Migrating and Specifying Servicesfor Web I ntegration
Ying Zou, Kostas Kontogiannis

Dept. of Electrical & Computer Engineering
University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{yzou, kostas}@waterl 0o.ca

Abstract. With the explosive growth of the Internet, businesses of all sizes aim on
applying e-business solutions to their IT infrastructures, migrating their legacy
business processes into Web-based environments, and establishing their own on-line
services. To facilitate process and service integration, a complete and information rich
service description language, is essential for server processes to be specified and for
client processes to be able to locate services that are available in Web-enabled remote
servers.

Within the context of emerging technologies, such as XML, the Internet, and
Network-Centric Computing, we propose an architecture that allows for Web-based
integration of distributed components and services. The architecture is based on
component wrapping, a service description language that allows for the specification
of services, and on techniques that support service registration and dynamic service
localization.

1 Introduction

Tremendous changes are taking place in the business world today due to the frequent
introduction of new technologies. As these technol ogies become the mainstream, the
focus of e-commerce activities is shifting from customer-to-business transactions, to
an e-business to business (B2B) model [8], which integrates business services and
business process models, across corporate Intranets or the Internet. Towards this
objective, multi-tier architectures, networking, and distributed object technologies
have made possible for organizations to deploy complex software applications over
the Internet.

Modern software systems must conform to requirements, such as flexibility,
adaptability, time to market, and ability to withstand continued business process
reengineering. Driven by these requirements, the migration and integration of legacy
systems towards new platforms and operating environments provide an effective
strategy for organizations to maintain their competitive edge [1]. In this context, many
consulting firms such as the Gartner Group are predicting that organizations that
integrate new development with the existing legacy systems will have a higher
success rate, at optimal cost, in the implementation of client/server applications.

In this paper we present an architecture that allows for the migration and
integration of existing stand-alone services into distributed environments.

Web Clients
(PDA, Network Computer, Java Applications, or CORBA Applications)

ic

Web Server

1c

Application Server

Service
Service Service Composition

Management Localization and

Inocation

1 1L
CORBA Server

e
Back-End Legacy @ Request &
Services Comoponents Response

Service DataBase

Fig. 1. Overal Architecture

In the core of the system lies a service description language that provides standard,
enriched, and well-understood information about the interfaces and the functionality
of the offered services. A service registration tool allows for services to be easily
registered with the environment. Finally, a search engine can effectively locate
services according to specific search criteria, alowing thus for service location
transparency.

This paper is organized as follows. Section 2 introduces the architecture for Web-
based Integration. The issues that arise in Web-based service integration are
addressed in section 3. The issues pertaining to the migration of software components
as legacy services are presented in section 4. Section 5 discusses the major
components of a service description language. The service registration and
localization modules are presented in section 6 and 7 respectively. An application
scenario is illustrated in section 8. Finally, section 9 provides a summary and the
conclusion of the paper.

2 Architecture for Web-based Service Integration

The Web-based service integration architecture focuses on the use of Web as an open
infrastructure where e-business related services and tasks can be defined, composed,
and enacted in afully customizable way.

As e-commerce services can be scattered virtually everywhere on the Web, we
need an architecture that allows for the separation of business application logic from
the client-side presentation logic. The three-tier architecture is instrumental for the
deployment of the distributed objects on a Web-enabled environment.

We present an open, multi-tier infrastructure, where a service can publish itself,
and easily be integrated with other legacy components and services. The proposed

architecture isdepicted in Fig. 1. Thefirst layer (top) consists of awide range of Web
clients, including Web browsers for handheld and embedded systems, or Java/Pure
and CORBA based applications running on fully loaded desktops. The second layer
relates to services provided by the Web server and application server. The Web server
captures the requests from Web clients and directs the requests to the Application
server. The application server has been widely adopted as the runtime environment of
choice for integrating heterogeneous applications. The core part of the architecture is
the underlying services that are added to the application server, including Service
Management, Service Localization, and Service Composition and Invocation.

The Service Management module maintains a database of the descriptions of the
available services. It enables the deployed services to dynamically register their
information in a repository. The Service Management module provides a repository
for the client processes to use in order to locate available services and compose them
for the completion of elaborate business tasks. A service description language
provides a customizable way to represent distributed services with enriched
information.

