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Abstract Software defects can lead to undesired results. Correcting defects costs 50 % to
75 % of the total software development budgets. To predict defective files, a prediction
model must be built with predictors (e.g., software metrics) obtained from either a project
itself (within-project) or from other projects (cross-project). A universal defect prediction
model that is built from a large set of diverse projects would relieve the need to build and
tailor prediction models for an individual project. A formidable obstacle to build a uni-
versal model is the variations in the distribution of predictors among projects of diverse
contexts (e.g., size and programming language). Hence, we propose to cluster projects
based on the similarity of the distribution of predictors, and derive the rank transformations
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using quantiles of predictors for a cluster. We fit the universal model on the transformed
data of 1,385 open source projects hosted on SourceForge and GoogleCode. The universal
model obtains prediction performance comparable to the within-project models, yields sim-
ilar results when applied on five external projects (one Apache and four Eclipse projects),
and performs similarly among projects with different context factors. At last, we investi-
gate what predictors should be included in the universal model. We expect that this work
could form a basis for future work on building a universal model and would lead to software
support tools that incorporate it into a regular development workflow.

Keywords Universal defect prediction model · Defect prediction · Context factors · Rank
transformation · Large-scale · Software quality

1 Introduction

It is common for software to contain defects (Nguyen et al. 2011). A defect is an error in
software behaviour that causes unexpected results. Software defects were estimated to cost
U.S. economy $59.5 billion annually (Tassey 2002). The cost of correcting defects ranges
from 50 % to 75 % of the total software development cost (Hailpern and Santhanam 2002).
There is a rich history of attempts to anticipate the parts of source code that are likely to have
defects to fix. For example, D’Ambros et al. (2012) evaluate over 30 different approaches
published from 1996 to 2010 for building defect prediction models. Unfortunately, such
models could not be generalized to apply on other projects or even new releases of the same
project (Zimmermann et al. 2009; Nam et al. 2013). Refitting such models is not a trivial
task. It requires collecting and tagging defects for each file, and computing software metrics
from historical data. Sufficient history may not be available in certain projects, e.g., small
or new projects (Nagappan et al. 2006).

We refer to a single model that is built from the entire set of projects as a universal
model. A universal defect prediction model would relieve the need for refitting project-
specific or release-specific models for an individual project. A universal model would also
help interpret basic relationships between software metrics and defects, potentially resolv-
ing inconsistencies among different studies (Mair and Shepperd 2005). Moreover, it might
allow a more direct comparison of defect rates across projects, and enable a continuous
evaluation of defect proneness of a project. Therefore, it is of significant interest to build a
universal defect prediction model.

Cross-project prediction may be a step towards building a universal model. We refer to a
prediction as a cross-project prediction if a model is learnt from one project and the predic-
tion is performed on another project. Zimmermann et al. (2009) examine the performance
of all 622 possible cross-project predictions using 28 versions from 12 projects, and find
a low ratio of successful cross-project predictions (i.e., 3.4 %). They consider a prediction
to be successful if all the three performance measures (i.e., precision, recall, and accuracy)
are greater than 0.75. The first challenge in building successful cross-project defect predic-
tion models is related to the variations in the distribution of predictors (Cruz and Ochimizu
2009; Nam et al. 2013). To overcome this challenge, we consider two approaches: 1) use
data from projects with similar distributions of predictors to the target project as training
data (e.g., Turhan et al. 2009; Menzies et al. 2011); or 2) transform predictors in both train-
ing and target projects to make them more similar in their distribution (e.g., Nam et al. 2013;
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Ma et al. 2012). However, the first approach uses partial dataset and results in multiple mod-
els for different target projects. The transformation approaches are typically specialized to
a particular pair of training and testing datasets. Our prior study (Zhang et al. 2013) found
that the distribution of software metrics varies with project contexts (e.g., size and program-
ming language). Therefore, we combine the three insights in an attempt to build a universal
defect prediction model for a large set of projects with diverse contexts.

In this study, we propose a context-aware rank transformation to address the variations
in the distribution of predictors before fitting them in the universal defect prediction model.
There are six context factors investigated in this study, including programming language,
issue tracking, the total lines of code, the total number of files, the total number of com-
mits, and the total number of developers. The context-aware approach stratifies the entire
set of projects by context factors, and clusters the projects with similar distribution of pre-
dictors. Inspired by metric-based benchmarks (e.g., Alves et al. 2010), which use quantiles
to derive thresholds for ranking software quality, we apply every tenth quantile of predictors
on each cluster to specify ranking functions. We use twenty-one code metrics and five pro-
cess metrics as predictors. After rank transformation, the predictors from different projects
will have exactly the same scale. The universal model is then built using the transformed
predictors.

