the global
model. Our investigation reveal that local models generally

misclassify the small defective files, while such files are usu-
ally classified correctly by the global model trained on a more
varied dataset in terms of metrics’ values.

Paper organization. We present the overview of our case study
design in Section 2. The results are described in Sections 3. Section
4 presents the threats to validity. Finally, the related work and
conclusions are presented in Sections 5 and 6, respectively.

2. CASE STUDY DESIGN
This section presents the design of our case study. First, we

introduce our subject projects and data pre-processing methods.
Then, we describe the performance measures and the evaluation
approach of the defect prediction models.

2.1 Data Collection
In this study, we use 15 projects (see Table 1) from two pub-

licly available datasets that have been widely used in defect pre-
diction studies [8][33][23]. We use ten projects of the PROMISE
dataset [15] and all the five projects of the AEEEM dataset [12].
The programming language of all projects is Java. We show in
Table 2 the descriptive statistics of the projects under study.

2.2 Software Metrics
To build local models trained on subsets of the data with similar

properties, we measure the similarity among software entities and
group the similar entities into the same cluster. We use software
metrics to measure the similarity between software entities. The
AEEEM dataset has both process and product metrics; and the
PROMISE dataset has only product metrics.
Productmetrics characterize various aspects of a software product.
Some of the best-known product metrics for object oriented projects
are Chidamber & Kemerer object-oriented metrics [6] that consist
of six metrics. Table 3 shows the product metrics that are provided
in both datasets and used in this work.

To better understand the various aspects of a software product
that are measured using the product metrics, we further classify
the product metrics into five categories (i.e., complexity, coupling,
cohesion, abstraction, and encapsulation) based on the work by
Zhang et al. [42]. We refer the interested reader to the work by
D’Ambros et al. [12] and Jureczko et al. [15] for more detailed
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Table 2: Descriptive statistics of the 15 subject projects

Dataset Subject project Release # Instances # Defects

PROMISE

Ant 1.7 745 338
Camel 1.6 965 500
Ivy 1.4 241 18
Jedit 4.0 306 226
Log4j 1.0 135 61
Lucene 2.2 247 414
Poi 3.0 442 500a
Tomcat 6.0 858 114
Xalan 2.3 885 625
Xerces 1.3 453 193

AEEEM

Eclipse JDT Core 3.4 997 463
Eclipse PDE UI 3.4.1 1,592 401
Equinox framework 3.4 439 279a
Mylyn 3.1 2,196 677
Apache Lucene 2.4.0 691 103

information about the product metrics included in the PROMISE
and AEEEM datasets.
Process metrics are collected over a long period of time to cap-
ture how developers make modifications to the source code. The
modifications are usually performed to fix defects or to implement
new features. Source code and logs stored in a revision control sys-
tem are the main sources to extract such metrics. Process metrics
have been widely applied to build defect prediction models [12].
Table 4 shows the process metrics that are included in the AEEEM
dataset. More details of these metrics are described in the paper by
D’Ambros et al. [12].

In the presence of multicollinearity, the estimate of the impact of
one metric on the dependent variable tends to be less precise, thus
weakening the prediction model. To mitigate the multicollinearity,
we conduct a correlation analysis using Spearman’s rank coefficient.
We opt for Spearman’s rank correlation test over other non-rank
correlation tests (e.g., Pearson) because rank correlation is more
robust when dealing with data that is not normally distributed [41].
Among each group of highly correlated metrics (Spearman’s ρ >
0.7 [41]), we select only one metric from the group to include in
the model.

Upon the extraction of the descriptive statistics for the metrics
namely the mean, standard deviation, median, min, max, and skew-
ness, we notice a relatively high amount of skewness. To mitigate
the skewness effects during modelling, we apply the log transfor-
mation log(x+1) to each metric [30].

2.3 Clustering for Building Local Models
Prior to build local models, we apply a clustering algorithm on

the dataset to obtain the subset of the training data. We use the
k-medoids algorithm, a more robust version of K-means [34]. K-
means clustering iteratively finds the k centroids and assigns every
object to the nearest centroid, more specifically the coordinate of
each centroid is the mean of the coordinates of the objects in the
cluster. Unfortunately, K-means clustering is known to be sensitive
to the outliers. For this reason, K-medoids clustering considers
representative objects, called medoids, instead of centroids. K-
medoids clustering is less sensitive to outliers in comparison with
the K-means clustering because K-medoids clustering is based on
the most centrally located object in a cluster. Among many al-
gorithms for K-medoids clustering, partitioning around medoids
(PAM) proposed by Kaufman and Rousseeuw [18] is known to be
the most powerful. We use an implementation of the k-medoids
algorithm available in R under the package cluster . The library

