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Abstract Given the competitive mobile app market, developers must be fully
aware of users’ needs, satisfy users’ requirements, combat apps of similar func-
tionalities (i.e., competing apps), and thus stay ahead of the competition. While
it is easy to track the overall user ratings of competing apps, such information
fails to provide actionable insights for developers to improve their apps over
the competing apps [2]. Thus, developers still need to read reviews from all
their interested competing apps and summarize the advantages and disadvan-
tages of each app. Such a manual process can be tedious and even infeasible
with thousands of reviews posted daily.

To help developers compare users’ opinions among competing apps on high-
level features, such as the main functionalities and the main characteristics of
an app, we propose a review analysis approach named FeatCompare. Feat-
Compare can automatically identify high-level features mentioned in user re-
views without any manually annotated resource. Then, FeatCompare creates a
comparative table that summarizes users’ opinions for each identified feature
across competing apps. FeatCompare features a novel neural network-based
model named Global-Local sensitive Feature Extractor (GLFE), which ex-
tends Attention-based Aspect Extraction (ABAE), a state-of-the-art model
for extracting high-level features from reviews. We evaluate the effectiveness
of GLFE on 480 manually annotated reviews sampled from five groups of com-
peting apps. Our experiment results show that GLFE achieves a precision of
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79%-82% and recall of 74%-77% in identifying the high-level features asso-
ciated with reviews and outperforms ABAE by 14.7% on average. We also
conduct a case study to demonstrate the usage scenarios of FeatCompare. A
survey with 107 mobile app developers shows that more than 70% of developers
agree that FeatCompare is of great benefit.

Keywords Mobile applications, User reviews, Competitor analysis, Compet-
ing apps, Feature extraction, Google Play Store

1 Introduction

Mobile applications (apps) have become an integral part of our daily activities.
To get an app, users visit a mobile app store, such as the Google Play Store,
and search for an app that fulfills their needs [29]. After downloading an app,
users can post reviews to express their opinions on the downloaded app. Table 1
shows three sample reviews from two popular weather apps. In this example,
two users of the “AccuWeather” app complain about the low accuracy of the
forecast given by the app. In contrast, one user of the “Weather Live” app
praises the accurate forecast of weather provided by the app.

Table 1: User reviews of the “AccuWeather” app and the “Weather Live”
app.

App User reviews Rating High-level feature

AccuWeather “Terrible accuracy. Keeps
telling me it’s snowing. No
snow. Not a flake.”

Forecast accuracy

AccuWeather “Inaccurate weather fore-
casts. Says its partly sunny
where it is actually overcast”

Forecast accuracy

Weather Live “Excellent accuracy in fore-
casting the weather for my
area”

Forecast accuracy

User reviews are crucial for mobile app developers [15, 42] as it has been
reported that mobile users are not likely to download an app with an average
rating that is less than three stars [34]. To maintain a high average rating,
developers need to rapidly implement the requested features and fix the re-
ported bugs mentioned in user reviews [42]. The manual process of reading
a large number of user reviews can be tedious, expensive, and error-prone.
Hence, in literature, researchers have proposed approaches to help mobile app
developers gain insights from their user reviews by automatically extracting
features mentioned in reviews [15, 16, 21, 23, 52], summarizing [12, 57], cate-
gorizing [33, 36, 43, 55], and prioritizing user reviews [6, 13, 24].

However, given the highly competitive nature of the mobile app market,
analyzing the reviews of a specific app is not enough for developers of the app
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to succeed. El Zarif et al. [10] find that user complaints can lead to user churn,
which means users can switch to start using the competitors’ products. Devel-
opers need to expand their focus beyond their own apps and understand how
users perceive their apps with respect to their competitors’ apps [2, 40, 48, 55]
via a competitor analysis [53]. Conducting user-based competitor analysis sup-
port developers in eliciting requirements requested by users [48, 55], planning
the app releases [40] and performing apps enhancements [2]. Competitor anal-
ysis can be conducted in many ways and for different purposes. In this work,
inspired by the existing user review analysis approaches, we specifically explore
the opportunity of supporting mobile app competitor analysis via automat-
ically mining useful information from reviews of closely related apps (i.e., a
group of competing apps). Studies show that reading about app features in the
app description section does not provide any information about the quality of
the features and how it is perceived by users [14, 32]. Therefore, researchers
show interest in techniques that provide developers with suggestions (e.g., bug
fixes and feature requests) extracted from user reviews for future app releases
[2, 55].

Nayebi et al. [39] suggest that accommodating user opinions is crucial for
planning the future releases of the apps in the competitive market. Through the
feature-level comparison, developers can focus on either improving the most
frequently mentioned low rate features (i.e., requests and complaints) [39] or
on enhancing features that are less rated (i.e., most negative as compared
to the same feature rating of competitor app. For example, for the “Forecast
accuracy” high-level features of the “Weather” app shown in table 1, the devel-
oper can know how many users report negative opinions about this particular
feature and compare it to the same feature rating across competitors along
with the number of satisfied users.

Few prior studies [8, 28, 50, 53] have shed light on the potential of extract-
ing useful information, i.e, user opinions (sentiment and rating) associated
with specific app features, for app comparisons. These app features are fine-
grained, and explicitly mentioned in reviews via word pairs such as “photo
edition” and “upload video”. However, comparing competing apps on fine-
grained features can be challenging and time-consuming as the number of
extracted fine-grained features can reach up to hundreds or even thousands
per competing group [8, 51]. Instead of mining the fine-grained features, which
describe the details of an app feature, we propose to mine and compare user
opinions on high-level features from reviews of competing apps. High-level fea-
tures refer to the main functionalities (e.g., video streaming or daily forecast)
and the main characteristics (e.g., UI appearance and stability) of an app. One
can regard high-level features as semantic clusters of fine-grained features. For
instance, the reviews shown in Table 1 mention multiple fine-grained features
specified by phrases “Terrible accuracy”, “Inaccurate Forecast”, and “Excel-
lent accuracy”. The three fine-grained features can be grouped into one high-
level feature, i.e, ”“Forecast accuracy”, indicating the common concern from
all sample reviews. By identifying all high-level features from reviews of com-
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peting apps, developers can summarize users’ attitude on forecast accuracy
among all competing apps.

In this paper, we propose FeatCompare, an approach that facilitates the
analysis of high-level features across competing apps. Our approach contains
three components: 1) a data preprocessor component that takes as input re-
views from multiple competing groups and removes non-informative reviews
using AR-Miner [6], 2) an unsupervised neural network-based feature extractor
component, named Global-Local sensitive Feature Extractor (GLFE), that
extracts high-level features from preprocessed user reviews, and 3) a review
aggregator component that aggregates ratings for each feature and generates a
comparison table summarizing feature-based user opinions for competing apps.
GLFE extends a state-of-the-art high-level feature extraction model named
Attention-based Aspect Extraction (ABAE) [19] by proposing a threshold
mechanism that can identify global features (e.g., general software engineering
features shared across multiple app groups) and local features (e.g., features
shared among a specific group of competing apps) discussed in reviews.

To evaluate the effectiveness of our approach, we collected 14,043,999 re-
views from 196 popular Android apps. The studied 196 apps are distributed
across 20 functionality-similar groups, e.g., weather apps, music player apps,
etc. Our experimental results show that GLFE achieves an average precision
of 81% and an average recall of 75%, and outperforms ABAE by 14.7%, on 480
randomly selected reviews from five competing app groups. We then conduct a
case study on opinions summarized from the studied 196 competing apps. We
observe that using FeatCompare to analyzing the reviews of an app, within
the context of its competitors, can help app developers spot the potential op-
portunities for improving their app. A user study involving 107 developers is
conducted, and the results show that our FeatCompare approach is useful for
app developers to perform competitor analysis.

The main contributions of our work are as follows:

– We propose an approach named FeatCompare to automatically mine and
compare high-level feature-based user opinions for competing mobile apps
from user reviews.

– We apply the feature extraction component GLFE in FeatCompare on
3.4 million reviews of 196 closely related apps across 20 apps groups and
evaluate its performance using 480 randomly selected reviews of apps from
five groups.

– We conduct a case study on features and opinions extracted from the stud-
ied 196 competing apps and we demonstrate the capabilities of FeatCom-
pare by generating comparison tables for five different app groups.

– We conduct a survey with 107 mobile developers to investigate how the
mobile developers perform competitor analysis in practice and verify the
applicability of our approach.
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– We make our manually labeled data and the implementation of FeatCom-
pare available online in a replication package 1 as a means to enable future
work on competitor analysis of mobile apps.

Paper organization: The rest of the paper is organized as follows. Section 2
describes the Attention-Based Aspect Extraction (ABAE) model. Section 3
introduces the design details of FeatCompare. Section 4 presents the data
collection process. Section 5 discusses the motivation, approach, and findings
of research questions that guide our evaluation process. Section 7 discusses
the limitations of this work. Section 8 illustrates close related work on mining
mobile app reviews. Finally, Section 9 concludes the paper.

2 Background

Our work adopts and augments advanced neural network techniques. In this
section, we introduce ABAE, the neural network model that we utilize in
Section 3.

ABAE is one of the state-of-the-art unsupervised neural attention models
proposed by He et al. [19] for extracting high-level features (i.e., “aspect”
in their paper) from product/service reviews. Prior to ABAE, topic models
such as Latent Dirichlet Allocation (LDA) and its variants have been widely
applied to user reviews such as Amazon product reviews or Yelp restaurant
reviews to extract high-level features [38, 58]. However, researchers find that
while LDA can describe high-level features in text corpus fairly well, the mined
individual features are of poor quality with unrelated or loosely-related words,
which often leads to low accuracy in identifying high-level feature of a specific
review [19]. ABAE is then proposed and has been shown to outperform LDA-
based approaches. The main idea of ABAE is to learn the semantic meaning
of high-level features, reviews, and words as vectors (i.e., embeddings) so that
fine-grained features explicitly expressed in reviews can be mapped to their
corresponding high-level features.