The Service Localization module is responsible for selecting the required services
among many available ones, according to the criteria set by the client process. The
service localization enables the clients to search the service by functionality,
signatures, performance, and customizability.

Finally, the Service Composition and Invocation module provides a framework and
a scripting language for dynamically enacting and composing remote services. This
module serves as an integrator that allows back-end services and legacy systemsto be
composed seamlessly.

In order to enable the integration of legacy applications in a Web-based
environment, we adopt the CORBA standard. The standard allows for legacy
applications to be encapsulated in remote objects using wrapper classes and behave as
distributed components. This wrapping technology allows clients in virtually any
software or hardware platform to invoke remote legacy components in their native
operating environments. The legacy application is resident on the CORBA server,
which acts as the gateway for the integration. Such a framework provides system
support for the invocation and integration of legacy back-end services from any
clients.

3 Web-based Service Integration Mechanism

The generic three-tier architecture can be further separated into four layers [11]: a)
presentation layer (Web client); b) content layer (Web server); c) application layer
(application server); and d) back-end data and services layer, as shown in Fig. 2. The
Web server is responsible to accept HTTP requests from Web clients, and deliver
them to the application server, while the application server isin charge of locating the
services and returning responses back to the Web server. On the other hand, a thin
client in the presentation layer haslittle or no application logic.

Application Server

Y«\? ;&Qé
—
Web /N Web Servlet / Back-end
Browser Server '\J Services
N/ e
e ot | o e
o O o|O o 8 e
Mﬂ@ a8 »le a
o|® g [0} @ S
212 o2 2l 7]
B) @ f
Enterprise Databases
JavaBeans Se
Contents
Reque:
Presentation Content Application Dsata and
ervice
Layer Layer Layer

| aver

Fig. 2. Control Flowsin Three-Tire Architecture

The Web server can maintain a content repository, or a file system, where the
information-based resources are stored and serve as static HTML pages. Upon
receiving a request from the client, the Web server retrieves the requested document
from the content repository and sends it to the client. In this case, the client entirely
relies on the Web server. Programming languages, such as Java, and scripting
languages, like CGl, can be used to access the database.

To provide the dynamic information generated by software services, the Web
server needs to constantly interact with the application server. A servlet provides the
dynamic HTML content to clients. When the Web server receives the request for a
servlet, it re-directs the client’s request along with the parameters to the application
server, which loads the servlet and runsit. Servlets not only have all the features of
Java like automatic memory management, advanced networking, multithreading, and
so forth but also, allow for enterprise-wide connectivity in the form of NI (Java
Native Interface), JIDBC, EJBs, RMI, and CORBA. Servlets can make calls to back-
end services, other servlets, or to the Enterprise JavaBeans[12].

Once the servlets are deployed on an application server, they can be accessed from
any other Web server. This can be achieved provided that the client’ s request contains
the URL of the servlet with the correct name, type, parameters, and initial values. The
combination of EJBs and Servlets, CORBA objects and Servlets, and RMI objects
and Servlets, can be used to invoke back-end services accessed by the Web clients via
HTTP connections. However, CORBA and Enterprise Java Beans are not a panacea
for all problems that may arise when integrating services in a distributed environment,
but they provide the building blocks for distributing applications over a diverse range
of platforms and operating environments.

4 Example Service Migration to a CORBA Environment

In order to integrate existing systems that encapsul ate valuable business logic, the first
step is to re-engineer these systems so that they can be used in a distributed
environment. In the approach discussed in this paper, we utilize reverse engineering
and design recovery techniques to identify specific components that encapsulate
valuable business logic for a specific application. These techniques have been
investigated as part of another project with IBM and are presented in [13, 14]. Once
specific legacy components are identified through the use of program analysis, their
behavior must be specified in terms of well-defined interfaces. In order to integrate
the identified components to a heavily heterogeneous Web-enabled distributed
environment, we must define an appropriate middleware. The CORBA specification
provides a suitable infrastructure for integration, due to its platform, language, and
vendor independence.

The component interface hides the implementation details inside the component
and alows only signatures of services to be published to its clients. Moreover, it
defines a set of properties and behaviors that represent a component’s API. Properties
are represented in terms of attributes, which can be accessed by accessors and
mutators. Similarly, method parameters and return types can be represented by IDL
interfaces.