We apply our approach on 1,385 open source projects hosted on SourceForge and
GoogleCode. We observe that the F-measures and area under curve (AUC) obtained using
rank-transformed predictors is comparable to that of logarithmicly transformed predictors.
The logrithmic transformation uses the logrithmic values of predictors, and is commonly
used to build prediction models. After adding the six context factors as predictors, the per-
formance of the universal model built using only code and process metrics can be further
improved. On average, the universal model yields higher AUC than within-project mod-
els. Moreover, the universal model achieves up to 48 % of the successful predictions of
within-project models using loose criteria (i.e., recall is above 0.70, and precision is greater
than 0.50) suggested by He et al. (2012) to determine the success of defect prediction
models.

We examine the generalizability of the universal model in two ways. First, we build
the universal model using projects hosted on SourceForge and GoogleCode, and apply the
universal model on five external projects, including Lucene, Eclipse, Equinox, Mylyn, and
Eclipse PDE. The results show that the universal model provides a similar performance
(in terms of AUC) as within-project models for the five projects. Second, we compare the
performance of the universal model on projects of different context factors. The results
indicate that the performance does not change significantly among projects with different
context factors. These results suggest that the universal model is context-insensitive and
generalizable.

In summary, the major contributions of our study are:

– Propose an approach of context-aware rank transformation. The rank trans-
formation method addresses the problem of large variations in the distribution of
predictors across projects from diverse contexts. The transformed predictors have
exactly the same scales. This enables us to build a universal model for a large set of
projects.

– Improve the performance of the universal model by adding context factors as
predictors. We add the context factors to our universal prediction model, and find
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that context factors significantly improve the predictive power of the universal defect
prediction model (e.g., the average AUC increases from 0.607 to 0.641 comparing to
the combination of code and process metrics).

– Provide a universal defect prediction model. The universal model achieves similar
performance as within-project models for five external projects, and does not show
significant difference in the performance for projects with different context factors. The
universal model is context-insensitive and generalizable. We also provide the estimated
coefficients of predictors for the universal model.

This work extends our previous work (Zhang et al. 2014) that was published in the pro-
ceedings of the 11th working conference on Mining Software Repositories (MSR) in three
ways. First, we added the details of the approach and data processing steps, so that our
study could be easily replicated. Second, we added RQ4 that examines the performance of
the universal model when applied to projects from diverse contexts. Third, we added RQ5
that investigates the importance of different predictors in the universal model. Our findings
provide insights of what predictors are more suitable to establish general relationships with
defect-proneness.

The remainder of this paper is organized as follows. The related work is summarized in
Section 2. Section 3 and Section 4 describe our approach and experiment design, respec-
tively. Section 5 presents our results and discussions. The threats to validity of our work are
discussed in Section 6. We conclude and provide insights for future work in Section 7.

2 Related Work

In this section, we review previous studies on defect prediction in general, cross-project
defect prediction, and preprocessing techniques on predictors.

2.1 Defect Prediction

Defect prediction studies have a long history since 1970s (Akiyama 1971), and have become
very active in the last decade (D’Ambros et al. 2012). The purpose of defect prediction
models is to predict the defect proneness (i.e., buggy or clean) or the number of defects of a
software artifact. The defect prediction is studied for artifacts with various granularities such
as project, module, file, and method levels (e.g., Zimmermann et al. 2009; Hassan 2009).
The impact of granularity on the performance of defect prediction models is studied by
Posnett et al. (2011). This study chooses to predict defect proneness at file level.

Building a defect prediction model requires three major steps: 1) collect predictors;
2) label defect proneness; and 3) choose proper modelling techniques. Software met-
rics are commonly used as predictors in defect prediction models. Numerous software
metrics have been investigated, including complexity metrics (e.g., lines of code and
McCabe’s cyclomatic complexity (Menzies et al. 2007b), structural metrics (Zimmermann
and Nagappan 2008), process metrics (e.g., recent activities, number of changes, and the
complexity of changes (Hassan 2009)), the number of previous defects (Zimmermann et al.
2007), and social network metrics (Bettenburg and Hassan 2010). D’Ambros et al. (2012)
systematically compare the predictive power of different metric categories, and find that
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process metrics are superior in predicting the defect proneness. Arisholm et al. (2010)
find large differences in terms of cost-effectiveness for defect prediction among different
metric sets (e.g., process metrics significantly outperform structural metrics). Moreover,
Radjenović et al. (2013) report that the performance of metric sets relates to several context
factors (e.g., size and life cycles) of subject projects.