Table 3: List of product metrics that are selected for the projects of
each dataset

Dataset Category Product Metric

PROMISE

Complexity

Lines of Code (LOC)
Weighted Methods per Class (WMC)
Number of Public Methods (NPM)
Average Method Complexity (AMC)
Max McCabe’s Cyclomatic Complexity (Max_cc)
Avg McCabe’s Cyclomatic Complexity (Avg_cc)
Measure of Aggregation (MOA)

Coupling

Coupling between object classes (CBO)
Response of a Class (RFC)
Afferent Couplings (CA)
Efferent Couplings (CE)
Inheritance Coupling (IC)
Coupling Between Methods (CBM)

Cohesion
Lack of cohesion in methods (LCOM)
Lack of cohesion in methods (LCOM3)
Cohesion Among Methods of Class (CAM)

Abstraction
Depth of Inheritance Tree (DIT)
Number Of Children (NOC)
Measure of Functional Abstraction (MFA)

Encapsulation Data Access Metric (DAM)

AEEEM

Complexity

numberOfAttributes
numberOfAttributesInherited
numberOfLinesOfCode)
numberOfMethods)
numberOfMethodsInherited)
numberOfPrivateAttributes)
numberOfPrivateMethods)
numberOfPublicAttributes)
numberOfPublicMethods)
Weighted Methods per Class (WMC)

Coupling

Coupling between Object Classes (CBO)
Number of Input Data (fanIn)
Number of Input Data (fanOut)
Response of a Class (RFC)

Cohesion Lack of cohesion in methods(LCOM)
Abstraction Depth of InheritanceTree (DIT)

function is called pam and takes the dataset and the number of
clusters to be generated as its arguments.

2.4 Performance Measures of Prediction Mod-
els

Defect prediction. Defect prediction models are used to predict
the number of defects in software entities, based on their descrip-
tive metrics. To evaluate the defect prediction performance, we
use the prediction error abs(Yactual − Ypredicted ), similarly to
Bettenburg et al. [7]. This evaluation measure informs us how far
off the predicted value is from the actual value. The closer the pre-
diction error is close to 0, the better the performance of the defect
performance model is.

Effort-aware defect prediction. We use effort-aware defect pre-
diction to predict the defect density in software entities. To evaluate
the performance of the effort-aware defect prediction, we use a mea-
sure called Popt , where opt stands for optimal, similarly to Mende
et al. [26]. We compute the difference in terms of area (∆opt )
between the two lines representing the LOC-based cumulative lift
charts of the optimal and prediction models, as illustrated in Figure
1.

The values on the x-axis represent the percentages of lines of
code; while the y-axis shows the percentages of defects contained
in the corresponding number of lines of code. The line representing
the actual model shows the cumulative values of the LOC of files
sorted by their decreasing actual fault density ( ActualDe f ect s

LOC ).
The line representing the predicted model reflects the cumulative
values of the LOC of files sorted by their decreasing predicted fault
density ( PredictedDe f ect s

LOC ).
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Table 4: List of process metrics that are selected for the projects of
the AEEEM dataset

Dataset Category Process Metric

PROMISE None

AEEEM

Previous defects

numberOfBugsFoundUntil
numberOfNonTrivialBugsFoundUntil
numberOfMajorBugsFoundUntil
numberOfCriticalBugsFoundUntil
numberOfHighPriorityBugsFoundUntil

Change metrics

numberOfVersionsUntil
numberOfFixesUntil
numberOfRefactoringsUntil
numberOfAuthorsUntil
linesAddedUntil
maxLinesAddedUntil
avgLinesAddedUntil
linesRemovedUntil
maxLinesRemovedUntil
avgLinesRemovedUntil
codeChurnUntil
maxCodeChurnUntil
avgCodeChurnUntil
ageWithRespectTo
weightedAgeWithRespectTo

Entropy

CvsEntropy
CvsWEntropy
CvsLinEntropy
CvsLogEntropy
CvsExpEntro

0 20 40 60 80 100

0
20

40
60

80
10

0

LOC (%)

D
ef

ec
ts

 (%
)

∆opt

Popt = 1 − ∆opt
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Figure 1: An illustrating example of LOC-based cumulative lift
chart

We normalize all values to the range between 0% and 100%.
The chart indicates the percentage of lines of code to be reviewed
to cover a certain amount of defects. For instance, reviewing 20%
of the lines of code allows to cover 45% of the defects in the
predicted model, and over 80% of defects in the actual model, as
shown by the dashed lines in Figure 1. Larger Popt value (closer to
1) indicates a smaller difference between the actual and predicted
models (as shown in Equation 1). A smaller area between the two
lines (smaller Popt ) in the chart indicates that the predicted model
is closer to the actual model.