In a related software migration case study we have used reverse engineering
techniques in order to analyze and migrate the AVL GNU tree libraries from C
procedural code to a new C++ object oriented implementation [13, 14]. The new
migrant object oriented AVL tree library can be considered as a component,
consisting of several classes. In this section we present how such a collection of C++
classes from the GNU AVL tree library cab be migrated in a CORBA environment.

In a nutshell, the interface for the new AVL tree component consists of several
stub interfaces that correspond to wrapper classes. To migrate the standalone
identified components into a distributed computing environment, the object wrapping
approach can be adopted. The wrappers implement message passing between the
calling and the called objects, and redirect method invocations to the actual
component services. The concrete process to accomplish wrapping is implemented in
terms of three major steps.

Thefirst step focuses on the specification of componentsin CORBA IDL as shown
inFig. 3.

The second step deals with the CORBA IDL compiler to translate the given IDL
specification into a language specific (e.g. C++), client-side stub classes and server-
side skeleton classes. Client stub classes and server skeleton classes are generated
automatically from the corresponding IDL specification. The client stub classes are
proxies that allow a request invocation to be made via a normal local method call.
Server-side skeleton classes allow a request invocation received by the server to be
dispatched to the appropriate server-side object. The operations registered in the
interface become pure virtual functionsin the skeleton class.

The third step focuses on wrapper classes that are generated and implemented as
CORBA objects, directly inheriting from the skeleton classes. The wrapper classes
encapsulate the standalone C++ object by reference, and incarnate the virtual
functions by redirecting them to the encapsulated C++ class methods. The new

module AVL{

interface corba_ubi_btRoot;
interface corba_ubi_btNode;
interface corba_SampleRec;

typedef char corba_ubi_trBool;

interface corba_SampleRec{
void putName(in string val);
string getName();
void putNode(in corba_ubi_btNode val);
corba_ubi_btNode getNode();
long getDataCount();
void putDataCount(in long aval);

I

interface corba_ubi_btNode {
void putBalance(in char val);
char getBalance();
long Validate();

I

interface corba_ubi_btRoot{
corba_ubi_trBool ubi_avlinsert(
in corba_ubi_btNode NewNode,
in corba_SampleRec ItemPtr,
in corba_ubi_btNode OldNode);

Fig. 3. AVL Component Interface Definition

functionality of the legacy object can be added in the wrapper class as long as the
method name is registered in the interface.

For example, the SampleRec class is one of the classes identified within the AVL
tree component. The wrapper_SampleRec inherits from the skeleton class
sk_AVL::_sk_corba SampleRec, which is generated from the CORBA IDL to C++
compiler. The wrapper class, wrapper_SampleRec, encapsulates a reference of
SampleRec class as shown in Fig. 4.

When a client invokes a method through CORBA, it passes the CORBA data type
parameters. The wrapper classes need to translate the CORBA specific data types
from the client calls to the data types used by encapsulated C++ classes. Fig. 5
illustrates the transformation from the CORBA specific type such as
corba_SampleRec_ptr to the SampleRec used in the C++ function. In the same way,
the wrapper classes convert the returned values from the C++ class to the CORBA
specific datatype.

class wrapper_SampleRec : public _sk_AVL::_sk_corba_SampleRec
{ .
private:
SampleRec& _ref;
char *_obj_name;
public:
wrapper_SampleRec(

SampleRec& _t,

const char *object_name = NULL):

_ref(_1),

_sk_AVL::_sk_corba_SampleRec(object_name);
SampleRec* transIDLToObj(

AVL:.corba_SampleRec_ptr obj);
void putNode(

AVL::corba_ubi_btNode_ptr val);
AVL::corba_ubi_btNode_ptr getNode();
~wrapper_SampleRec(){

delete & ref;

free (_obj_name);};

Fig. 4. An Example Wrapper Class

SampleRec* wrapper_SampleRec::transIDLToObj(
AVL::corba_SampleRec_ptr obj)

{
if (CORBA::is_nil(obj)) return NULL;

/I set up the data members of _ref object
_ref.putName(obj->getName());
_ref.putDataCount(obj->getDataCount());