Figure 1 shows an example of the ABAE architecture using a mobile app
review. At high-level, ABAE is an autoencoder [56] that can learn the em-
beddings of reviews and high-level features automatically using only reviews
(e.g., “excellent accuracy in forecasting the weather for my area”). ABAE re-
quires three input elements: 1) a matrix representing pre-trained embeddings
of words, 2) an integer representing the number of high-level features expected
to be learned, and 3) a set of reviews. The output of ABAE includes embed-
dings of reviews and high-level features, probabilities of each review belonging
to each of the high-level features.

Given the list of words in a review as input, two steps are performed as
shown in Figure 1. ABAE first deemphasizes words that are not relevant to
high-level features, such as “the”, “for”, “my” in the example review using
an attention mechanism, and constructs a word-based review embedding zr.

1https://github.com/maramassi/suppmaterial-featcompare

 https://github.com/maramassi/suppmaterial-featcompare
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Next, ABAE reconstructs the review embedding (tr) as a linear combination
of high-level feature embeddings. All the parameters in ABAE are learned by
minimizing the reconstruction loss of the word-based review embedding zr and
the feature-based review embedding tr, aiming to preserve most of the infor-
mation of the feature-related words (e.g., “excellent” and “accuracy”) in the
embedded high-level features (e.g., “accurate forecast”2). Next, we introduce
the two steps of ABAE in detail.

excellent

accuracy
in

forecasting
the

weather

for
my

area

      Representation of Review r
embedding size (d) = 5

Word-based Review 
Representation zr

Representations of 
High-level Features T 

Feature-based Review 
Representation tr

weights of features
pt

      Minimize reconstruction error for all
reviews

Step 1 Step 2

Fig. 1 An example of ABAE architecture. In the above sample, the size of word embedding
is 5, the number of high-level features is 3.

The first step in ABAE computes the embedding zr ∈ Rd of a review r
that contains n words w1, w2, . . . , wn:

zr =

n∑
i=1

aiewi

where ewi
refers to the word embedding e of size d for word wi in review r.

The word embeddings are initialized by applying word2vec [37] over a collec-
tion of reviews. word2vec is an unsupervised algorithm that learns meaningful
embeddings of words from a text corpus. The weight ai is conditioned on the
embedding of the word ewi as well as the global context of the review:

ai = softmax(eTwi ·M · yr)

yr =

n∑
i=1

ewi

2Note that all high-level features are hidden, meaning they are represented using embed-
dings. The semantic meaning of a high-level feature can be identified by searching the most
representative words, the embeddings of which are close to the embedding of the high-level
feature.
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where yr is the uniformly-weighted bag-of-words embedding of the review, and
M ∈ Rd×d is a learned attention model. This attention layer is designed to
reduce the significance of the words that are not relevant to any high-level
features, and focus more on the more high-level feature related words.

The second step computes the high-level feature-based review representa-
tion tr ∈ Rd in terms of a high-level feature embedding matrix T ∈ RK×d,
where K is the number of high-level features:

pt = softmax(W · zr + b)

tr = TT · pt

where pt ∈ RK is the weight vector over K feature embeddings, and W ∈
RK×d, b ∈ RK are the parameters of a multi-class logistic regression model.

The parameters in ABAE are trained to minimize the reconstruction error,
i.e., the cosine distance between tr and zr. Representative words of a high-
level feature can be found by ranking all words based on the cosine similarity
between the word embedding and feature embedding. To assign a high-level
feature to each review, the learned parameter pt is used to pick the high-level
feature that is of the highest weight.

3 FeatCompare

In this section, we introduce the design of FeatCompare, a neural network-
based approach that can identify high-level features and summarize corre-
sponding user opinions for competing mobile apps from app reviews. Notably,
FeatCompare is an unsupervised machine learning approach, which means it
does not require any manual labeled reviews in training. The only human ef-
fort needed in FeatCompare is determining hyper-parameter value and feature
names.

Overall Approach. FeatCompare contains three main components: the rat-
ing preprocessor, GLFE and the rating aggregator, as shown in Figure 2. The
first component takes as input a set of mobile app reviews collected from a
variety of apps, including those selected competing apps, and then filters non-
informative reviews. The second component is a GLFE, which stands for a
global-local sensitive feature extractor. GLFE takes as input the informative
reviews and a pre-defined feature number K. GLFE then automatically iden-
tifies global (general) and local (domain-specific) high-level features
in reviews. The rating aggregator, last component of FeatCompare, aggre-
gates user ratings (opinions) for each identified feature within each selected
app and then creates a comparative table of competing apps. In the follow-
ing sections, we describe the design details and the rationales behind specific
design decisions for each component.
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3.1 Data Preprocessor

User reviews can be non-informative (i.e., do not contain useful information),
such as “I will give one star”. Thus the first step in FeatCompare is to filter out
non-informative user reviews and keep only the reviews that contain valuable
information. First, we filter out reviews without any text. Next, we feed the
filtered user reviews of all apps to AR-Miner [6]. We leverage AR-Miner as
it is a commonly used approach to filter non-informative reviews [41, 43].
The definition of informative and non-informative reviews in our work aligns
with the definition used by AR-Miner’s authors. We consider a user review
as informative if the review carries potential helpful information that can be
leveraged by the developers to enhance the quality of the app or improve the
app’s usability. For example, “Pro version still needs an ad free version” and
“It does not give location” are informative user reviews that bring insight into
feature requests or functional flaws. Non-informative reviews such as “This
app is pointless” and “I don’t like this app, I will give only 3 stars” provide no
constructive information for app developers to guide them on how to improve
the quality of the app.

AR-Miner classifies reviews into informative reviews and non-informative
reviews. We consider only the subset of informative user reviews in the follow-
ing steps of our approach. Finally, the length of the review content (i.e., the
review title and the review description) can impact the usefulness of the user
reviews [25, 54]. Shorter reviews are less likely to be meaningful. Among the
subset of three million informative reviews, 191,417 reviews, e.g., 5%, are two
words in length or less. We manually check a statistical representative random
sample, ie., 96 user reviews, with a confidence level of 95% and a confidence
interval of 10% of the up to two words user reviews. We find that 87% of the
reviews with less than three words in length, i.e., ”useless app”, ”hate this”,
”rarely works”, and ”nothing worked”, are non-informative. Therefore, we fol-
low previous work [5, 27] and filter out reviews that contain less than three
words in the content.

3.2 Global-Local Sensitive Feature Extractor

GLFE is the main component of FeatCompare that elicits high-level features
from user reviews. As shown in Figure 2, GLFE contains three steps: identify-
ing global high-level features based on all collected app reviews across multiple
groups, identifying local high-level features based on only reviews of selected
competing apps, and assigning one high-level feature for each review of the
selected apps.

3.2.1 Identifying Global and Local Features

We observe that in mobile app reviews, users might choose to comment on
either group-specific features, such as “accurate forecast” for weather apps,
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or general features that are common among apps of all categories, such as
“device compatibility issues” and “performance issues”. To utilize this unique
characteristic of mobile app reviews, we introduce the concepts of local and
global high-level features and extract these two types of features simultane-
ously. Global high-level features are general features not related to any spe-
cific app domain but rather representing software engineering features shared
among all types of mobile apps. Local high-level features are specific features
shared among the selected competing apps within a particular group.

GLFE contains two cycles, i.e., a global cycle for learning global high-level
features and a local cycle for learning local high-level features (ref. Figure 2).
Both cycles follow the design of ABAE but with separately learned word em-
beddings. Several embedding methods have been used in sentiment analysis
research to construct vector representations of words.

The local cycle in GLFE takes informative user reviews of selected com-
peting apps as input. Next, the reviews are filtered following standard text
normalization steps, including tokenization, removing non-English words, and
stop words (i.e., frequent but meaningless English words), and lemmatization.
As introduced in Section 2, ABAE requires three inputs (1) an initial lookup
table that contains word embeddings, (2) a set of target sentences to extract
features, and (3) a parameter determining the number of learned high-level
features. In the local cycle, local high-level features are extracted by applying
ABAE on reviews only from competing apps in one specific group. The word
embeddings are learned from the same set of reviews via word2vec. Following
the paper proposing ABAE [19], we use a heuristic approach to determine
the value of the number of features based on our observations on the quality
(higher feature coherence and a lower degree of overlapping) of learned fea-
tures. After running ABAE, the local cycle of GLFE assigns a local high-level
feature to each review in the selected group.

In parallel and independently, the global cycle of GLFE utilizes an ABAE
model to extract high-level global features from reviews of apps in the selected
group. Unlike the local cycle, the word embedding used as input for ABAE
in the global cycle is learned from all the 3,439,819 informative reviews of
apps across multiple groups. We use 3,439,819 user reviews to generate global
embedding. Our intuition is that word embeddings learned from various groups
can better capture the semantics of words that are relevant to general features
because these words appear relatively more often than domain-specific words
(i.e., words describing unique features in a specific type of apps) in the reviews
of different apps. Like the local cycle, we use manual observation to determine
the best number of high-level features associated with each selected set of
similar apps.

After running the local and global cycles, for each word appearing in the
reviews of selected similar apps, GLFE learns a global word embedding rep-
resenting the meaning of the word in the context of all app reviews and a
local word embedding representing the meaning of the word in the context of
selected apps. Meanwhile, two sets of high-level features and their associated
most representative words are also learned. Note that, ABAE does not output
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a feature name for each learned high-level feature. Following He et al. [19], the
first three authors of this paper manually and independently label the features
based on the representative keywords using open coding [47, 49]. The authors
then discuss the conflicts in a consensus meeting where they resolved one by
one the disagreements and determine the final feature names.