Popt = 1 − ∆opt (1)

2.5 Model Evaluation
To account for random observation bias, we do the following for

every experiment. First, the cross-validation process is repeated 10
times (i.e., the folds). In each cross-validation, the 10 sub-samples
used exactly once as the testing data. The 10 results from the folds
are averaged to produce a single prediction performance of the

model. We repeat each experiment 10 times (10 cross validation
repeated 10 times) to get the most possible stable results and we
calculate the average of the results for a single estimation of the
performance. Overall, we perform a 100 times cross-validation.
The evaluation approach is illustrated in Figure 2.

3. RESULTS
In this section, we present the results of our approach with respect

to our two research questions.

RQ1. How do local models compare to global models, with
respect to prediction performance?
Motivation. A study by Menzies et al. [27] shows that there lies
some benefit in partitioning software engineering data into smaller
clusters with similar characteristics. The study [27] showed that
local models (trained on clusters of data) lead to better fits compared
to global models (trained on the entire data). Bettenburg et al. [7]
extended the work ofMenzies et al. [27] and found that local models
lower the prediction error of prediction models. We use a similar
approach as Bettenburg et al. [7] to build local prediction models.
However, we use different clustering algorithms to partition the data
(i.e., PAM and spectral clustering). Besides, Bettenburg et al. [7]
only use two projects from the PROMISE repository (Xalan 2.6 and
Lucene 2.4), we include in our study 10 projects from the PROMISE
dataset and 5 projects from the AEEEM dataset. We also attempt to
gain more understanding about the local models, by assessing their
individual defect prediction performances and their characteristics.
This study focuses on effort-aware prediction; however, for this
first RQ, we examine the quality of local models in terms of the
traditional defect prediction to gain general insights.

Approach. To answer this research question, we apply the following
approach. First, we build a global defect prediction model trained
on the full dataset to predict the number of defects. To predict
the number of defects in each file, we build a linear regression
model, a commonly applied approach to model the relationship
between a dependent variable (i.e., number of defects) and a set
of independent variables (i.e., software metrics) [43][12][7]. We
assess the performance of the global model using the prediction
error measure (see Section 2.4)

Second, we cluster the data and build local defect prediction
models based on each cluster. The local defect prediction models
are built and evaluated using the same approach as the global de-
fect prediction model. Lastly, we compare the performance of the
global defect prediction model and local defect prediction models
associated with each project. The lower the prediction error of the
model, the more accurate it is.

Clustering the data is a fundamental steps in building the local
defect prediction models, because the clustering possibly impacts
the quality of the derived local models. Since the clustering method
we use has only one parameter (i.e., the number of clusters K), we
perform a sensitivity analysis by varying the number of clusters
(i.e., K between 2 to 25) to assess the stability of our findings.

We test the following hypothesis:
H01: the global and the local defect prediction models associated
to a project have equal performances.

To test this hypothesis, we apply the Kruskal-Wallis H test [24]
to assess whether our hypothesis holds across the 15 projects. The
Kruskal-Wallis H test is a non-parametric statistical method to as-
sess whether two or more distributions have statistically significant
differences. The advantage of using non-parametric statisticalmeth-
ods is that they make no assumptions about the distribution of the
data. Also, since we carry multiple comparisons, we correct the
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Figure 2: An overview of our evaluation approach

p-value using the Holm-Bonferroni method [14].

To identify the main characteristics that differentiate the clusters
on which the local models are trained, we collect the values of each
metric pertaining to all the files in a cluster. For each cluster in
every project, we obtain a distribution of each metric. A metric
distribution in a given cluster contains the metric values of the
files in that cluster. We perform a Kruskal-Wallis H test between
the distributions of each metric in a project to determine whether
the distributions are significantly different and therefore determine
whether the metric is significant in separating the different clusters.
In addition to assessing the significance of the difference between
distributions, we also measure the “size” of the difference using
Cliff’s delta [36]. Cliff’s delta is non-parametric, thus it does not
make assumptions about the distribution of the data. It is reported
to be more robust than Cohen’s d [36]. Cliff’s delta reflects the
degree of overlap between different distributions. It ranges from -1
(if all values in the first distribution are larger than the second) to
+1 (all values in the first distribution are smaller than the second).
When the two distributions are equal, it is equal to 0 [9]. The results
of Cliff’s delta can be described with Cohen’s d standards (small,
medium, and large). A medium effect is described by [10] as a
difference noticeable by a careful observer; while a large effect is
more visible than a medium one. We characterize each cluster by
providing representative values of its significant metrics.