/ltranslate the ubi_btNode to corba_ubi_btNode_ptr by wrapper
/Iclass NodeWrap

ubi_btNode *Nodelmp = new ubi_btNode();
wrapper_ubi_btNode NodeWrap(*Nodelmp, _obj_name);

/ltranslate corba_ubi_btNode_ptr type returned from
/lobj->getNode() to ubi_btNode * by transIDLToObj() in
/lwrapper object NodeWrap.
_ref.putNode(NodeWrap.transIDLToODbj(obj->getNode()));
return & _ref;

}

Fig. 5. Example for Object Type Translation

Since IDL does not support overloading and polymorphism, each method and data
field within the interface should have a unique identifier, in order to disambiguate
references to programming entities that correspond to different languages. For
example, C++ supports overloading, but C does not. If the polymorphism and
overloading methods occur in one class, it is necessary to rename these methods by
adding the prefix or suffix to the original name when they are registered in the
interface, avoiding changing the identified objects. This “naming” technique allows
unigue naming conventions throughout the system, without violating code style stand-

General Properties

Service Definition

Manufacturer Information

Run-time Properties

Compile-time Properties

Functional Description

Service Interface

Service Type

Interface Definition

Fig. 6. Key Element of Service Specification

ards. The wrapper classes are responsible to direct the renamed overloaded and
polymorphic methods to the corresponding client code.

If the polymorphism and overloading methods occur in the inheritance
relationship, we can take advantage of C++ upcast feature, only register the sub-class
in the component interface, and upcast the sub-class to its super class when the
polymorphic or overloading methods in super class are invoked.

5 Service Description Language

In this section, we present the prototype of a service description language that
provides a standard format to represent, register, and store information related to
back-end services. To facilitate the integration of back-end services, a meta level
description language is essential to effectively locate registered services. The meta-
level description for the software services can be published at the same time as the
distributed objects are deployed onto the application servers, or some time later when
the enterprise would like to make their software services available.

5.1 Structure of Service Description Language

Generally, a service can be represented in a multi-faceted way, by specifying, for
example, vendor, run time specifications, compile time requirements, method
signatures, as well as, pre- and post-conditions. Each of these aspects is denoted as a
Service Description Fact. Different Description Facts specify different properties of
the services.

In a nutshell, the specification of the software services is divided into two layers
namely General properties and Service Interface properties, asillustrated in Fig. 6.

<?xml verstion="1.0"?>
<SDL>
<Generallnfo>
<ServiceDef>
<ServiceName> <!-- Specify service ID and name -- >
</ServiceName>
<ServiceCatalog><!--Specify service category-->
</ServiceCatalog>
<URL > <!-- Specify service URL linke -->
</URL>
<VersionNumber /> <!--Specify version number-->
</ServiceDef>
<Manufacturer> <!-- Specify vendor information-->

</Manufacturer>
<RunTimeEnv> <!-- Specify run-time environments-->
<0OSs>
<OS name="" version=""/>
</OSs>

</RunTimeEnv>
<CompileTimeEnv> <!-- Specify compile time environments-->
</CompileTimeEnv>
<Funcationality>
<!I-- Specify abstract and detailed information -->
<!-- about service funcationality-->
</Functionality>
</Generallnfo>
<Servicelnterface>
<Types>
<!I--Lists the Types of components inside the service interface. -->
</Types>
<ServletML>
<l--Lists the servlet interface -->
<Parameters>
<Parameter>
<Name /><Type /><Value />
</Parameter>
</Parameters>
</ServletML>
<EJBML> <!--Specify the EJBs interface -->
</EJBML>
<CORBAML> <!--Specify the CORBA interface -->
</CORBAML>
</Servicelnterface>
</SDL>

Fig. 7. Overal Structure of Service Description Language

Each layer contains specific information at different levels of abstraction. The
structure of a service description document isillustrated in Fig. 7.

To enable a service binder to locate the requested correct service with high
precision and recall levels, the General properties should contain facts that relate to
such aspects as general service definition, manufacture information, run-time and
compile-time properties, signatures, version numbers, implementation language, and
functional descriptions. For example, for a CORBA wrapped service object, it is
important to specify the ORB agent address, which is responsible for invoking the
requested CORBA object by the name and URL address of the object.