The design of global feature and local feature learning in GLFE poses a
unique challenge for determining the final high-level feature of each review,
i.e., each review now is assigned two high-level features, one from each cycle.
We explain in the next subsection how GLFE solves this challenge.

3.2.2 Global-Local Feature Selection

We propose a metric, named mean-norm-tfidf, to approximate the likelihood
of a review being assigned to its local high-level feature, i.e., reviews with high
mean-norm-tfidf select the features learned from the local cycle of GLFE.
mean-norm-tfidf is the average of values in the L2 normalized tf-idf [45] vector
representation of a review. We formally define the notion of mean-norm-tfidf
as follows. Given a review ri containing n unique words w1, w2, . . . , wn and a
review corpus C, the mean-norm-tfidf of the review ri is defined as:

mean-norm-tfidfri,C =
1

n

n∑
k=1

norm(fwk,ri · log
M

|d ∈ C : wk ∈ d|
)

where fwk,ri refers to the number of times the word wk appears in review
ri, i.e., the term frequency of wk. M is the total number of reviews in C,
|d ∈ C : wk ∈ d| refers to the number of reviews in C that contain word wk.
log M
|d∈C:wk∈d| is the inverse document frequency of word wk. norm is a func-

tion3 that normalizes a value to the range of 0 to 1. Note that the corpus C
in this paper refers to all informative reviews of apps across multiple groups,
not just the reviews of the selected competing apps.

The main design concerns behind the mean-norm-tfidf metric are two folds.
First, the metric should be positively related to the inverse document frequency
of words in the review because domain-specific words that do not frequently
appear in a variety of app groups have a larger inverse document frequency. If
a review contains many domain-specific words, then the review is highly likely
to discuss a local high-level feature. On the other hand, if a review contains
many words with low inverse document frequency, such as “ads” and “crash”
that frequently appear in reviews of apps across all groups, the review is highly
likely to discuss a global high-level feature. Secondly, words that occur many
times in the review should be assigned a higher weight as they often present
the main concern in a review.

However, calculating a mean-normed-tfidf score for each review is not suffi-
cient. We need a threshold value to determine if the local/global feature should
be selected. For instance, if we set a threshold at 0.5, then every review with a

3We normalize document vectors to unit Euclidean length.
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mean-norm-tfidf value larger than 0.5 is assigned to its local high-level feature,
or its global high-level features, otherwise. To simplify the process, we rank
all reviews in the selected competing apps in ascending order based on their
mean-norm-tfidf scores and pick the 25th percentile (lower quartile), the 50th

percentile (median), and the 75th percentile (higher quartile) as the three con-
sidered thresholds. In practice, stakeholders could tune this hyper-parameter
using few groups of competing apps.

3.3 Rating Aggregator

As the final component of FeatCompare, the rating aggregator takes as input
the informative reviews extracted from the selected competing apps with their
extracted high-level features by GLFE and outputs a comparative table.

We define two main metrics of the rating aggregator: the Feature Average
Rating (FAR) and the Competitive Feature Average Rating (CFAR). FAR
represents the mean of star ratings of one specific feature of an app. CFAR
represents the mean score of one feature across all the apps of the same group.
Formally, given the set of w competing apps A = {a1, a2, ..., aw}, and their
p user reviews R = {r1, r2, ..., rp} that are relevant to a set of n high-level
features F = {f1, f2, ..., fn}, the rating aggregator first calculates a feature
average rating FAR of a specific feature fj in relation to app ai as follows:

FARai,fj =

∑m
k=1 rating(rk)

m
where rk refers to any review of the app ai that is assigned to the high-level
feature fj . m is the total number of reviews of the apps ai that are assigned
to fj . rating(rk) refers to the user rating associated with the review rk.

FeatCompare also calculates a competitive feature rating CFAR of a spe-
cific feature fj among w competing apps as follows.

CFARfj =

∑w
i=1 FARai,fj

w
CFAR represents how the overall user-base (R) belonging to a group of

competing apps (A) perceives a specific feature fj . If the FAR value of an app
ai is higher than CFAR, this means, on average, app ai receives more positive
feedback than its competitor’s apps on feature fj .

In the resultant comparative table, FeatCompare provides the following
information:

1 Name of each considered high-level feature.
2 Feature Average Rating (FAR) of each considered feature in each selected

app.
3 Total number of reviews within each app that are relevant to each consid-

ered feature.
4 Distribution of ratings on the relevant reviews to each considered feature.
5 Competitive Feature Average Rating (CFAR) for each considered high-

level feature.
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4 Dataset

Table 2: Statistics of 20 competing apps groups.

App group Google category Used keywords # of
apps

# of
reviews

Taxi and rideshare Maps and navigation *taxi*, *rideshare*, *share-ride* 9 337,009
Navigation Travel and local *navigation*, *gps*, *map* 10 328,719
Security Tools *virus*, *malware*, *security* 10 312,758
Browser Communication *browser* 10 292,103
Free call Communication *free call* 10 291,034
News News and magazines *news* 10 283,711
Weather Weather *weather* 10 276,941
SMS Communication *sms* 10 264,926
Dating Dating *dating* 10 200,236
Wallpaper Personalization *wallpaper* 10 183,405
Notes Productivity *notes*, *notepad* 8 133,665
Video editor Video player and editor *video editor* 10 126,357
Hotel booking Travel and local *hotels* 10 69,699
Bible Books and reference *bible* 10 64,417
Mobile banking Finance *mobile banking* 10 64,371
Music player Music and audio *music player* 10 60,685
Sports news Sport *sports news* 10 57,582
Cooking recipe Food and drink *recipe*, *cooking* 10 41,154
Pregnancy Health and fitness *pregnancy* 9 29,816
Coloring Creativity *coloring* 10 21,231

Total 196 3,439,819

Identifying Groups of Competing Apps. To begin with, we select the
top 2,000 free-to-download popular apps from the Google Play Store as the
candidate target apps. The popularity of the apps is decided based on the
App Annie report [3]. We then collect all general information available on the
Google Play Store, including the number of reviews and the app description
for the 2,000 popular apps using a web crawler [1]. Our study mainly focuses
on the most popular apps as these apps contain rich review data that facilitate
our analysis of user reviews. Moreover, developers may wish to compare their
apps to the most successful apps in the market.

From the 2,000 popular apps, we identify groups of competing apps (i.e.,
apps sharing similar functionalities and business domains) by applying the
following steps. First, we identify a set of keywords that represent a main app
feature to form 20 different apps groups in total. The selected 29 keywords (i.e.,
main functionality of the app) were chosen to identify groups of similar apps.
The first two authors have attentively chosen the keywords to cover multiple
Google apps categories, so a specific app category does not bias our study.
Hence, we covered 17 Google categories. For example, we use the keywords
“*weather*” and “*browser*” to represent the weather forecast apps and the
browser apps, respectively. Next, for each of the considered main app features
illustrated in table 2, we search apps with the corresponding keywords men-
tioned in their names or descriptions using the collected information from the
2,000 popular apps. We then rank the matched apps by their review numbers.
From the top of the ranked list, the first two authors manually read the name
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and the description of each encountered app to verify whether the app indeed
contains the corresponding main feature. For each main app feature, we filter
out apps that do not contain the feature and stop checking until we collect ten
apps. We choose ten apps for each group, so that our analysis is not biased
towards any particular app group. Besides, intuitively, we do not expect each
app to have a very large (e.g., 50) number of competing apps, implying that
an app can be replaced by as many as 50 other apps that are in the top 2,000
popular apps in the whole market.

To validate that the selected candidate apps for each main feature are
closely related, the first two authors independently read the page of every
selected app in the Google Play Store and check if the other nine apps in the
same group appear in the “similar” app list recommended by the store. In the
end, we find that all the candidate apps satisfy the above requirement. Table 2
summarizes the basic statistics of the 20 selected competing app groups along
with their categories at the Google Play Store. Some groups, i.e, “Taxi and
ride share”, “Notes”, “Pregnancy”, have less than ten apps because there are
less than ten apps match with our searched keywords. Expanding the search
to consider more than 2,000 popular apps from App Annie, might lead to find
ten competing apps for the aforementioned categories. However, we believe
that different categories can have a different number of competitors. Since we
have covered a sufficient number of groups (e.g., 20 apps domain) and each
group contains enough competing apps (e.g., 8, 9 and 10), we only consider
the top 2,000 popular apps.

We follow the above practice as a proof of concept. Nevertheless, we expect
that even the developers of an app may have different sets of competing apps
formed based on different goals. For instance, developers can choose to compare
their apps with the similar paid apps or freemium apps.

User Reviews Collection. For each selected app, besides the general infor-
mation, we collect its user reviews over 3.5 years, starting from April 2016 until
January 2019. In total, we collect 14,043,999 user reviews. For each review,
we record the title of the user review, the detailed comment text, user rating,
and the post date of the review. Table 3 summarizes the basic statistics of the
collected reviews.

Table 3: Dataset Statistics.

Number of studies apps 196
Number of initial user reviews 14,043,999
Number of non-empty text user reviews 13,847,602
Number of informative user reviews 3,631,236
Number of user reviews with more than two words 3,439,819
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5 Evaluation and Results

In this section, we evaluate the effectiveness and usefulness of FeatCompare
for comparing high-level features among competing mobile apps based on user
reviews. Specifically, we discuss motivation, approach, and findings for the
following research questions.