Findings. Similarly to the prior studies comparing local and
global models in defect prediction [7][26], we also observe the
potential benefit of local models. In fact, at least one local model
in each project outperforms or has comparable performance to the
global model, in terms of the prediction error. This finding confirms
the possible benefit of training defect prediction models that are
tailored to regions of the data with similar properties. We show in
Figure 3 the results of the experiment for the measure prediction
error for all the projects. We only show the results of K=2 clustering
to simplify the presentation of the results. For each project, we show
the performance of the global model and of the two local models
associated with K=2 clustering. The order of the two local models
is randomly assigned In the case of K=2 clustering, one of the local
models outperforms the global model in terms of prediction error
in 11 out of 15 projects, and has comparable performance to the
global model in the remaining 4 projects.

However, there always exist a localmodel that significantly un-
derperforms the global defect prediction model and the other
local defect prediction models, except for POI and Xerces. The
performance of different local defect prediction models is not equal.
This finding suggests that the local models are not always able to
compete with the global model. This observation is consistent
across the 15 projects. Our findings lead us to reject the hypothesis

●
●●
●●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●

●●

●
●

0.5

1.0

1.5

an
t−1

.7

ca
mel−

1.6

ivy
−1

.4

jed
it−

4.0

log
4j−

1.0

luc
en

e−
2.2

po
i−3

.0

tom
ca

t

xa
lan

−2
.6

xe
rce

s−
1.3

ec
lip

se
_jd

t

ec
lip

se
_p

de

eq
uin

ox

luc
en

e
myly

n

 

M
ea

n 
A

bs
ol

ut
e 

P
re

di
ct

io
n 

E
rr

or

group
Global
C1
C2

 

Figure 3: Prediction error of global models and local models of
clusters (K = 2)

H01 and conclude that local models do not have equal predictive
performances. We further explore the ratio of defective files in each
cluster and find that local models that experience poor performance
(i.e., higher prediction error) are built on the clusters of files that
have a much lower ratio of defective files. Table 5 shows a compar-
ison of the ratios of defective files in each cluster of the 15 projects.
The lower ratio of defective files in the clusters whose local models
perform poorly could possibly be one reason behind their failure.

Moreover, we notice that the drawn conclusions are similar for
all Ks (i.e., 2 to 25) that we tested in our sensitivity analysis. As
a matter of fact, there is always at least one local defect prediction
model that performs very poorly compared to the rest.

In the remaining of the paper, we refer to the clusters whose
models outperform or have comparable performance to the global
models as high performing clusters. The clusters whose models
underperform the global models are called low performing clusters.

Wefind that the low performing clusters in every project from
both datasets are composed of smaller and less complex files. In
the AEEEM dataset that also contains process metrics, files in the
low performing clusters have on average less past defects, fewer au-
thors, less revisions and less churn. To illustrate the characteristics
of the low performing clusters, we show in Table 6 the average and
standard deviation values for each significant metric across each
dataset for K=2 clustering. We also show the corresponding val-
ues of the high performing cluster. The selected metrics shown
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Table 5: The ratio of defective files in the entire set of files, and in
each cluster of files

Dataset Subject project Overall Low perform-
ing cluster

High perform-
ing cluster

PROMISE

Ant v1.7 22.29% 5.75% 38.16%
Camel v1.6 19.48% 15.38% 25.45%
Ivy v1.4 6.63% 2.27% 11.93%
Jedit v4.0 24.51% 12.84% 53.41%
Log4j v1.2 25.37% 5.00% 33.68%
Lucene v2.4 58.30% 52.53% 81.63%
POI v3.0 63.57% 32.45% 79.73%
Tomcat v6 8.97% 2.50% 17.20%
Xalan v2.6 46.44% 20.39% 60.07%
Xerces v1.3 15.23% 4.02% 24.02%

AEEEM

Eclipse JDT v2.4 22.71% 8.16% 26.88%
Eclipse PDE 13.96% 6.07% 20.44%
Equinox 39.81% 13.49% 56.57%
Lucene v2.6 9.26% 4.31% 12.16%
Mylyn v1.3 13.16% 12.79% 14.54%

in Table 6 are those that experience significant distributions across
all projects. In the AEEEM dataset, 23 metrics significantly dis-
tinguish the low and high performing clusters. In the PROMISE
dataset, 15 metrics significantly distinguish the clusters. We ana-
lyze the significant metrics in both datasets to describe the files in
the low and high performing clusters.

Overall, we conclude that the files associated with the low per-
forming clusters are simpler in terms of code complexity, compared
to the files in the high performing cluster. They also have a less
complex history in terms of past defects, authors, and churn.