There are two major types of modelling techniques: statistical methods (e.g., Naive Bayes
and logistic regression), and machine learning methods (e.g., decision trees, support vector
machine (SVM), K-nearest neighbour, and artificial neural networks). Lessmann et al.
(2008), Arisholm et al. (2010), and D’Ambros et al. (2012) propose different approaches to
compare and evaluate different modelling techniques. Lessmann et al. (2008) find that there
are no significant differences in the performance among different modelling techniques.
Arisholm et al. (2010) also report that the choice of modelling techniques has only limited
impact on the performance in terms of accuracy or cost-effectiveness. However, different
observations are reported by Hall et al. (2012) that some modelling techniques (e.g., Naive
Bayes and logistic regression) perform well in defect prediction, and some other modelling
techniques (e.g., SVM) perform less well. Sarro et al. (2012) find that tuning the parameters
of SVM using genetic algorithm can improve the performance of defect prediction. Our rank
transformation approach is a step for data preprocessing, thus it is independent of the mo-
delling techniques. Software organizations can choose the technique that best suits their needs.

2.2 Cross-Project Defect Prediction

Most of the aforementioned studies have been conducted under within-project settings. We
refer to a prediction as a within-project prediction if the training and target projects are the
same. Building within-project models requires enough historical data of the target project.
However, some projects, such as small or new projects, may not have sufficient historical da-
ta (Nagappan et al. 2006). In response to such challenges, many researchers attempt to build
cross-project defect prediction models. Most studies experience poor performance of cross-
project defect predictions (Hall et al. 2012). For instance, Zimmermann et al. (2009) run
cross-project predictions for all 622 possible pairs of 28 datasets from 12 projects, and find
only 21 pairs (i.e., cross-project predictions) match their performance criteria (i.e., all pre-
cision, recall and accuracy are above 0.75). Turhan et al. (2009) observe that cross-project
prediction not only underperforms within-project prediction, but also has excessive false
alarms. Premraj and Herzig (2011) confirm the challenges in cross-project defect prediction
through their replication study. Even for the same project, Shatnawi and Li (2008) report a
decrease in performance of within-project defect prediction models from release to release.

Rahman et al. (2012) argue that cross-project defect prediction can yield the same per-
formance as within-project prediction in terms of cost effectiveness, instead of standard
measures (i.e., precision, recall, and F-measure). Nevertheless, the challenge of cross-
project prediction still exists. It might be due to the fact that metrics from different projects
may have significantly different distributions (Cruz and Ochimizu 2009; Nam et al. 2013).
Denaro and Pezzè (2002) conclude that good predictive performance can be achieved only
across homogeneous projects. Similar finding is reported by Nagappan et al. (2006). Hall
et al. (2012) investigate 36 studies and report that some context factors (e.g., system size
and application domain) affect the performance of cross-project predictions. Zimmermann
et al. (2009) and Menzies et al. (2011) both suggest to consider project contexts for cross-
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project defect prediction. To deal with heterogeneous data from diverse projects, this study
proposes context-aware rank transformation for predictors as a data preprocessing step. In
addition, we find that adding context factors (see Section 3.2) as predictors can improve the
predictive power for the universal defect prediction model.

2.3 Data Preprocessing

The distribution of metric values varies across projects (Cruz and Ochimizu 2009). Our
previous study (Zhang et al. 2013) examines 320 diverse projects, and conclude that the dis-
tribution of metric values sometimes varies significantly in projects of different contexts.
The variation in scales of metrics pose a challenge for building a universal defect pre-
diction model. Data preprocessing has been proved to improve the performance of defect
prediction models by Menzies et al. (2007b). These findings suggest that preprocessing
predictors may be a mandatory step needed to build a successful cross-project defect predic-
tion model. Jiang et al. (2008) evaluate the impact of log transformation and discretization
on the performance of defect prediction models, and find different modelling techniques to
“prefer” different transformation techniques. For instance, Naive Bayes achieves better per-
formance on discretized data, while logistic regression benefits from both approaches. Cruz
and Ochimizu (2009) also observe that log transformations can improve the performance of
cross-project predictions, only if the data of target project is not as skewed as the data of the
training project.