5.1 RQ1: How effective is our global-local sensitive feature extraction
approach GLFE?

Motivation: The effectiveness of FeatCompare relies on the accuracy of its
data-driven feature extractor component, i.e., GLFE. Thus for FeatCompare
to be useful in practice, we need to evaluate the effectiveness of GLFE in
identifying the high-level feature associated with each informative review.

Approach: To evaluate the performance of GLFE, we randomly pick five
groups from the 20 identified competing app groups (ref. Table 2). The selected
groups are “Weather”, “Sports news”, “Bible”, “SMS”, and “Music player”,
respectively.

Then, for each app group, we select a statistically representative random
sample of user reviews with a confidence level of 95% and a confidence interval
of 10%. In total, we select 480 informative reviews that belong to the selected
five groups. Next, the ground truth high-level features of the testing reviews
are obtained by performing the following steps:

1. To achieve candidate high-level features, for each of the five selected app
groups, we apply the global cycle and local cycle of GLFE on the reviews
output by the data preprocessor component of FeatCompare. At the end
of this step, we achieve a set of local and global high-level features for each
group of competing apps.

2. The first three authors independently annotated the 480 testing reviews
using the candidate high-level features of the corresponding app group.
For instance, each testing review from the app group “Weather” should
be assigned to the corresponding high-level features extracted from the
“Weather” group in the first step. At least two annotators annotate each
testing review.
It should be noted that one user review can discuss multiple features. For
instance, the following review comment “Very user friendly app and I find
the alerts warning of severe weather conditions very helpful.” contains in-
formation about the “User Interface” feature and the “Weather Alert Ser-
vices” feature. Hence, in this step, the created gold dataset contains all
valid features that are mentioned in the review (i.e., the “User Interface”
and the “Weather Alert Services” feature). We find that only 8.6% of the
manually labeled reviews contain multiple features.
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3. The Fleiss’s Kappa agreement score [35] is calculated on the annotated test-
ing reviews using the “irr” package 4 provided in R 5 and we achieve a score
of 0.83, which indicates a high level of agreement among annotators. The
annotators then discuss the conflict cases and resolve all disagreements.

Following the original design of ABAE [19], we set the default number of
high-level features as 14 and vary the number by increasing and decreasing
it. We find that the default setup consistently provides high quality high-level
features for all app groups. Thus, we decide to keep the number of expected
global/local high-level features as 14.

GLFE has one hyper-parameter, the mean-norm-tfidf threshold for the
global-local feature selection step. We considered three values for this hyper-
parameter, leading to three models, named (GLFE-25th, GLFE-50th, and GLFE-
75th), respectively. The 25th percentile means that for the 25% reviews with
the lowest mean-normed tfidf, we assign them the identified global features,
and the rest 75% reviews are assigned with their local features. GLFE with
a higher value threshold (percentile) represents a model that prefers global
high-level features over local high-level features. We select the best value for
the mean-norm-tfidf threshold by evaluating the performance of three models
(GLFE-25th, GLFE-50th, and GLFE-75th) on a validation set, consisting of
two competing app groups, i.e., “Recipe cooking” and “Free call”. Table 4
shows that on the validation set, GLFE-25th achieves the highest accuracy.
Thus we use the 25th percentile as the threshold when applying GLFE on five
testing app groups.”

The rest of GFLE parameters are set based on the best performing param-
eter sets reported in the original ABAE paper [19]. Specifically, we initialize
the word embedding matrix with word vectors trained by word2vec, setting
the embedding size to 200, the window size to 10, and the negative sample size
to 5. We initialize the feature embedding matrix with the centroids of clus-
ters resulting from running k-means on word embeddings. Other parameters
are initialized randomly. During the GLFE training process, we fix the word
embedding matrix and optimize other parameters using Adam [22] with the
learning rate of 0.001 for 15 epochs and the batch size of 50.
Evaluation Metrics: Since user reviews may contain multiple features, albeit
a small percentage, we model the high-level feature identification task as a
multi-label classification task. Given a set of testing reviews with gold high-
level features (i.e., ground truth) and the predicted features, we evaluate the
feature extraction approaches as follows. First, we measure the true positive
(TP) as the number of successfully predicted features, the false positive (FP)
as the number of falsely predicted features (i.e., features predicted by the
approach but are not mentioned in the reviews), and the false negative (FN)
as the number of features mentioned in the reviews but are not predicted
by the feature extraction approach. We consider precision, recall, and F1-
Score as the evaluation metrics. Equations 1, 2, and 3 show the computation

4https://cran.r-project.org/web/packages/irr/index.html
5https://www.r-project.org/
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for precision, recall, and F1-Score. Precision measures the percentage of true
positive predictions among all the predictions made by the evaluated approach.
Recall represents the percentage of the features that can be predicted by the
approach among all the features in the ground truth. Finally, F1-Score is the
harmonic combination of precision and recall.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-Score = 2 ∗ Precision ∗Recall

Precision + Recall
(3)

Table 4: Accuracy of GLFE for different local global hyper-parameter
threshold on two validation app groups. Prec. represents the precision.

App GLFE-25th GLFE-50th GLFE-75th

Group Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Recipe Cooking 0.78 0.70 0.74 0.40 0.36 0.38 0.34 0.31 0.32
Free Call 0.80 0.73 0.76 0.47 0.43 0.45 0.38 0.35 0.36

Average 0.79 0.71 0.75 0.43 0.39 0.41 0.36 0.33 0.34

Baselines: To investigate the benefit of our adaptation on the original ABAE
model, we compare the performance of GLFE with the performance of ABAE
using the 480 labeled reviews. Specifically, we consider two different embedding
matrices as input for ABAE, reviews from the selected similar apps (i.e., local
reviews and the original setup), and reviews from apps across multiple groups
(i.e., global reviews). We name the two variants of ABAE on our task as
ABAE and ABAE-global, respectively. Note that ABAE can be treated as
GLFE-0th, where every review is assigned to its local high-level feature, and
ABAE-global can be treated as GLFE-100th where every review is assigned to
its global high-level feature.

Results: GLFE-25th achieves F1-Score of 77-79% on five testing app
groups, which outperforms the baselines and other variants of GLFE.
Table 5 shows the results of five considered approaches, i.e., GLFE with three
feature selection thresholds and two ABAE models with global and local word
embedding matrices. We can observe that the best performing GLFE model
is the one with the 25th percentile threshold, with an average precision of
81% and an average recall of 75% across five testing groups. In this setting of
GLFE, 25% reviews are assigned to their global high-level features, and the
rest 75% are assigned to their local high-level features. Our experiment re-
sults also show that, on average, GLFE model (i.e., GLFE-25th) can improve
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Table 5: Accuracy of GLFE and ABAE on five testing app groups. Prec. represents the precision.

App GLFE-25th ABAE ABAE-Global Global embedding Local embedding
Group Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 reviews reviews

Weather 0.81 0.74 0.78 0.70 0.64 0.67 0.32 0.29 0.31 3,439,819 276,941
Sports news 0.82 0.75 0.78 0.71 0.65 0.68 0.28 0.26 0.27 3,439,819 57,582
Bible 0.81 0.77 0.79 0.72 0.69 0.70 0.36 0.34 0.35 3,439,819 64,417
SMS 0.80 0.74 0.77 0.67 0.62 0.64 0.15 0.14 0.14 3,439,819 264,926
Music player 0.79 0.75 0.77 0.70 0.66 0.68 0.21 0.20 0.20 3,439,819 60,685

Average 0.81 0.75 0.78 0.70 0.65 0.68 0.21 0.20 0.20
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the F1-Score of ABAE trained with reviews from competing apps by 14.7%
((0.78− 0.68)/0.68).

Both global high-level features and local high-level features con-
tribute to the overall performance of GLFE. As shown in Table 5, the
two ABAE models trained from global and local embeddings perform worse
than the GLFE-25th model, with an average F1-Score of 0.20 and 0.68 respec-
tively. As reviews in the ABAE model all choose the learned local high-level
features and reviews in the ABAE-global model all choose the learned global
high-level features, the above results imply that only relying on one type of
features does not lead to a good performance. Another observation we can
make is that GLFE-25th performs better than the other two settings, i.e.,
GLFE-50th and GLFE-75th, on all five testing app groups. This observation
indicates that the threshold value used for global-local high-level feature se-
lection can impact the performance of GLFE, and local high-level features are
more valuable than global high-level features.

Summary of RQ 1

The feature extractor GLFE in FeatCompare with 25 percentile feature
selection threshold achieves a promising average F1-Score of 78% on
480 manual annotated reviews, which surpasses the performance of
the state-of-the-art neural network-based high-level feature extractor
model ABAE by 14.7%.

5.2 RQ2: Is FeatCompare able to find and compare meaningful high-level
features among competing apps? Is FeatCompare useful for mobile app
developers?

Motivation: In RQ1, we perform a quantitative evaluation of the GLFE com-
ponent in FeatCompare. The results show that our GLFE model (i.e., GLFE-
25th) can successfully identify high-level features discussed in user reviews.
However, it remains unclear whether FeatCompare is able to compare features
among competing apps and how the comparative table provided by FeatCom-
pare can be utilized for developers. Thus in this RQ, we conduct a qualitative
case study on the effectiveness of FeatCompare in comparing competing apps.
Since our work aims to provide an approach that can help mobile app de-
velopers perform competitor analysis (i.e., analyze how users perceive an app
concerning its competitors) and to better understand developers’ practices and
validate the usefulness of FeatCompare, we conduct a qualitative study with
107 participants.

Approach: We run FeatCompare on the five groups of competing apps which
are randomly sampled from 20 identified app groups in RQ1, i.e., group “SMS”,
“Weather”, “Sports news”, “Bible”, and “Music player”. For each app group,
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Table 6: Inferred top ten features with their representative words and an example review for the “Weather” group, the “Sport
news” group, and the “Bible” group.