For the purpose of Web-based service integration, it is important to disclose the
interface of the distributed componentsto client processes. Similarly, the Service

<?xml version="1.0"?>
<IELEMENT newTags (hewTag)+>
<IELEMENT newTag (startingPoint, tagDef)>
<IELEMENT startingPoint (#PCDATA)>
<IELEMENT tagDef
(tagName, attList*, containedTags*)>

<IELEMENT tagName (#PCDATA, tagContent*)>
<IELEMENT attrList (attr)+>
<IELEMENT tagContent (#PCDATA)>
<IELEMENT containedTags (tagDef+, group)>
<IELEMENT group (group* | tagName*)>
<IATTLIST group groupName CDATA #REQUIRED>
<IATTLIST group groupType (SEQ|OR) #IMPLIED >
<IATTLIST group groupOccurs

(once|optonal|requried) #IMPLIED>
<IATTLIST tagDef occurs

(once]optional|required) #REQUIRED>
<IATTLIST attr attrName CDATA #REQUIRED>
<IATTLIST attr attrType CDATA #REQUIRED>
<IATTLIST attr attrValue CDATA #IMPLIED>

Fig. 8. DTD for Adding New Fact and Content

Interface layer specifies the APIs of the registered components. As stated earlier,
there are different technologies to make the back-end services available to remote
clents. These technologies include servlets, EJBs, and CORBA. Each type of back-
end servicesisregistered by its own specific interface description.

For servlets, the inputs are embedded in HTML forms, which contain the HTML
types of inputs, the names of parameters and the allowable values. For the EJBs, the
back-end services can be composed of several beans (session beans, or entity beans)
in one jar file. Each bean has its own home interface and remote interface. When a
service is implemented by the CORBA standard, it may include several CORBA IDL
interfaces as encapsulated in the CORBA IDL “module’” name scope. For the
interface within CORBA and EJBs components, it is necessary to declare the
available methods, parameters and the types of method parameters and return values.
To reduce the complexity in definition of service description language, we inherit the
interfacefrom EJBs and CORBA IDL by inserting them under the <EJBML> tag and
<CORBAML> tag respectively.

5.2 Extensibility of the Service Description Language

The extensibility of the service description language is crucial for representing
services in distributed Web-enabled environments. For example, new service
categories can be added or existing service descriptions can be extended.

The DTD for the Service Description Fact specifies its syntax and allows for such
Service Descriptions to be proven syntactically valid. The DTD for the Service
Description language is illustrated in Fig. 8. New Service Description facts can be
added by using the newTag element contained in the newTags element.

<?xml version="1.0"?>
<IDOCTYPE newTags SYSTEM "patSpec.dtd">
<newTags>
<newTag>
<startingPoint>SDL.Generallnfo</startingPoint>
<tagDef occurs="once">
<tagName>RunTimeEnv</tagName>
<containedTags>
<tagDef occurs="required">
<tagName>OSs</tagName>
<containedTags>
<tagDef occurs="required">
<tagName> OS </tagName>
<attList>
<att attrName="name" attrType="CDATA" />
<att attrName="version" attrType="CDATA" />
</attList>
</tagDef>
</containedTags>
</tagDef>
</containedTags>
</tagDef>
</newTag>
</newTags>

Fig. 9. Run Time Environment Fact Definition

With the fact specification DTD, the addition of new facts is uniquely identified
and inserted in away that maintains the syntactic validity of the description. In Fig. 9,
for example, the addition of the Run-time environment fact is illustrated. In this
example, the new fact isinserted under the Generallnfo element with the tag name of
RunTimeEnv. RunTimeEnv element can occur once under Generallnfo element. It
contains an OS element, which specifies the operating systems to run the service. The
OS element may occur one or more times, and can have attributes that denote its name
and version number.

Meanwhile, new content can be easily introduced into the existing service
description under the tag <ServiceCatalog> category (Fig. 7).

5.3 Structure of Database

Service Descriptions and fact specifications DTDs) require a database for the
persistent storage of the XML encoded component and service interface description.

To keep the database management simple and achieve flexibility in the service
description, we use one table to map the service ID and the external XML filename
for each service description. Each fact consisting of a service descriptionisstoredin a
separate table. The primary key of these tables is the service ID generated during
registration. In the same way, another table is created to store the file name of the
DTD for each fact.