The state-of-the-art approaches to improve the performance of cross-project defect pre-
diction mainly use two data preprocessing techniques: 1) use data from projects with similar
distributions to the target project (e.g., Turhan et al. 2009; Menzies et al. 2011); or 2) trans-
form predictors in both training and target projects to make them more similar in their
distribution (e.g., Nam et al. 2013; Ma et al. 2012). To filter the training data, He et al. (2012)
propose to use the distributional characteristics (e.g., median, mean, variance, standard devi-
ation, skewness, and quantiles); Turhan et al. (2009) propose to use nearest neighbour filter;
Li et al. (2012) propose to use sampling; and He et al. (2013) propose to use data similarity.
The aforementioned approaches are able to improve the performance of cross-project defect
prediction models. However, they use only partial dataset and end up with multiple mod-
els (i.e., one model per target project). On the other hand, the transformation approaches
are typically specialized to a particular pair of training and testing datasets. For instance,
Watanabe et al. (2008) propose to compensate the target project with the average values of
predictors of both target and training projects. Similarly, Ma et al. (2012) weight training
data by estimations on the distribution of target data. Nam et al. (2013) propose to trans-
form both training and target data to the same latent feature space, and build models on the
latent feature space. Our previous study (Zhang et al. 2013) suggests to consider project
contexts, when deriving proper thresholds and ranges of metric values that are often used to
evaluate software quality (Baggen et al. 2012). By combining these three insights, we pro-
pose a context-aware rank transformation approach which does not require or depend on the
target data set. The target data set contains the projects on which to apply defect prediction
models.

3 Approach

In this section, we present the details of our approach for building a universal defect
prediction model.
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3.1 Overview

The poor performance of cross-project prediction may be caused by the significant differ-
ences in the distribution of metric values among projects (Cruz and Ochimizu 2009; Nam
et al. 2013). Therefore, to build a universal model using a large set of projects, it is essential
to reduce the difference in the distribution of metric values across projects. Our previ-
ous work (Zhang et al. 2013) finds that context factors of projects can significantly affect
the distribution of metric values. Therefore, we propose a context-aware rank transforma-
tion approach to preprocess metric values before fitting them to the universal model. As
illustrated in Fig. 1, our approach consists of the following four steps:

1) Partitioning. We partition the entire set of projects into non-overlapping groups based
on the six context factors (i.e., programming language, issue tracking, the total lines of
code, the total number of files, the total number of commits, and the total number of
developers). This step aims to reduce the number of pairwise comparisons. We com-
pare the distribution of metric values across groups of projects instead of individual
projects.

2) Clustering. We cluster the project groups with the similar distribution of predictor val-
ues. This step aims to merge similar groups of projects so that we could include more
projects in each cluster for obtaining ranking functions.

3) Obtaining ranking functions. We derive a ranking function for each cluster using every
10th quantile of predictor values. This transformation removes large variations in the
distribution of predictors by transforming them to exactly the same scale.

4) Ranking. We apply the ranking functions to convert the raw values of predictors to
one of the ten levels. This step aims to remove the difference in the scales of metric
values across projects. The scales of the transformed metric values are exactly the same
for all projects.

After the preprocessing steps, we build the universal model based on the transformed
predictors. The following subsections describe the context factors used in this study, and the
details of each step.

3.2 Context Factors

Software projects have diverse context factors. However, it is still unclear what con-
text factors best characterize projects. For instance, Nagappan et al. (2013) choose seven

R3(x)

R2(x)

R1(x)

(Clustering) (Obtaining Ranking Function) (Ranking)

project
clustered project rank transformed project

ranking functionR3(x)R2(x)

(Partitioning)

Context 1

C
ontext 2

R1(x)