Feature Representative words Sample review

W
e
a
th

e
r

Detailed weather info detailed, info, precise, concise, weather “Very nice app no problems love the minute by minute forecast”
Daily forecast feature day, prepare, know, weather, clothes “Helps me plan my days ahead. Love it!”
Accurate forecast accuracy, overcast, predict, percent, reality “Accurate on most days spot on”
App stability sync, update, reload, recently, restart “This crappy app won’t let you update or do things correctly”
User interaction header, slider, banner, menu, animation “Less options of locations in widgets previous version was best”
In-app ads pay, ads, commercial, subscription, dollar “Inappropriate advertising adds”
Device compatibility tablet, phone, ipad, app, android “This app goes on every device that I have”
UI appearance font, size, color, style, skin “New Color scheme makes the information hard to see/read”
Weather alert services warning, flood, dangerous, alert, notify “Awesome it gives warnings 10 min earlier than the tv and radio do”
Location-aware services location, enter, save, zip, address “Great app lots of info for multiple locations”

S
p
o
r
t
n
e
w
s

Video streaming watch, behind, ahead, stream, buffer “Love that i can watch the hockey feeds but they are so far behind live”
Playoff coverage season, playoff, basketball, nhl, cup “At least it works most of the time for the nhl playoffs this season”
Subscription service service, paying, cable, subscription, satellite “Excellent way to get access to shows when paying high provider prices”
Chromecast android, phone, chromecast, cast, device “Embarrassed that i downloaded this no chromecast having app”
Notification alert, information, notification, push, daily “Stupid thing can t disable notifications wow this is bad”
Games playback video, playback, stop, buffering, freez “Had great playback but now stutters and skips during live playback”
Bug reports reinstall, uninstall, crash, start, delete “Won’t load i submitted my carrier and still won’t load waste of time”
Blackout broadcasting watch, blacked, restriction, access, blackout “Too many blackouts”
User interaction bar, screen, button, page, scroll, menu “Headlines don’t take you to the story”
Version update ruin, new, version, compare, worse “Become worst after updating”

B
ib

le

In-app ads ads, shop, pay, flash, interruption “It is a great app but the ads are unnecessary they take up my entire screen”
Educative learn, child, teach, help, interesting “Handy teaches u a lot of new things”
Highlight and bookmark highlight, content, suggest, bookmark, search “Love the highlights bookmarks and how easy it is to get to a specific verse”
Guided prayer lord, soul, pray, god, amen “Perfect one cannot ask for anything better the word of god really available”
Easy narration simple, term, adequate, magnificent, keyword “There are no sub headings on electronic bibles compared to hard copies”
Audio feature listen, multitasking, hear, play, pause “I like the audio reading while im doing other things”
Bible versions kjv, niv, king, james, esv “The bible has many different versions i haden’t even heard of”
Practicality quick, convenience, useful, portable, ease “Easily accessible switches between translations quickly and easily”
App stability issue, error, fix, stop, bug “After update app is stuck on start screen after the most recent update”
Sharing post, facebook, friend, link, social “I can’t share any of my daily scriptures to instagram or snapchat please fix”
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Table 7: Inferred top ten features with their representative words and an example review for the “SMS” group, the “Music
Player” group, the “Cooking Recipe” group and the “Free Call” group.

Feature Representative words Sample review

S
M

S

Scam identification block, scam, spam, robot, anonymous “Its useful to avoid spam calls and to identify the fake numbers”
Location connectivity address, city, state, network, operator “It does not give location”
App stability close, reboot, restart, hang, crash “Very useful not always 100 updated or synced to my phone”
Customization simple, customizable, design, interface, replace “Far better than i expected full of customizations”
User experience section, content, folder, undo, add “Much easier to find the people in our contact list”
In-app ads advertiser, interruption, profit, commercial, cost “I do not want your notifications of promoting your stuff”
Account authentication sign, login, register, error, connect “Not working unable to connect”
UI appearance style, wallpaper, emoji, ugly, front “More skin and background options as well as font options”
Security hacking, dangerous, trust, cheater, steal “People are misusing it to create a fraud saving fraud number”
Premium version subscribe, pay, lifetime, purchase, membership “After i upgraded to premium the call record function disappeared”

M
u
si
c
P
la
y
e
r

App stability stop, close, randomly, crash, freeze, anonymous “Bugged wont let you open music player closes itself”
Music library rapper, metallica, band, artist, song “App only shows your list and option to search youtube”
Download music store, mp3, file, storage “Won’t let me listen to music I’ve downloaded”
Complain explain, understand, argument, respond, prefer “Needs instructions i have no idea how to get music on it”
User Interface toolbar, layout, feature, section, icon, tab “Easy to navigate but white colors on notification bar barely visible”
Search search, screen, find, select, change “It won’t let me search”
Premium version buy, trial, purchase, version, premium “Pro version still needs an ad free version”
Playlist order, track, genre, playlist, album, artist “I love the way how playlist work keep it up”
Offline feature internet, wifi, connection, offline, data “Wish i had wifi i really would give it five stars if i did not need wifi”
Sound quality bass, speaker, headphone, sound, high “Works just fine needs more sound output”

C
o
o
k
in

g
R
e
c
ip

e

Record keeping track, maintain, manage, monitor, organize “Tracking is so easy with frequent foods favorites and build a recipe”
Online reliability problem, error, internet, server, connection “Network error freezes all the time”
User experience thumbnail, item, category, section, search “Easy to search and find foods”
App practicality convenient, handy, easy, quickly, helpful “My Guardian So handy to keep me on track wherever I am”
Bar code scanner store, product, code, shop, qr “Needs to be easier to open the bar code scanner”
Recipe diversity recipe, ingredient, search, menu, choice “Endless selection of recipes you can think of and more”
Version update version, update, long, recent, upgrade “After the update it’s even worse”
Fitness tracker compatibility fitness, sync, gear, fit, tracker “I love that it sync with my Fitbit”
Diet plan journey, program, goal, loss, eat “Love this app so far it has been instrumental in my weight loss journey”
Authentication sign, log, account, login, email “Won’t let me log in and will not let me create another account”

F
r
e
e
C
a
ll

Call quality call, outgoing, audible, echo, voice “I can t hear the other side”
International calls korea, japan, abroad, overseas, internationally “Very useful instant chat and video call with anyone internationally”
Privacy hide, block, remove, privacy, unwanted “Privacy issue no option to hide last seen”
Bug reports exit, shut, freeze, hang, close “Keeps on crashing keeps on crashing while calling”
Other cool, fun, fast, nice, interesting “Useful app i really like this app but sometime very annoying”
User experience ux, usability, designed, complex, unintuitive “It s easy to use than anything else simplicity is whats admirable”
User interface toolbar, section, header, column, icon “Not happy with the new UI. Some may like it and it’s fine for default”
Version update update, yesterday, upgrade, re-download, patch “Always need update but not improvement”
Account authentication admin, login, signup, registered, signin “It spammed my contact list with a link from my account dangerous app”
Credit services token, dollar, diamond, lottery, coin “It is really useful especially when u have no credit”
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FeatCompare identifies 28 high-level features and generates a comparative ta-
ble, as described in Section 3. Among the 28 features, 14 are learned from
the local cycle and another 14 from the global cycle. To demonstrate the us-
age of FeatCompare for app comparison, we consider two specific scenarios:
1) identifying the most commented features in a set of competing apps and
2) comparing feature-wise user opinions among competing apps. For the first
scenario, we rank 28 identified features for each app group by calculating the
number of reviews associated with each high-level feature within the group.
For the second scenario, we explore insights that could be mined from the
comparative tables created by FeatCompare.

For the qualitative survey, Table 9 shows the survey questions. In general,
the survey consists of three parts:

1. Background questions: General questions asking about the participant’s
age, years of work experience in the mobile development field, job role, and
the number of developed mobile apps.

2. Development activities questions: Development-related questions in-
cluding whether the participant has conducted any comparative analysis
before, the sources used to conduct competitor analysis, opinion on using
the overall app store ratings as the only source to conduct comparative
analysis.

3. Validating FeatCompare: Questions asking the opinion of the partici-
pant on the comparative table (i.e., Figure 3) created by FeatCompare.

To ensure that the participants of a specific organization do not bias our
survey, we approach participants through multiple communication channels as
follows.

– Surveying developers of apps on F-Droid. We retrieve a list of 922
open-source Android apps from F-Droid6. For each app, we obtain the
developers’ contact email addresses from the Google Play Store. Then, we
send our survey to the 922 email addresses and receive 20 responses (2.2%
response rate).
We also contact the maintainers and the contributors of the 922 F-Droid
apps as follows. First, we identify 598 apps providing their corresponding
Git repositories on F-droid. Next, we collect 10,146 developers and their
email addresses from the git commit history of the identified 598 git repos-
itories. We then rank all developers based on the number of commits they
made in the repositories and select the top 3,000 developers as a target.
These 3,000 developers contribute 2,135 valid email addresses. In this end,
we send our survey to these 2,135 email addresses and obtain 40 responses
(1.9% response rate).
In total, we obtain 60 responses from the developers of F-Droid apps.

– Surveying participants through the popular apps at the Google
Play Store. We retrieve 2,000 contact email addresses from the Google

6https://f-droid.org/en/
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Play Store pages of the 2,000 popular apps collected in RQ1. Then, we
send our survey to these 2,000 email addresses and obtain only 5 responses
(0.3%).

– Surveying the development teams of multinational companies. We
send our survey to the technical leaders in five multinational companies
and ask them to distribute the survey within their teams. In the end, We
obtain 22 responses from the development teams of different multinational
companies.