The low performing clusters when clustering with higher K’s
are all roughly part of the lowest performing cluster when us-
ing K=2. We investigate the impact of using different number of
clusters when building local defect prediction models. We use Prin-
cipal Component Analysis (PCA) to visualize the clusters generated
when we use different K’s to cluster the data. PCA is a widely used
method to explore high-dimensional data [35], using a 2-D scat-
terplot with two principal components. The PCA plot shown in
Figure 4 shows a scatterplot with axes corresponding to the two first
principal components that show the largest variance.

We use theAnt project as an illustrating example. The sub-figures
show the results of values of K from 2 to 5 for the Ant Project. The
visualization of the PCA plot becomes harder to decipher with K
values higher than 5. In Figures 4-a, b, c and d, the low performing
cluster is indicated with red triangles. As shown in Figure 4, the
low performing clusters in K=3, 4 and 5 are all roughly part of
the lowest performing cluster in K=2. Clustering with a small K
produces larger clusters allowing us to identify as many data points
as possible that have lower predictive performance. Since the low
performingmodel in K=2 clustering performs significantly less than
the global and the other local models, we focus on clustering the
data into 2 clusters in the remaining of the paper.�




�

	

At least one local model in each project has a very low pre-
dictive performance in terms of prediction error. Moreover,
the clusters associated with the low performing local models
have very low ratio of defective files compared to the global
model, thus indicating a possible reason behind the failure of
these local models.

RQ2. Can we improve the performance of effort-aware defect
prediction by training themodel using only the high performing
cluster?
Motivation. We investigate whether we can improve the prediction
performance of effort-aware defect prediction models by training a

Table 6: Average of the statistics values of the significant met-
rics across each dataset. The selected metrics for each dataset are
significant in all projects of that dataset.

Dataset Metric name
Low perform-
ing cluster

High perform-
ing cluster

Avg. ± Std. Avg. ± Std.

AEEEM

numBugsFoundU 1.75 ± 1.97 10.53 ± 15.30
numNTBugsFoundU 1.41 ± 1.68 9.09 ± 12.96
numOfVersionsUntil 8.02 ± 5.94 36.57 ± 37.75
numOfAuthorsUntil 2.83 ± 1.45 5.50 ± 2.21
linesAddedUntil 53.52 ± 52.50 1003.81 ± 2143.65
maxLinesAddedUntil 20.54 ± 21.71 206.40 ± 296.21
linesRemovedUntil 44.73 ± 55.88 787.30 ± 1816.43
maxLinesRemovedUntil 19.22 ± 26.56 184.20 ± 294.52
avgLinesRemovedUntil 3.63 ± 3.91 13.95 ± 16.11
CvsEntropy 3.96 ± 2.64 11.59 ± 7.32
CvsWEntropy 0.01 ± 0.01 0.10 ± 0.20
CvsLinEntropy 0.02 ± 0.03 0.07 ± 0.05
CvsLogEntropy 0.72 ± 1.30 2.11 ± 1.68
CvsExpEntropy 0.04 ± 0.05 0.12 ± 0.09
cbo 5.03 ± 4.81 15.78 ± 20.14
fanOut 2.99 ± 3.25 9.40 ± 8.25
lcom 25.39 ± 69.61 328.00 ± 1798.03
numberOfLinesOfCode 71.02 ± 136.75 228.13 ± 368.73
numberOfMethods 5.66 ± 4.86 15.15 ± 17.51
numberOfPublicMethods 3.74 ± 3.47 9.23 ± 13.53
rfc 20.68 ± 26.73 87.58 ± 129.27
wmc 16.00 ± 27.49 57.37 ± 89.77

PROMISE

wmc 7.81 ± 6.44 18.42 ± 20.11
dit 2.02 ± 1.31 2.16 ± 1.35
noc 0.35 ± 1.54 0.85 ± 3.49
cbo 8.03 ± 12.52 16.15 ± 21.39
rfc 21.27 ± 17.63 50.22 ± 43.96
lcom 68.96 ± 293.00 263.53 ± 977.51
ca 4.39 ± 12.13 8.70 ± 19.82
ce 2.65 ± 2.59 7.97 ± 7.40
npm 6.27 ± 5.99 12.91 ± 14.04
lcom3 1.09 ± 0.70 0.93 ± 0.44
loc 191.61 ± 231.70 543.66 ± 886.53
dam 0.53 ± 0.46 0.73 ± 0.37
moa 0.64 ± 1.25 1.36 ± 1.89
mfa 0.40 ± 0.40 0.36 ± 0.37
cam 0.54 ± 0.22 0.35 ± 0.15

local model instead of a global model. Given that not all clusters in
a dataset have equal predictive performances as shown in RQ1, we
explore in this research question the impact of training the effort-
aware model using only the high performing cluster. We investigate
whether the local effort-aware defect prediction model trained on
the high performing cluster can achieve better performance than the
global effort-aware defect prediction model.