Fig. 1 Our four-step rank transformation approach: 1) stratify the set of projects along different contexts
into non-overlap groups; 2) cluster project groups; 3) derive ranking function for each cluster; and 4) perform
rank transformation
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context factors based on their availability in Ohloh,1 including main programming lan-
guage, the total lines of code, the number of contributors, the number of churn, the
number of commits, project age, and project activity. Along the same lines, our previ-
ous work (Zhang et al. 2013) also selects seven context factors, i.e., application domain,
programming language, age, lifespan, the total lines of code, the number of changes,
and the number of downloads. Our prior study (Zhang et al. 2013) finds that project
age, lifespan, and the number of downloads do not significantly affect the distribution of
metric values. Thus we exclude these three context factors from this study. The shared
context factors of the aforementioned two studies are programming language, the total
lines of code, and the number of commits. These factors are common to all projects
with version control systems. Hence, we include these three context factors in this study.
The information of application domain is unavailable to our subject projects that are
hosted on GoogleCode. Therefore, we exclude application domain as well. Moreover,
we add the number of developers as Nagappan et al. (2013), and the number of files
as another size measurement. Eventually, we choose the following six context factors in this
study.

1) Programming Language (PL) describes the nature of programming paradigms. There
is a high chance for metric values of different programming languages to experience
significantly different distributions. Moreover, it is interesting to investigate the possi-
bility of inter language reuse of prediction models. Due to the limitation of our metric
computing tool, we only consider projects mainly written in C, C++, Java, C#, or Pas-
cal. A project is mainly written in programming language pl if the largest number of
source code files are written in pl.

2) Issue Tracking (IT) describes whether a project uses an issue tracking system or not.
The usage of an issue tracking system can reflect the quality of the project management
process. It is likely that the distribution of metric values are different between projects
with or without usage of issue tracking systems. A project uses an issue tracking system
if the issue tracking system is enabled in the website of the project and there is at least
one issue recorded.

3) Total Lines of Code (TLOC) describes the project size in terms of source code. Com-
ment and blank lines are excluded when counting the total lines of code. Moreover, the
lines of code of files that are not written in the main language of the project are also
excluded. Such exclusion simplifies our approach for transforming metric values, as
only one programming language is considered for each project.

4) Total Number of Files (TNF) describes the project size in terms of files. This context
factor measures the project size from a different granulatiry to the total lines of code.
Similar as the total lines of code measurement, we exclude files that are not written in
the main language of each project.

5) Total Number of Commits (TNC) describes the project size in terms of commits. Dif-
ferent from the total lines of code and the total number of files, this context factor
captures the project size from the process perspective. The total number of commits can
describe how actively the project was developed.

1https://www.openhub.net (NOTE: ‘Ohloh’ was changed to ‘Open Hub’ in 2014.)

https://www.openhub.net
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6) Total Number of Developers (TND) describes the project size in terms of develop-
ers. Teams of different sizes (e.g., small or large) may follow different development
strategies, therefore the team size can impact the distribution of metric values.

3.3 Partitioning Projects

We assume that projects with the same context factors have similar distribution of software
metrics, and projects with different contexts might have different distribution of software
metrics. Hence, we stratify the entire set of projects based on the aforementioned six context
factors.

1) PL. We divide the set of projects into 5 groups based on programming languages: Gc,
Gc++, Gjava , Gc#, and Gpascal .

2) IT. The set of projects is separated into 2 groups based on the usage of an issue tracking
system: GuseIT and GnoIT .

3) TLOC. We compute the TLOC of each project and the quartiles of TLOC. Based on the
first, second, and third quartiles, we split the set of projects into 4 groups: GleastT LOC ,
GlessT LOC , GmoreT LOC , and GmostT LOC .

4) TNF. We calculate TNF of each project, and the quartiles of TNF. Based on the first,
second, and third quartiles, we separate the set of projects into 4 groups: GleastT NF ,
GlessT NF , GmoreT NF , and GmostT NF .

5) TNC. We compute the TNC of each project, and the quartiles of TNC. Based on the
first, second, and third quartiles, we break the entire set of projects into 4 groups:
GleastT NC , GlessT NC , GmoreT NC , and GmostT NC .

6) TND. We calculate the TND of each project, and the quartiles of TND. Based on
the first, second, and third quartiles, we split the whole set of projects into 4 groups:
GleastT ND , GlessT ND , GmoreT ND , and GmostT ND .

In summary, we get 5, 2, 4, 4, 4, and 4 non-overlapping groups along each of the six
context factors, respectively. In total, we obtain 2560 (i.e., 5 × 2 × 4 × 4 × 4 × 4) non-
overlapping groups for the entire set of projects.