– Surveying participants using the development chat platforms. We
post our survey to the most popular development chat platforms. In par-
ticular, we post our survey to reddit Android development groups7,8,9,
Facebook developer circle Beirut group10, and Facebook mobile develop-
ment pages and groups11,12,13,14. We obtain 20 responses from participants
on development chat platforms.

In total, we survey 107 participants.

Results: FeatCompare can spot the most frequently mentioned fea-
tures in a group of competing apps. Tables 6 and 7 show the top ten
features with the highest number of reviews associated with five considered
app groups. We only present the top-10 representative words and one sam-
ple review for each feature due to space limitations. The extracted features
show the capability of FeatCompare in automatically finding the most popular
(frequently mentioned in reviews) features among competitors. For example,
using FeatCompare, we find that “Scam identification” is the most frequently
discussed feature in the “SMS” group. We can also observe that providing
detailed weather information is the most popular feature in the “Weather”
group.

FeatCompare can spot potential opportunities for improving the
app. Figure 3 presents the comparative table created by FeatCompare for
the top three popular weather apps. For each considered app, the compara-
tive table contains the 5-star rating distribution among the reviews associated
with each feature and the total number of reviews mentioning the feature. This
breakdown helps in identifying how the users perceive every feature of the app.
For example, the feature “Location-aware services” is mentioned in a similar
number of reviews in the “Weather by WeatherBug” (aka WeatherBug) app
and the “Weather radar and live maps - The Weather Channel” (aka Weath-
erChannel) app. By comparing the star ratings of this feature in two apps,

7https://www.reddit.com/r/mAndroidDev/
8https://www.reddit.com/r/appdev/
9https://www.reddit.com/r/androiddev/

10https://www.facebook.com/groups/DevCBeirut
11https://www.facebook.com/groups/1549592438605145/
12https://www.facebook.com/groups/260880814006061/
13https://www.facebook.com/groups/cs464/
14https://www.facebook.com/groups/cs464/?ref=contextual_unjoined_mall_

chaining

https://www.reddit.com/r/mAndroidDev/
https://www.reddit.com/r/appdev/
https://www.reddit.com/r/androiddev/
https://www.facebook.com/groups/DevCBeirut
https://www.facebook.com/groups/1549592438605145/
https://www.facebook.com/groups/260880814006061/
https://www.facebook.com/groups/cs464/
https://www.facebook.com/groups/cs464/?ref=contextual_unjoined_mall_chaining
https://www.facebook.com/groups/cs464/?ref=contextual_unjoined_mall_chaining
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Fig. 3: Comparison of the top ten features of the three most popular apps of
the “Weather” group.
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we can tell that WeatherBug users are more satisfied with its location-aware
services than the users of WeatherChannel. FeatCompare also provides the av-
erage feature rating per app group to support app comparison. For instance,
from Figure 3, we can discover that regarding the location-aware services,
WeatherBug significantly outperforms the average of all competing apps in
the same group. We also can spot that the app “AccuWeather: Live weather
forecast & storm raider” may need to improve its weather alert services as it
receives a significantly lower rating on the weather alert services compared to
the other apps.

Competitor analysis is a common practice in mobile app devel-
opment. Figure 4 and Figure 5 show the job role and the experience of the
surveyed participants. As shown in Figure 5, 76% of the participants have at
least 2 years of mobile development experience, and 91% of them have been
enrolled in development tasks. Note that participants are allowed to choose
multiple job roles. As shown in Figure 6, 94% of the surveyed participants
compare their apps to similar ones, while only 6% do not perform apps com-
parison.

Fig. 4: The distribution of the job roles of the surveyed participants.

Fig. 5: The distribution of the years of experience of the surveyed
participants.

We further investigate how participants conduct comparative analysis. Fig-
ure 7 shows that 68% of the participants treat user reviews as a comparison
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Fig. 6: Participants’ answers about competitor analysis.

Fig. 7: Participants’ answers about the source used for competitor analysis.

Fig. 8: Participants’ answers about the number of competing apps.

source to rely on. We also observe that 82% of the participants compare their
apps with at least two competing apps, as shown in Figure 8. These survey
results imply that comparative analysis is common among app developers, and
user reviews are valuable for performing competitor analysis. Hence, providing
an automated approach for similar apps comparison based on user reviews can
help app developers perform competitor analysis.

The overall app rating alone is not sufficient for the competitor
analysis of mobile apps. As shown in Figure 9, only 10% of the participants
believe that the overall app rating is ample alone to compare among similar
apps, i.e., other sources are crucial for the competitor analysis of mobile apps.
We also find among the 22% of the survey participants who express a neutral
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Fig. 9: Participants’ opinion about overall app rating.

Fig. 10: Source of competitor analysis for participants having a neutral
opinion about the overall general rating of an app being enough to compare

similar apps.

opinion on the use of the overall app rating, 61% of them indicate that they
use the reviews of similar apps in competitor analysis (Ref. Figure 10).

As shown in Figure 10, among the 22% of participants with neutral opin-
ion, only 56% rely on the overall ratings of competitors’ apps to conduct
competitor analysis, while the percentage of the participants who depend on
the competitors user reviews (61%) in the competitive analysis remains higher.
Thus, the above results further emphasize the important role of user reviews
in competitor analysis of mobile apps.

Our approach is an asset to mobile developers to conduct a high-
level feature analysis of competing apps. We find that 73% of the par-
ticipants agree that the comparative table created by FeatCompare will be
of great benefit (54% agree + 19% strongly agree) for comparing their apps
to competitors’ apps, as shown in Figure 11. Then, we take a closer look at
the statistics of the responses and find that the participants who appreciate
FeatCompare belong to diverse backgrounds. 74% of the participants have a
minimum of 2 years of work experience in the mobile field, as shown in Fig-
ure 12. Only 5% of them have never performed any competitor analysis before,
whereas the rest 95% have, as shown in Figure 13. Figure 14 shows that 86%
of the participants compare their apps to at least two competitors.

Our findings aligned with existing mobile development related surveys
[2, 40] by demonstrating that competitor analysis is a point of interest to de-
velopers and that user feedback is the main source considered when performing
the competitive analysis. The qualitative study by Nayebi et al. [40] gathers
information about the market’s impact on the mobile apps release planning
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Fig. 11: Participants’ opinion about our research work.

Fig. 12: Years of mobile experience of the participants who agree on the
benefit of our work.

by interviewing 22 participants. In particular, 20 out of the 22 surveyed par-
ticipants vote that the customer’s feedback is the most important factor for
evaluating the success or the failure of mobile apps. Also, A. Al-Subaihin et al.
[2] survey 186 participants with mobile development background. The survey
results reveal that more than half of the participants rely on competitor anal-
ysis to gather requirements. Specifically, 81% of the respondents that conduct
competitor analysis select “user feedback” as the main point of interest when
looking at similar apps. Similarly, for app enhancements, more than half of the
developers examine similar apps in the app store, and 37% rely on similar apps
users’ feedback. In addition, our survey expanded the knowledge about practi-
tioners’ behaviors related to competitor analysis including opinions about the
frequency of performing competitive analysis, ways of identifying competitors,
and the number of competing apps considered by developers.
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Fig. 13: The frequency of analyzing the competing apps of the participants
who agree on the benefit of our work.

Fig. 14: The number of competing apps of the participants who agree on the
benefit of our work.

Summary of RQ 2

FeatCompare can help app developers improve their apps by discover-
ing the frequently commented features in competing apps, understand-
ing an app’s relative performance on each feature, and spotting the po-
tential areas of improvement. The obtained 107 participants’ responses
show that competitor analysis is a common practice in mobile app de-
velopment. 68% of the surveyed participants affirm that the overall
app store ratings are not sufficient to conduct a competitor analysis of
mobile apps. The survey results show that FeatCompare is an asset to
mobile developers and supports high-level feature comparison among
competing apps in an automated manner with minimal human effort.



30 Maram Assi et al.

6 Discussion

To validate the performance of FeatCompare in extracting high-level features,
we implement a Vector Space Model (VSM) baseline to compare against it. For
the Vector Space Model (VSM) baseline, the features of each app group are
extracted in two steps. First, we create the vector representation of each re-
view from an app belonging to the group using the vector space model (VSM).
Specifically, each word appearing in the review becomes one feature, and the
weight of the feature is determined by the Tf-Idf (term frequency–inverse doc-
ument frequency) scheme using TfidfVectorizer function 15) in the sklearn
library to convert the collection of reviews to a matrix of TF-IDF features.
Second, we cluster the review vectors using the k-means unsupervised cluster-
ing algorithm. The number of clusters, i.e, k, is set to 14, the same as the one
used in FeatCompare.

We notice that VSM model produces many non-coherent clusters of re-
views, i.e., it is challenging to identify a high-level feature representing the
whole cluster. In order to fairly evaluate the coherence of the clusters created
by the VSM-based approach, we design an evaluation procedure following Chen
et al. [7]. First, for each of the review clusters generated by VSM-based ap-
proach, we rank the words appearing in the reviews based on their frequency
and select the top-50 words as the representatives of the review cluster (i.e.,
“high-level feature” identified by the approach). Next, we collect the top-50
representative words for each of the top-10 high-level features identified by
FeatCompare and the VSM-based approach respectively. The 20 word groups
are then mixed and passed to three judges, who have more than six years’
working experiences in IT companies and have developed mobile apps be-
fore. We ask judges to rate each of the 20 groups using a 5 point rating scale
(i.e., ”Strongly agree”, ”Agree”, ”Neither agree nor disagree”, ”Disagree”, and
”Strongly disagree” ), specifying if they consider most of the words in the group
representing a high-level feature of a mobile app. After collecting ratings from
three judges on six app groups, i.e., 120 word groups, we calculate the num-
ber of coherent word groups identified by FeatCompare and the VSM-based
approach. We consider a word group being coherent if at least two judges
“Strongly agree” or “Agree” that most words in the group represent a high-
level app feature. table 8 summarizes the evaluation results, i.e., FeatCompare
can identify much more coherent word groups representing high-level features
than the VSM model. As the baseline approach can not identify high-level
features from user reviews, we do consider it in RQ1.