The Service Management module (shown in the Fig. 1) is responsible to maintain
the service database. It can insert a new service description, delete, and modify the
existing one. For this task, we utilize the IBM DB2 XML extender to map XML

3 Create Template for Service Description - Netscape

Fil= Edit “iew Go Communicator Help

i w# T Bookmarks A Go o lhttp:d’f'naxos/Temp;l o1l Wwhat's Related m

Checl: the contents you want to mclade in the service description

Service Definition
* Serwvice Mame
= Service Catalog
* Tmplementaton Language
= Cormmunication Protecel & TTEL Address
s Wersion Mumber
M hlanufacturer Information
M Runtime Environment Definition
s Cwperabing Systems
T Compile Time Environment Definition
= Compiling Options

Functionality Definition

= Abstract Descriptions
* [Detailed Descriptions

Service Interface Definition

= [Operation Specification
= Parameter Diefimtion

_submit | reset | =
[== | [Document: Done =| 352 Jit AR = | =

Fig. 10. Service Specification Fact List

Service Descriptions to DB2 tables. In general, the service manager retrieves from the
database table the description filename, and then extracts the whole XML document
by using traditional SQL queries. When a service is registered, the service manager
can check for duplicate definitions, generate the service ID, and insert the description
into the database. The Service Management Module is implemented by Enterprise
Java Bean, which provides the support for transactions.

6 Service Registration

For the service registration, we have designed a Web based interface to serve as a
service registration authoring tool, which allows for the user to specify the service
description by filling in forms in a Web interface, as shown in Fig. 10. Then the
service description is generated automatically from the information provided.

As mentioned earlier, in order to provide maximum customizability, the service
description language is separated into independent facts. Moreover, the environment
allows for new facts to be added at anytime. This interface allows the user to select
the required facts by filling predefined forms. Some facts are indispensable, such as
Service Definition. After submission, the Web Interface will create an HTML form as

% forms - Netscape
File Edit “iew Go Communicator Help

v J T Bookmarks A Gobo: |http:z’a’naxos/servletz’CleateFormLI @' What's Related

Service General Information

Service Mame: I—
Service Category: Im
Implemented By: lm
Path{I0F =] Host Iame | Port
Wersion Mumber: I—
Submit |

Service Interface Definition
FParameter Mame I Type I Walue
Add MarmeTypefalue |

a7}

——-Mame/Typefvalue List—- =] |-

;l Remove |

Functionality Description
Abstract:

=l

L B

Eeywords I
Detaled Document “Web Page:l

Submit |

= [SB= | [
Fig. 11. Service Description Interface

shown in Fig. 11, where the user can add more information about the newly registered
service.

For example, once the legacy components are wrapped as distributed objects, as
discussed in section 4, their information can be described through the Web interface
and registered into the service repository.

7 Service Localization

A prototype service localization mechanism allows for distributed software services
to be located much like a search engine locates content (data) in Web pages.

The system can provide two ways for clientsto submit search queries, viathe Web
HTML Interface, or by an XML formatted document that may be part of a client’s
reguest for aservice.

The design of the query language aims to allow users to provide as many features
aspossiblein order to specify the services being sought. The service description facts

<?xml version="1.0" ?>

<IELEMENT searchSpec (ID*, location*, category*, impIBy*, platforms*,
funcDsc*, vendor*, version*, timeLimit*)>

<IELEMENT ID (#PCDATA)>

<IELEMENT location (#PCDATA)>

<IELEMENT category ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<IELEMENT impIBy ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<IELEMENT platforms ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<IELEMENT funcDsc ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<IELEMENT vendor (#PCDATA)>

<IELEMENT version (#PCDATA)>

<IELEMENT timeLimit (#PCDATA)>

<IELEMENT keyword (#PCDATA)>

<IELEMENT AND (keyword | AND | OR | NOT)*>

<IELEMENT OR (keyword | AND | OR | NOT)*>

<IELEMENT NOT (keyword | AND | OR | NOT)*>

Fig. 12. DTD for Service Localization Query

as shown in Fig. 7, allow for the user to search for services according to specific
criteria such as service categories, functionality, implementation techniques, and
operating platforms. The grammar for the query language is defined in terms of a
DTD as shown in Fig. 12. The root element for this DTD is the searchSpec element,
which can include zero or more children, such as service ID, service location, service
category, etc. The query doesn’t need to include every element under the searchSpec
element. Some elements, such as category are composed of the several keyword
elements, AND, OR and NOT elements. The keyword element represents the keyword
for the search criteria. The keywords can be conjuncted by AND, OR, and NOT
elements. For example, AND elements can have children as keyword elements, AND
elements, OR elements, and NOT elements. When new Description Facts are added
into the service description language, the DTD of the query will be edited
correspondingly in order to reflect the changesin the new service descriptions.