3.4 Clustering Similar Projects

In the previous step, we obtain non-overlapping groups of projects. However, the size of
most groups is small. In some cases the non-overlapping groups of projects do not have sig-
nificantly different distributions of metrics. In addition, clustering similar projects together
helps obtain more representative quantiles of a particular metric. At this step, we cluster the
projects with the similar distributions of a metric. We consider two distributions to be simi-
lar if neither their difference is statistically significant nor the effect size of their difference
is large, as our previous study (Zhang et al. 2013).

For different metrics, the corresponding clusters are not necessarily the same. In other
words, we produce a particular set of clusters for each individual metric. We describe a
cluster using a vector. The first element shows for what metric the cluster is created, and
the remaining elements characterize the cluster from the context factor perspective. For
example, the cluster < m, C++, useIT , moreT LOC > is created for metric m, contains
C++ projects that use issue tracking systems, and has the TLOC between the second and
third quartiles (see Section 3.2).
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For each metric m, the clusters of projects with similar distribution of metric m are
obtained using the Algorithm 1. The Algorithm 1 has two major steps:

1) Comparing the distribution of metrics. This step (Line 8 in Algorithm 1) merges the
groups of projects that do not have significantly different distribution of metric m.
We apply Mann-Whitney U test (Sheskin 2007) to compare the distribution of met-
ric values between every two groups of projects, using the 95 % confidence level (i.e.,
p-value<0.05). The Mann-Whitney U test assesses whether two independent distribu-
tions have equally large values. It is a non-parametric statistical test. Therefore it does
not assume a normal distribution. As we conduct multiple tests to investigate the dis-
tribution of each metric, we apply Bonferroni correction to control family-wise errors.
Bonferroni adjusts the threshold p-value by dividing the number of tests.

2) Quantifying the difference between distributions. This step (Lines 10 to 16 in Algo-
rithm 1) merges the groups of projects that have significantly different distributions
of metric m, but the difference is not large. We calculate Cliff’s δ (Line 10 in Algo-
rithm 1) as the effect size (Romano et al. 2006) to quantify the importance of the
difference between the distribution of every two groups of projects. Cliff’s δ esti-
mates non-parametric effect sizes. It makes no assumptions of a particular distribution,
and is reported (Romano et al. 2006) to be more robust and reliable than Cohen’s
d (Cohen 1988). Cliff’s δ represents the degree of overlap between two sample dis-
tributions (Romano et al. 2006). It ranges from -1 (if all selected values in the first
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group are larger than in the second group) to +1 (if all selected values in the first group
are smaller than the second group). It is zero when two sample distributions are identi-
cal (Cliff 1993). Cohen’s standards (i.e., small, medium, and large) are commonly used
to interpret effect size. Therefore, we map the Cliff’s δ to Cohen’s standards, using the
percentage of non-overlap (Romano et al. 2006). The mapping between the Cliff’s δ

and Cohen’s standards is shown in Table 1. Cohen (1992) states that a medium effect
size represents a difference likely to be visible to a careful observer, while a large effect
is noticeably greater than medium. In this study, we choose the large effect size as the
threshold of the importance of the differences between the distributions (Line 11 in
Algorithm 1).

3.5 Obtaining Ranking Functions

In Section 3.4, we create clusters of projects for each metric, independently. For a particular
metric, projects within the same cluster exhibit similar distribution of values of the corre-
sponding metric. To remove the variation in the scales of metric values, this step derives
ranking functions for each cluster. The ranking function transforms the raw metric values to
predefined values (i.e., ranging from one to ten). Therefore, the transformed metrics have
exactly the same scale among the projects.

We use the quantiles of metric values to formulate our ranking functions. This is inspired
by metric-based benchmarks (e.g., Alves et al. 2010), which often use the quantiles to derive
thresholds of metrics. The thresholds of metrics are used to distinguish files of different
levels of quality related to defects.

Let M denote the total number of metrics. For metric mi (where i ∈ {1, . . . , M}), the
corresponding clusters are represented using Cli1, Cli2, . . ., and CliNi

, where Ni is the total
number of clusters obtained for metric mi . We formulate the ranking function for metric mi

in the j th cluster Cij following (1).