7 Threats to Validity

External Threats: External threats are concerned with our ability to gener-
alize our results. In our study, we analyze the top 196 popular apps that belong

15https://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.TfidfVectorizer.html/

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html/
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Table 8: Number of coherent aspects. K (number of aspects) = 10 for all
approaches.

App Coherent aspects
Group VSM FeatCompare

Weather 3 8
Sports news 2 8
Bible 2 7
SMS 5 10
Music player 3 8
Recipe cooking 4 7

to 20 different app groups. The total number of mobile apps in the Google Play
Store reached 2.57 million apps by the fourth quarter of 2019 [11]. Hence, our
results can be limited to the studied apps. To eliminate the impact of the
app selection process on our results, we chose 196 apps distributed across 17
different categories at the Google Play Store. Although the Google Play Store
contains more than 17 apps categories, we believe that our apps cover a wide
variety of apps in the store. Moreover, our proposed approach can be easily ex-
tended to more categories as it does not require manually annotated resources.
Similarly, we have only targeted apps in the Google Play Store. However, our
approach can be applied to different apps in other stores (e.g., the Apple App
Store and the Amazon App Store) as long as the reviews can be extracted.

It is relevant to note that the similarity between apps was defined by iden-
tifying keywords reflecting the main functionality across closely related apps.
The intuition behind this selection method is that mobile apps that are simi-
lar in their descriptions or titles would behave similarly and present common
functionality. Therefore, two of the authors chose the groups keywords in a
manner to represent as much diversity in the functionalities and business do-
mains as possible. Unlike other related work [28] that only covered fewer than
ten distinct app groups, our study includes 20 groups. Moreover, since our
method of identifying competing app groups might be biased as in practice,
developers may have specific criteria for selecting their competitors, we have
addressed this concern by conducting a manual verification. The first two au-
thors independently validated that each app of a group lists the rest of other
apps belonging to the same group under the “similar” app list recommended
by the Google Play Store.

Internal Threats: One threat to internal validity is mainly concerned with
the manual assignment of features. We manually analyzed the automatically
assigned features to user reviews on a statistically representative sample with
a confidence level of 95% and a confidence interval of 10% (i.e., 96 user reviews
per every group). To mitigate the error of manual identification of features, the
first three authors of this paper independently identify features form the user
reviews. The Fleiss’s Kappa agreement score on labeled reviews is 0.86, which
shows a strong agreement between the annotators. However, we are not the
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owners of the studied apps, thus our analysis can be limited by our knowledge
about the studied apps.

Construct Threats: User reviews may contain multiple features. Our ap-
proach assigns a single high-level feature per review. The assumption that
every review represents one feature only can impact the accuracy of the fea-
ture extraction approach and the average feature ratings reported for each
app. In ection 5.2, we generate the features level average rating per app for
the weather group. Although we find that the average percentage of multi-
label reviews across the 672 manually labeled reviews is 8.6%, the results in
RQ2 may be impacted by the fact that a single feature is extracted from every
review. To mitigate this problem and validate whether the features’ average
rating will be significantly impacted if multi-labelling was assigned to reviews,
we conduct an experiment to generate the results of RQ2 taking into con-
sideration multi-labelling. In the manually labeled statistical sample of user
reviews of the weather apps, we find that 9% of the reviews are multi-label.
We followed the same approach as in section 5.2 to calculate the average fea-
ture rating, except that we assign multiple labels per review before calculating
the number of reviews associated with each high-level feature. First, we ran-
domly assigned an additional label (different from the label already assigned
by FeatCompare to the review) to 9% of the user reviews of the weather apps.
Second, we calculate the number of reviews associated with each high-level
feature within the group. Finally, we generate the features’ average rating.
We compare the overall rating of the top-10 features in the cases of single
label assignment and multi-label assignment. We observe an average of 0.03
rating difference on the top-10 high-level features extracted from 10 apps in
the weather group. We perform the Wilcoxon signed-rank test [30] using the
wilcox.test function in R 16. We observed a p-value of 0.3459, indicating no
significant difference between the average rating on high-level features before
and after considering multi-label reviews.

8 Related Work

In this section, we first introduce the existing mobile app review analysis ap-
proaches for competing apps. We then briefly mention approaches for extract-
ing fine-grained features from app reviews and other studies on mining mobile
app reviews.

8.1 Mining User Reviews for Mobile App Comparison

While automated tools are increasingly being proposed to analyze the re-
views of a specific mobile app [15, 16, 20, 23, 52], few researchers have cen-
tered their focus on extracting useful knowledge from reviews of competing

16https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test
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apps [8, 28, 50, 53]. For example, Shah et al. [53] propose the task of mining
mobile app reviews for competitor analysis as a tool named REVSUM [53].
REVSUM takes as input reviews from a set of competing apps and compares
users’ sentiment on each fine-grained feature among competing apps. First,
REVSUM identifies reviews that contain feature evaluation, bug reports, or
feature requests. Next, it extracts fine-grained features from selected reviews
using an approach named SAFE [23]. In the end, REVSUM applies the sen-
timent score prediction function offered in the Stanford CoreNLP library on
sentences that mention fine-grained feature(s) reviews and compares the aver-
age sentiment score of each feature across competing apps. Shah et al. did not
evaluate the accuracy of the sentiment score prediction component and the
fine-grained feature extraction component in REVSUM. Thus, it is unclear
how REVSUM performs in practice.

Dalpiaz and Parente design a similar tool named RE-SWOT that can ex-
tract fine-grained feature requirements from user reviews of competing apps
and generate a Strength-Weakness-Opportunity-Threat (SWOT) matrix sup-
porting competitor analysis [8]. RE-SWOT takes as input all reviews of com-
peting apps and identifies fine-grained features by finding word pairs that co-
occur frequently in reviews. Several hand-craft rules are applied to filter out
meaningless co-occur word pairs. To further reduce the number of fine-grained
features, RE-SWOT merges semantically similar features by invoking a closed
NLP service17. After grouping similar fine-grained features, each review is then
assigned to identified features based on words appearing in the review. Dif-
ferent from REVSUM, RE-SWOT does not apply any sentiment analysis tool
on reviews. It aggregates ratings of reviews associated with each feature and
creates a SWOT table for each app based on the average rating per feature
compared to the average rating per competing group. RE-SWOT suffers from
three main issues: 1) the identified fine-grained features have not been evalu-
ated; 2) only a small-scale interview was conducted to validate the usefulness of
the generated SWOT tables; 3) it does not filter out non-informative reviews.

Different from RE-SWOT and REVSUM, which first identify fine-grained
features from user reviews and then summarize users’ opinions on each feature
among competing apps, Li et al. [28] propose a tool that can compare features
of competing apps via identifying comparative reviews. Comparative reviews
are reviews such as “Slower page loading than chrome” for Firefox mobile
app, which directly compares Firefox with Chrome. Their approach is good
at identifying explicit app comparison provided by users. However, it fails to
compare other features that are not mentioned in user reviews in a comparative
fashion. Besides, there might be a limited number of comparative reviews
available among a target set of competing apps.

Shah et al. [8] introduce an approach that compares two apps’ features
pairwise. The authors use a dataset of 25 apps among which many apps be-
long to the same AppStore category. First, the authors extract fine-grained
features by relying on the two words collocations in the user reviews of all

17https://www.cortical.io/

https://www.cortical.io/
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the apps. Second, the authors compute the average sentiment score (positive
and negative) for a feature using SentiStrength tool 18. After the developer
chooses a base app, the tool identifies the list of competing apps based on the
common fine-grained features shared among the set of 25 apps and selected
by the developer. The competitor analysis is conducted by comparing the sen-
timents of the features of the base app and the selected competitor. While
the approach proposed by Shah et al. [8] supports only competitive analysis
of two competing apps, while FeatCompare supports multiple competing apps
comparison.

Our paper aims to reduce the limitations of the above work and comple-
ment them by proposing FeatCompare, an approach that mines user opinions
on high-level features among competing apps automatically. FeatCompare fil-
ters out non-informative reviews and utilizes not only reviews from competing
apps of a specific group, but also reviews of apps across multiple groups. More-
over, besides a qualitative case study on the resultant comparative tables, we
perform a quantitative evaluation of the feature extraction component in Feat-
Compare on 480 annotated reviews. To validate the idea of FeatCompare, we
also conduct a survey with more than 100 mobile app developers.

8.2 Extracting Features from Mobile App Reviews

Extracting features from user reviews for a specific app is a trending and
fundamental task in app store mining research [15, 16, 21, 23, 52]. Identified
features could be used to summarize user opinions on app features and thus
provide actionable insights for developers to improve their apps. Depending on
how to identify words describing app features in reviews, these approaches can
be categorized into two groups, rule-based approaches, and collocation-based
approaches.

Rule-based approaches such as MARA [20, 21] and SAFE [23] mine fine-
grained features based on manual defined linguistic rules. However, these lin-
guistic rules are often created by investigating a limited number of reviews.
Thus, they suffer from a potential loss of features due to the bias in sampled
reviews. A recent study [52] shows that the most advanced rule-based feature
extraction approach SAFE is sensitive to the density of the annotated app
reviews in a review dataset and may lead to poor performance in practice.