Approach. Similarly to RQ1, we build defect prediction models
to predict the number of defects in each file. We then compute the
predicted defect density of files and build theLOC-based cumulative
lift charts of the actual model and the predicted model. Finally, we
compute the area between the actual and predictedmodel to evaluate
the performance of the effort-aware defect prediction models.

To build an effort-aware defect prediction model, we apply the
same approach as Mende et al. [26]. This model uses the number
of lines of code, as a measure of effort. The defect density of a file
is defined as:

De f ectDensity(x) =
numberO f De f ects(x)

LOC(x)
(2)

where numberO f De f ects(x) is the number of defects in a file x
and LOC(x) is the number of lines of code of the file. To predict the
number of defects in each file, we build linear regression models,
similarly to RQ1.
We aim to test the following hypothesis:
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Figure 4: Visualization of the Clusters using the two first compo-
nents of Principal Component Analysis

H02: Building the effort-aware defect prediction model using the
high performing cluster improves the Popt of the model.

To assess the statistical significance of using the high performing
cluster versus the entire dataset to build the prediction model, we
perform the Kruskal-Wallis H test [24]. If the distributions are
statistically different (p-value < 0.05), we conclude that prediction
models built on the high performing clusters perform significantly
better or worse than the original global model. To quantify the
impact of the observed improvement, we calculate the effect size
using Cliff’s delta [36].

Findings. The effort-aware defect prediction model trained on
the whole training set (i.e., global model) is superior in 11 out
of the 15 studied projects. We report in Figure 5 the results for all
the projects. Each subgroup in the figure corresponds to a project
for which we show Popt values of the global and high performing
local models. The box plots shows a superiority of the global
model built on the whole training set for ≈73% of the projects. We
confirm the superiority of the global effort-aware defect prediction
model using the Kruskal-Wallis H test [24]. We also report in Table
7 the difference in the performance between the global and local
effort-aware defect prediction models. In the three projects where
the local model outperforms the global model, we observe that all
three projects (i.e., Ivy, Tomcat, and Lucene 2.6) have less than
10% of defective files. We can also observe that the low performing
cluster for these three projects has less than 5% of defective files
(see Table 5). In one project (i.e., Camel), the performance of the
two models is close to each other.

The global model is better at predicting the bugginess of the
files that are smaller in size, because it is trained on a more
diversified training set in terms of metrics’ values. The local
model, on the other hand, misclassifiesmany of the smaller defective
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Figure 5: Effort-aware prediction performance (Popt ) of global
and local models

Table 7: The effect size and difference in performance between
global and local models (projects in bold correspond to cases where
we observe significant difference between the performances of the
two models)

Dataset Project Popt

(Global)
Popt

(Local) Effect size p-value

PROMISE

Ant 0.73 0.71 large 7.25E-04
Camel 0.73 0.73 negligible 8.53E-01
Ivy 0.60 0.63 small 2.79E-01
Jedit 0.81 0.78 large 2.32E-02
Log4j 0.79 0.69 large 7.25E-04
Lucene 2.2 0.92 0.89 large 2.16E-05
POI 0.89 0.87 large 1.46E-02
Tomcat 0.68 0.70 large 6.30E-02
Xalan 0.89 0.85 large 1.08E-05
Xerces 0.87 0.85 medium 2.17E-01

AEEEM

Eclipse JDT 0.79 0.77 large 3.88e-03
Eclipse PDE 0.70 0.66 large 2.16E-05
Equinox 0.85 0.85 medium 8.92E-02
Lucene 2.4 0.81 0.85 large 2.05E-04
Mylyn 0.79 0.78 large 2.87E-03

files as clean, which affects the performance of the effort-aware
defect prediction performance. We carry an in-depth analysis of
the cases (i.e., files) that cause the global model to have a higher
performance, we find that the difference is caused by the local
model’s inability to recognize that some of the smaller files might
be defective. The local model is trained with a subset of the data
containing mostly long and more complex files; which explains its
inability to correctly classify the files that are smaller in size and
lower in complexity. Smaller files that contain defects are likely to
be ranked higher by an effort-aware defect predictionmodel because
they require less effort to inspect.