Rank(mi, Clij , value) =

⎧
⎪⎨

⎪⎩

1 if value ∈ [0,Qij,1(mi)]
k if value ∈ (Qij,k−1(mi),Qij,k(mi)]
10 if value ∈ (Qij,9(mi),+∞)

(1)

where the variable value denotes the value of metric mi to be converted, Qij,k(mi) is the
k ∗ 10th quantile of metric mi in cluster Clij , j ∈ {1, . . . , Ni}, and k ∈ {2, . . . , 9}.

For example, we assume that every tenth quantile for a metric m1 in cluster Cl12 is: 11,
22, 33, 44, 55, 66, 77, 88, and 99, respectively. The ranking function for metric m1 in cluster
Clij is shown in Table 2. If metric m1 has a value of 27 in a file of a project that belongs
to cluster Cl12, then the metric value in the file will be converted to 3. This is because the
value 27 is greater than 22 (i.e., the 20 % quantile) and less than 33 (i.e., the 30 % quantile).

Table 1 Mapping Cliff’s δ to
Cohen’s standards Cliff’s δ % of Non-overlap Cohen’s d Cohen’s Standards

0.147 14.7 % 0.20 small

0.330 33.0 % 0.50 medium

0.474 47.4 % 0.80 large
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Table 2 An example of ranking
functions Range of Metric Value [0, 11] (11, 22] (22, 33] . . . (99,+∞)

Rank(m1, Cl12, value) 1 2 3 . . . 10

3.6 Building a Universal Defect Prediction Model

3.6.1 Choice of Modelling Techniques

As described in Section 2.1, Lessmann et al. (2008) and Arisholm et al. (2010) show that
there is no significant difference among different modelling techniques in the performance
of defect prediction models. However, Kim et al. (2011) find that Bayes learners (i.e., Bayes
Net and Naive Bayes) perform better when defect data contains noises, even up to 20 %–
35 % of false positive and false negative noise in defect data. Based on their findings,
we apply Naive Bayes as the modelling technique in our experiments to evaluate the per-
formance of the universal defect prediction model. When investigating the importance of
different metrics in the universal model, we choose to apply logistic regression model as it
is a common practice to compare the importance of different metrics (Zimmermann et al.
2012).

3.6.2 Steps to Build the Universal Defect Prediction Model

Our universal model is built upon the entire set of projects using rank transformed metric
values. The first step is to transform metric values using ranking functions that are obtained
from our dataset. In order to locate the ranking function for metric mi in project pj , we
need to determine which cluster project pj belongs to. We identify context factors of project
pj , and formulate a vector like < mi , C++, useIT , moreT LOC, lessT NF , lessT NC,
lessT ND > to present a cluster, where the first item specifies the metric, and the remaining
items describe the corresponding context factors that projects in this cluster belong to. The
vector of project pj is then compared to the vectors of all clusters. The exactly matched clus-
ter is the cluster that project pj belongs to. After the transformation, the values of metrics
will have the same scale ranging from one to ten.

The second and the last step is to build the model. We apply the Naive Bayes algorithm2

implemented in Weka3 tool to build a universal defect prediction model upon the entire set
of projects.

3.7 Measuring the Performance

To evaluate the performance of prediction models, we compute the confusion matrix as
shown in Table 3. In the confusion matrix, true positive (TP) is the number of defective
files that are correctly predicted as defective files; false negative (FN) counts the number of
defective files that are incorrectly predicted as clean files; false positive (FP) measures the
number of files that are clean but incorrectly predicted as defective; and true negative (TN)
represents the number of clean files that are correctly predicted as clean files.

2https://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html
3http://www.cs.waikato.ac.nz/ml/weka

https://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html
http://www.cs.waikato.ac.nz/ml/weka
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Table 3 Confusion matrix used
in defect prediction studies

defective non-defective

defective true positive (TP) false negative (FN)

non-defective false positive (FP) true negative (TN)

We calculate the following six measures (i.e., precision, recall, false positive rate, F-
measure, g-measure, and Matthews correlation coefficient) using the confusion matrix. We
also compute the area under curve (AUC) as an additional measure.