The Web interface of the service search engine is currently designed for the HTTP
users, as shown in Fig. 13. After submission, the search criteria composed in the
XML format are sent to the Service Localization module asillustrated in Fig. 1.

By extracting the requirements from the query specification, the service
localization module looks up the service database. If multiple results meet the search
criteria, the available services can be listed and ranked according to their registered
features, such as performance, or estimated response time from the server. Since
service description facts are encoded in XML, the search locator has been
implemented using the XML DOM (Document Object Model) API and incorporating
search logistics, such as exact search, sub-string search, precedence search, and
stemming.

2 zearch - Metscape

ile Edit “iew Go Communicator Help
wt'Bookmarks .75 Location:Ittp:.-".-"naxos.-"searc:h.html j @vw’hat's Related

-

] z|

Search Specifications

Service ID: |
Service Path: |

Setvice Categoty: |

Tmplemented By: I EJBs Yl

If implemented by others, please specifir |

Platforms: |

Functionality Description: |

Vendor: |

Wersion: |

Search Time Limit: I seconds

Subrnit | Reseat |

[== |Document: Done | =] 2 T8 AP 3

L

Fig. 13. Web Interface for Search Query

8 Application Scenario

As an example, consider an application scenario for the Web-based service
integration architecture presented in this paper, whereby a global infrastructure
enables distributed components that have been developed independently or migrated
from legacy systems, to be integrated with each other and to facilitate complex
business tasks.

In this way, distributed components located virtually everywhere in the world, can
be combined on as required basis, forming thus collaborative systems. This
integration can happen dynamically by allowing general service properties,
functionality and, signatures of components that are specified in the service
description language to be registered in the service database. Client processes can
search for available distributed components in a same manner as a search engine
would be used to locate information resources on the Internet. After meeting the
search requirements, the client process can invoke the identified services without
necessarily downloading all the components to the local client machine. On-going
work, focuses on the invocation of services that is based on scripts encoded in XML
and is enacted using the Event-Condition-Action (ECA) paradigm [15]. The overall
proposed architecture is under development in collaboration with IBM Canada,
Center for Advanced Studies, and isillustrated in Fig. 14. The core of the system is

Wehsphere Everts

Service

Rule: Engine Lookup

Serviet

Deploys Reuest Service

Events EJB Inwke Result Service
Repositary

External System

Activate Service Remate:
Service

Reisters
with

Everts

— | —

Fig. 14. Overall Service Integration Architecture

the Rule Engine Servlet, which accepts triggering events from the Web server. Once
the premises (events and conditions) of specific ECA rules are satisfied, the requested
service (action) by the rule is localized and invoked. Upon completion, services
(actions) produce new events that may trigger new ECA rules. Deadlocks and loops
are detected by building arule dependency graph for agiven script [16].

Inits current form, the Internet and the Web provide reliable connectivity between
client and server processes by using pre-defined, hard-coded transaction scenarios.
These pre-defined transaction scenarios are currently implemented in terms of hard-
coded URL links, CGI scripts and, Java applets. In this context, we address the issue
of customizing the integration of services between client and server processes in
distributed e-commerce and e-business environments. Services that are represented as
remote components are encapsulated in wrapper objects. Such software components
are obtained either as modules of legacy systems that encode mission critical business
logic or, as modules of new applications developed with specific functional
requirements in mind. In either case, these software components implement specific
tasks that can be thought of, as building blocks of more complex interaction scenarios
between client and server processes.