The results are consistent when using another classification
technique, spectral clustering, to partition the data and build
the local models. To further validate the superiority of the global
model, we cluster the data using another unsupervised classification
technique (i.e., spectral clustering). We previously noticed that the
low performing cluster has a much lower ratio of defective files. We
also observed that in the three cases where the local model outper-
forms the global models, the low performing cluster has the lowest
ratios of defective files. Therefore, we use an approach based on
spectral clustering, as an unsupervised classification technique, to
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Table 8: The effect size and difference in performance between
global and local models obtained using spectral clustering

Dataset Project Popt

(Global)
Popt

(Local) Effect size p-value

PROMISE

Ant 0.73 0.74 medium 1.05E-01
Camel 0.73 0.73 negligible 7.96E-01
Ivy 0.60 0.65 small 2.28E-01
Jedit 0.81 0.81 small 3.93E-01
Log4j 0.79 0.78 large 6.30E-02
Lucene 2.2 0.92 0.89 large 7.57E-05
POI 0.89 0.88 large 7.52E-02
Tomcat 0.68 0.72 large 1.50E-03
Xalan 0.89 0.85 large 1.08E-05
Xerces 0.87 0.83 large 1.85E-02

AEEEM

Eclipse JDT 0.79 0.74 large 6.38E-05
Eclipse PDE 0.70 0.68 large 1.42E-03
Equinox 0.85 0.84 large 6.40E-05
Lucene 2.4 0.81 0.80 large 1.17E-02
Mylyn 0.79 0.56 large 6.39E-05

separate the training set into a defective and clean clusters. For the
spectral clustering based approach, we use the steps proposed by
Zhang et al. [43] to label the defective cluster (i.e., the cluster with
the highest metrics values is labelled as defective). We build the
effort-aware prediction model using the defective cluster, and com-
pare its performance with the global effort-aware defect prediction
model.

Our results (shown in Table 8) show that the global model is
either superior or has similar performance to the local model, even
using other classification techniques to partition the data. Since
the building of the local models requires some overhead related to
obtaining the clusters and assessing which local model is best, it
seems to bemore practical to train the effort-aware predictionmodel
using the whole dataset.�




�

	
The global effort-aware defect prediciton model trained on
the whole dataset has an overall better performance than
the local model. The weakness of the local model lies in its
inability to recognize that some of the small files are possibly
defective.

4. THREATS TO VALIDITY
This section discusses the threats to validity of our study. We de-

scribe all possible threats by following the common guidelines [40].
Threats to conclusion validity concern the relation between the

treatment and the outcome. One conclusion validity threat comes
from the data clustering method. Using another clustering algo-
rithm might return different conclusions. Therefore, we validate
the consistency of the conclusions by testing our approach with dif-
ferent clustering algorithms (e.g., K-means and spectral clustering).
We have used non-parametric tests that do not require making as-
sumptions about the distribution of the datasets; thus, not violating
assumptions of the constructed statistical models.

Threats to external validity concern the possibility to generalize
our results. This study uses lines of code as measure of effort, sim-
ilir to Mende et al. [26] and Bettenburg et al. [7]. However, using
other measures of efforts such as McCabe cyclomatic complexity to
replicate the study can be useful in generalizing the findings about
the suitability of locals models for the task of effort-aware defect
prediction. Nevertheless, prior work [37] has provided strong evi-
dence of the correlation between lines of code and other measures of
efforts, when building effort-aware defect prediction models. Our
subject projects are all Java projects. Moreover, verifying our find-
ings on projects with different context factors (e.g., programming

languages, application domain, and size) can examine the general-
izability of our approach.

Threats to reliability validity concern the possibility of replicat-
ing this study. The subject projects are publicly available from [15]
and [12]. We attempt to provide the necessary details to replicate
our study. We have used off-the-shelf clustering techniques. We
also build all defect prediction models using linear regression, a
widely used and easily replicated modelling technique.

5. RELATED WORK

5.1 Defect Prediction
Defect predictionmodels are designed to help improve the quality

of software and to reduce the cost of software testing and mainte-
nance. After the creation of the PROMISE repository [28] in 2005
and later the AEEEM dataset [12] in 2010, there has been a growth
in the research of defect prediction [39]. Both repositories pro-
vide datasets from real-world projects for public use; thus allowing
researchers to build comparable and repeatable defect prediction
models. Due to the large body of work in the area of defect predic-
tion, we present in this section only some of the studies conducted in
this area, with the purpose to highlight the most important aspects
of defect prediction.

Defect prediction models are trained on SE data containing ac-
tual defect information and a set of descriptive metrics that are
believed to reflect defect proneness. To build the defect predic-
tion models, two major types of modelling techniques are used:
machine learning methods (e.g., support vector machines, decision
trees, and K-nearest neighbour) and statistical methods (e.g., logis-
tic regression and Naive Bayes). Different studies [12][25][2] have
evaluated the various modelling techniques for the task of defect
prediction. Lessmann et al. [25] concluded that the choice of the
modelling technique has limited impact on the quality of the defect
prediction models. Zhang et al. [43] proposed a novel modelling
technique based on an unsupervised classifier (i.e., spectral cluster-
ing), thus removing the need for a training set and easing the task
for cross-project defect prediction.