To catch more fine-grained features and reduce manual work in rule-based
approaches, researchers have proposed another line of tools that can auto-
matically identify fine-grained features from reviews without linguistic pat-
terns [15, 16]. These approaches are collocation-based, i.e., mining word pairs
such as “picture view” that co-occur unusually often in reviews. Guzman and
Maalej propose the first collocation-based feature extraction algorithm [16].
Their approach removes words that are not nouns, verbs, or adjectives from
reviews. Next, they calculate the co-occurrence of all word pairs in the pre-
processed reviews and treat those that appear in at least three reviews and

18http://sentistrength.wlv.ac.uk
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that have less than three words distance between them as fine-grained fea-
tures. A sentiment analysis tool is then applied to each sentence that contains
at least one fine-grained feature, and sentiment scores of sentences are ag-
gregated to indicate user opinions on each feature. Gu and Kim propose an
approach named SUR-Mine, which aims to answer “what parts are loved by
users” for app developers [15]. Unlike previous work, SUR-Mine extracts fea-
ture and opinion word pairs such as “prediction, accuracy” together and then
uses co-occur frequency as the criteria for identifying fine-grained features and
their associated sentiment.

Similar to the above approaches, FeatCompare mines features from user re-
views. Different from them, FeatCompare targets high-level features and aims
for comparing features shared cross competing apps. FeatCompare does not re-
quire hand-craft linguistic patterns. Instead, it utilizes an unsupervised neural
model to automatically identify the high-level feature that is most semantically
relevant to each review. word2vec and GloVe[44] are among the widely used
algorithms to convert words into vectors. In GLFE, we follow ABAE and use
word2vec to initialize word embeddings. Existing studies [26, 46] in the NLP
domain show that word2vec outperforms GloVe in various tasks. Rezaeinia et
al.[46] compare word2vec to GloVe using four different benchmark sentiment
datasets, including Amazon product reviews and the Stanford sentiment tree-
bank. Their experimental results of the sentiment classification task show that
word2vec performs better than GloVe in sentiment analysis for all datasets in
terms of accuracy and F-score. Moreover, Levy et al. [26] demonstrate that
word2vec outperforms GloVe in several linguistic tasks (e.g., word similarity
and analogy detection) applied on eight datasets. The authors also show that
word2vec is computationally efficient; it is faster to train than GloVe and
requires less disk space and memory.

8.3 Other Studies on Mining Mobile App Reviews

Summarizing reviews: Fu et al. [12] assume that negative reviews (asso-
ciated with 1-star or 2-star ratings) are most interesting to developers. They
apply Latent Dirichlet Allocation [4] (LDA) on negative reviews and identify
the major reasons why users dislike an app and learn how users’ complaints
changed over time. Vu et al. [57] believe that a set of keywords could capture
developers’ interest. Thus, they propose a framework that takes input a set of
keywords from developers and then ranks all reviews based on their relevance
to the specified interest and group most relevant reviews to summarize user
opinions.

Categorizing reviews: There are plenty of taxonomy methods and corre-
sponding classifiers proposed to automatically categorize reviews based on user
intent or software engineering topics. Hassan et al. [18] propose a way to iden-
tify reviews that are likely to get response by app developers. So store owners
can spot such reviews for app developers. Panichella et al. [43] use natural lan-
guage processing (NLP) and sentiment analysis techniques to automatically
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classify user reviews into four types: information seeking, information giving,
feature request, and problem discovery. Villarroel et al. [55] propose a tool
named CLAP that mines app reviews for the release planning of mobile apps.
CLAP features a supervised learning algorithm that can categorize reviews
into three categories: bug report, the suggestion for a new feature, and oth-
ers. Consequently, CLAP clusters similar reviews and provides the developers
with suggestions for future releases. Mcilroy et al. [36] introduce a fine-grained
categorization of reviews. They identified 14 types of issues in reviews and
found that up to 30% of the reviews raise various types of issues in a single
review. Hassan et al. [17] study the frequency of each issue type in triggering
bad updates (i.e., updates with high percentages of negative reviews or user
complaints). SURF [9] considers a combined categorization of user intent and
SE topics. Man et al. [33] define seven types of issues appearing in reviews
cross multiple app stores and propose a corresponding review classifier. Lu
et al. [31] propose a review classifier that can categorize reviews into three
main types, including non-functional requests (related to reliability, usability,
portability, and performance), functional feature requirements, and others.

Prioritizing and filtering non-informative reviews: Keertipati et al. [24]
rank feature requests extracted from reviews based on four feature attributes,
including frequency, rating, negative emotions, and deontics. Recently, Gao
et al. [13] propose a tool named IDEA to identify emerging issues from user
reviews. They define the emerging issue as an issue in a time slice that rarely
appears in the previous slice but is mentioned by a significant proportion of
user reviews in the current slice.

Despite the potential usage of user reviews for improving mobile apps,
many user reviews contain less-valuable information, such as pure user emo-
tional expression, questions, etc. To solve this issue, Chen et al. [6] proposed
an app review analyzing framework named AR-Miner. AR-Miner first iden-
tifies non-informative reviews by training a semi-supervised algorithm on a
small scale of labeled reviews along with a mass of unlabeled reviews. Next,
it groups the informative reviews using LDA, and further prioritizes the in-
formative reviews by an effective review ranking scheme. FeatCompare adopts
the review filtering component AR-Miner in the data preprocessing step to
filter non-informative sentences from reviews.

9 Conclusion

With the tremendous number of the daily submitted user reviews, the manual
analysis of user reviews becomes an impractical task. Since app reviews enclose
valuable information for app developers, including users’ opinions about the
apps feature, an automated approach to extracting them from the feedback is
essential to conduct app competitor analysis.

In this paper, we introduce FeatCompare, a novel approach that helps
developers perform competitor analysis on high-level features based on user
reviews with the minimal human intervention. FeatCompare contains three
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main components: 1) a component to preprocess raw reviews and filter non-
informative user reviews; 2) GLFE, an unsupervised model that can identify
global and local high-level features from app reviews and select the final fea-
ture for each review via a thresholding mechanism, and 3) an aggregator that
generates a table of comparison among apps for summarizing feature-level user
opinions.

We apply FeatCompare on ten million user reviews of 196 popular apps on
Google play belonging to 20 different functional groups. A quantitative eval-
uation of GLFE is conducted for five randomly picked groups of competing
apps. The evaluation results show that GLFE outperforms the state-of-the-art
high-level feature extraction model ABAE by 14.7% on average. We also sur-
vey 107 mobile app developers asking how they perform competitor analysis
in practice and how they perceive the comparative table created by FeatCom-
pare. 73% of the mobile app developers participants endorse the benefits of
FeatCompare in competitor analysis. We aim in the future to include more
mobile app categories in our study. Furthermore, we aim to expand our qual-
itative study to investigate a larger number of mobile app developers. Lastly,
we will expand our work and look at how high-level feature ratings evolve over
releases among competing mobile apps.
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The survey questions

Table 9: List of defined questions in the conducted survey.

ID Question The possible answers

Background questions:
Q1.1 What is your age? “<= 25 years old”, “26-35 years old”, “36-45 years old”, “46+ years old”,

and “Prefer not to answer”
Q1.2 How many years of work experience do you have? “1 or less”, “2-5 years”, “6-10 years”, “11-20 years”, and “21+ years”
Q1.3 How many years of work experience in the field of mobile

development do you have?
“1 or less”, “2-5 years”, “6-10 years”, and “11+ years”

Q1.4 What are your roles in the development of mobile apps? Please
select all that apply.

“Development”, “Testing and quality assurance”, “Release management”,
“Configuration management”, “Product support”, “Project/product manage-
ment”, “Other”

Q1.5 How many mobile apps have you developed (including the
current one)

“None”, “1”, “2-5”, “6-10”, and “11+”

Q1.6 Which of the following industries best describe the category
of your app? Please select all that apply.

“Weather”, “Bible”, “Browser”, “Navigation”, “Free Call”, “SMS”, “Music
player”, “News”, “Security”, “Wallpaper”, “Taxi and rideshare”, “Dating”,
“Recipe cooking”, “Coloring”, “Pregnancy”, “Sports news”, “Video editor”,
“Notes”, “Mobile banking apps”, “Accommodation booking”, “Other”

Development activities questions:
Q2.1 Do you agree or disagree with the following statement: app’s

overall rating in mobile stores is sufficient alone for developers
to compare their apps to their competitors’ apps and discovery
areas to improve.

“Strongly agree”, “Agree”, “Neither agree nor disagree”, “Disagree”, and
“Strongly disagree”

Q2.2 Have you ever compared your app to a competitor app? “Very frequently”, “Often”, “Sometimes”, “Rarely”, and “Never”
Q2.3 How do you identify your app competitors? Please select all

that apply.
“Keyword search”, “App stores similar app suggestion”, “App stores cate-
gories”, “Customer feedback”, “Social media”, “Other”

Q2.4 In case you do perform competitor analysis, how do you per-
form it? Please select all that apply.

“User reviews of the competitive apps”, “Check the overall competitive app
ratings”, “Check the web presence of the competitors”, “Check the competitor
app number of downloads”, “Other”
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ID Question The possible answers

Development activities questions:
Q2.5 If you have not conducted a competitor analysis before, what

are in your opinion good sources of comparison?
Q2.6 How many competitors do you compare your app features to?

(If you have developed multiple apps, please select a range
that represents the average number of competitors that you
used to compare with your app)

“None”, “1”, “2-5”, “6-10”, “11+”

Validating FeatCompare:
Q3.1 Do you agree or disagree with the following statement: our

research output will be of great benefit for the developers to
compare their app to competitors’ apps based on the user
experience

“Strongly agree”, “Agree”, “Neither agree nor disagree”, “Disagree”, and
“Strongly disagree”

Q3.2 In the space below, please provide any feedback that you wish
to share with us. For example, do you have any recommenda-
tions to improve the results of our comparison tool? We would
really appreciate your input and feedback.
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