The customization of the transaction and integration logic required by various
processes to complete complex tasks, opens new opportunities in Web-enabled e-
Commerce and e-Business environments. In this sense, business partners can
customize their business transaction models to fit specific needs or, specific contract
requirements. This customization istransparent to third parties and, provides meansto
complete business transactions accurately and on-time. Organizations can enter the e-
business arena by building and deploying extensible and customizable services over
the Internet using software components that are readily available as services over the

Internet. Moreover, virtual agencies and portals that provide a wide range of services
can be formed by integrating existing functionality and content over the Web. For
example, a virtual travel agency can be formed, by composing in a customized
manner, services that are readily available in various travel related Internet Web sites.
Client processes may post requests to the virtual agency. The agency can enact its
transaction logic (scripts) in order to integrate and compose data and services from a
wide spectrum of sites. In this scenario, data about pricing, availability and, travel
related special offers, can be fetched by various sites, processed by the agency and
presented to the client in a customized and competitive for the agency way.

The prototype system under development at the Center for Advanced Studies is
focusing on building virtual malls where different virtual stores (agencies) provide
goods and services and, compete for the pricing, and the range of services offered.

9 Conclusion

In this paper, we present the issues of migrating monolithic services into distributed
environments, and propose a service description language to specify back-end
services. With the aid of a service description language, service registration and a
service localization mechanism, component integration can be realized and service
location transparency can be achieved.

In this context, we are especially interested in Web-based platforms because the
Web is becoming the common denominator for accessing and presenting information
over the Internet, Intranets and, Extranets. Moreover, the Web provides the
deployment platform for many new enabling technol ogies such as CORBA, RMI and,
EJBs.

As aresult, this Web-based service integration infrastructure allows for the reuse
of the existing software components, shortens the time to architect new applications,
and eases the enterprise integration of business operations.

10 Acknowledgements

The authors would like to thank Bill O’ Farrel and Steven Perelgut of IBM CAS and
Evan Mamas and Richard Gregory of the University of Waterloo, for their valuable
suggestions and insights.

Refer ences

1. Umar, Amjad, “Application (Re)Engineering: Building Web-Based Applications
and Dealing with Legacies’, Prentice Hall PTR, 1997.

2. RamPrabhu, Robert Abarbanel, “Enterprise Computing: The Java Factor”,
Computer, P115, June 1997 |EEE.

10.

11

13.

14.

15.

16.

Walter Brenner, Rudiger Zarnekow, and Harmut Wittig, “Intelligent Software
Agents: Foundations and Applications’, Springer-Verlag Berlin Heidelberg 1998.
Alan R. Williamson, “Java Servlets By Example’, Manning Publications Co.,
1999.

Victor Lesser, et a. “Resource-Bounded Searches in an Information
Marketplace”, |EEE Internet Computing, March/April 2000.

Tuomas Sandholm and Qianbo Huai, “Nomad: Mobile Agent System for an
Internet-Based Auction House”, |EEE Internet Computing, March/April 2000.
Ying Zou, Kostas Kontogiannis, “Localizing and Using Servicesin Web-Enabled
Environments’, 2" International Workshop for Web Site Evolution, Switzerland,
2000.

“Business-to-Business e-Commerce with Open Buying on the Internet”,
http://www.ibm.com/iac/papers/obi-paper/intro.html .

“Gaining Competitvie Advantage in the Supply Chain: IBM Solution for
Business Integration”, http://www-4.ibm.com/software/info/ti/issues/scm.html.
Ronald Bourret, “XML and Databases’, http://www.informatik.tu-
darmstadt.de/DV Sl/staff/bourret/xml/XM L AndDatabases.html .

Paul Dreyfus, “The Second Wave: Netscape on Usahility in the Services-Based
Internet”, IEEE Internet Computing, March/April 1998.

Jogquin Picon, et al, “Enterprise JavaBeans Development Using VisualAge for
Java’, http://www.redbooks.ibm.com

Prashant Petil, Ying Zou, Kostas Kontogiannis and John Mylopoulos, “Migration
of Procedural Systems to Network-Centric Platforms”, CASCON’99, Toronto,
1999.

Kostas Kontogiannis, Prashant Patil, “Evidence Driven Object Identification in
Procedural Code”, STEP' 99, Pittsburgh, Pennsylvania, 1999.

Richard Gregory, Kostas Kontogiannis, “Requirements for a Distributed Tool
Integration System”, http://www.swen.uwaterl0o.ca/~rwgregor.

George Koulouris et.al “Distributed Systems: Concepts and Design”, Addison-
Wesley, Second Edition, 1996.