In addition to the modelling approaches used, the metrics used
to describe the software entities have also received much attention
by researchers. Some of the most important findings in this regard
are that larger and more complex files are more likely to be prone
to defects (i.e., product metrics)[13]. Also, heavily changed files
with multiple authors have been found to be riskier and likely to
contain defects (i.e., process metrics))[31][13][32]. Other findings
also suggest that process metrics are more efficient in predicting
defect proneness than product metrics [31]

In parallel, research efforts have been deployed to assess the limi-
tations of the defect prediction models. The stability and usefulness
of the prediction models have been found to be influenced by the
quality of the training data in terms of its representativeness, het-
erogeneity, and volume [4][8]. The same studies also found that
the SE training data does have quality issues and might contain
errors [4][8]. However, Kim et al.[21] claim that the defect predic-
tion models can still perform reasonably well under the presence
of quality issues, such as noise. In this paper, we aim to provide
additional insight on defect prediction by confirming some of the
prior findings, and reporting our observations on the impact of using
different training sets on the quality of the defect prediction.

5.2 Effort-aware Defect Prediction
Traditional prediction models assume that the effort to test and

inspect a software entity is the same across all entities. Arisholm
et al.[1] challenged the traditional prediction models by including a
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notion of effort into the evaluation. Many of the classification algo-
rithms (e.g., logistic regress, decision trees, and support vector ma-
chines) that are good according to classical performance measures
performed poorly when assessed with a measure of effort [1][2][3].
Mende et al. [26] include the notion of effort in the prediction
models and assess the improvement on the cost effectiveness of the
model; they conclude that there is a significant improvement of the
prediction performance. Kamei et al. [16] verify whether some
major findings in the defect prediction literature are still valid in
effort-aware models. Shihab et al. [37] investigate the measures
used to assess effort (e.g., lines of code). Effort-aware prediction
enables QA teams to select the modules with the highest risk for
further treatment [26]. When the effort is measured using lines of
code, the risk is equivalent to the defect density. Given the cost-
effectiveness of the effort-aware modelling on the available testing
resources, it is important to look further into effort-aware prediction
models and attempt to improve the performance. We investigate in
this work whether local defect prediction models (explained in the
subsequent section) can be suitable in the context of effort-aware
defect prediction.

5.3 Data Partitioning in Defect Prediction
To improve the performance of prediction models, many strate-

gies are used such as selecting the right metrics to build a model
[6][31][13] or predicting defects from different artifacts of a project
(e.g., the commit changes [17] or the cached history [22]). How-
ever, one of the main problems observed in SE data is its great
amount of variability [27]. Therefore, another way to improve the
quality of the defect prediction models is to look at partitions of data
with similar properties and build models locally rather than glob-
ally. This assertion led the way to a line of work comparing global
and local models with the purpose to evaluate the performance of
local modelling. For instance, studies [27][7] have shown that there
exists a benefit in considering models based on clusters of data to
decrease the variability in the data and improve the performance.
While local models result in a substantially better fit to the under-
lying data, the improvement to the prediction performance in terms
of prediction error has been described as "small" by Bettenburg et
al.. Moreover, Bettenburg et al. find that local models can possibly
provide conflicting recommendations to the practitioners. There-
fore, they recommend using trends obtained from global models,
that take into account local characteristics. In this work, we attempt
to replicate the work of prior studies and examine the quality of
the individual local models, to gain more insights about the reasons
behind the failure and/or success of the local models.

6. CONCLUSIONS
In this study, we start with the evaluation of local and global

models for defect prediction and observe that there is always one
local model that experiences higher prediction error. Moreover, we
find that the cluster associated with the poor performing model has
distinguished characteristics including lower ratio of defective files,
files with smaller size, lower code complexity and fewer past defects
and churn. We exclude the poor performing cluster and train a local
effort-aware model with the remaining training set. We observe
an overall superiority of the global model that is trained with the
whole dataset. By excluding the low performing cluster, the new
local model fails to learn from small defective files. The global
model, on the other hand, benefits from the variability of the data
and is better at predicting the bugginess of such files. Therefore,
we do not find that local models bring a worthy improvement over
global models for the task of effort-aware modelling, especially
given the overhead required to cluster the data before fitting the

local models. In the future, special attention should be given to files
that are smaller in size when conducting effort-aware prediction.
This type of files generally requires less effort, but can easily be
misclassified as clean. In the future, it is worth examining whether
building global models that take local considerations into account
can be beneficial to the task of effort-aware defect prediction, to
combine the advantages of both models.
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