Precision (prec) measures the proportion of actual defective entities that are predicted as
defective against all predicted defective entities. It is defined as:

prec = T P

T P + FP
(2)

Recall (pd) evaluates the proportion of actual defective entities that are predicted as
defective against all actual defective entities. It is defined as:

pd = T P

T P + FN
(3)

False Positive Rate (fpr) is the proportion of actual non-defective entities that are
predicted as defective against all actual non-defective entities. It is defined as:

fpr = FP

FP + T N
(4)

F-measure calculates the harmonic mean of precision and recall. It balances precision and
recall. It is defined as:

F -measure = 2 × pd × prec

pd + prec
(5)

g-measure computes the harmonic mean of recall and 1-fpr. The 1-fpr represents Speci-
ficity (not predicting entities without defects as defective). We report g-measure as Peters
et al. (2013b), since Menzies et al. (2007a) show that precision can be unstable when
datasets contain a low percentage of defects. It is defined as:

g-measure = 2 × pd × (1 − fpr)

pd + (1 − fpr)
(6)

Matthews Correlation Coefficient (MCC) is a balanced measure of true and false posi-
tives and negatives. It ranges from -1 to +1, where +1 indicates a perfect perdiction, 0 means
the prediction is close to random prediction, and -1 represents total disaggrement between
predicted and actual values. It is defined as:

MCC = T P × T N − FP × FN√
(T P + FP) × (T P + FN) × (T N + FP) × (T N + FN)

(7)
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Area Under Curve (AUC) is the area under the receiver operating characteristics (ROC)
curve. ROC is independent of the cut-off value that is used to compute the confusion matrix.
We choose to apply AUC as another performance measure of prediction models, since AUC
has been commonly reported in other studies of cross-project defect prediction. Rahman
et al. (2012) find that traditional measures (e.g., precision, and recall) are not as effective as
AUC when measuring the performance of cross-project defect prediction models.

Moreover, confusion matrix can be reconstructed from precision, recall, and d (Hall et al.
2012), where d represents the proportion of correct predictions (i.e., d = T P + T N ). We
can compute d using precision (prec), recall (pd), and false positive rate (fpr) as follows:

d = prec × fpr

pd × (1 − prec) + prec × fpr
(8)

4 Experiment Setup

4.1 Data Collection

4.1.1 Subject Projects

SourgeForge and GoogleCode are two large and popular repositories for open source
projects. We use the SourceForge and GoogleCode data initially collected by Mockus
(2009) with his updates until October 2010. The dataset contains the full history of about
154K projects that are hosted on SourceForge and 81K projects that are hosted on Google-
Code to the date they were collected. The file contents of each revision and commit logs
are stored separately and linked together using a universal unique identifier. The storage of
file contents of SourceForge and GoogleCode projects spreads in 100 database files. Each
database file is about 8 Giga bytes. The storage of commit logs spreads in 13 compressed
files that have a total size of about 10 Giga bytes. Although we have 235K projects in total,
there are too many trivial projects. Many projects do not have enough history and defect data
for evaluation. Hence, we clean the dataset and obtain 1,385 projects for our experiments.
Comparing to the 1,398 projects used in our previous work (Zhang et al. 2014), there are 13
projects removed due to an error in data pre-processing. The error is identified during this
extension, and has been fixed. The cleaning process is detailed in the following subsection.

4.1.2 Cleaning the Dataset

Filtering Out Projects by Programming Languages In this study, we use a commer-
cial tool, called Understand (SciTools 2015), to compute code metrics. Due to the limitation
of the tool, we only investigate projects that are mainly written in C, C++, C#, Java, or Pas-
cal. For each project, we determine its main programming languages by counting the total
number of files per file type (i.e., *.c, *.cpp, *.cxx, *.cc, *.cs, *.java, and *.pas).

Filtering Out the Projects with a Small Number of Commits A small number of
commits can not provide enough information for computing process metrics and mining
defect data. We compute the quantiles of the number of commits of all projects throughout
their history. We choose the 25 % quantile of the number of commits as the threshold to
filter out projects. In our dataset, we filter out the projects with less than 32 (inclusive)
commits throughout their histories.
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Filtering Out the Projects with Lifespan Less Than One Year Most studies in defect
prediction collect defect data from a six-months’ period (Zimmermann et al. 2007) after the
software release, and compute process metrics using the six months’ data ahead. However,
numerous projects on SourceForge or GoogleCode do not have clear release periods. There-
fore, we simply determine the split date for each project by looking six months (i.e., 182.5
days) back from its last commit. We collect defect data in the six-months period after the
split date, and compute process metrics using the change history in the six-months period
before the split date. Thus we filter out the projects with a lifespan less than one year (i.e.,
365 days).

Filtering Out the Projects with Limited Defect Data Defect data needs to be mined
from enough commit messages. We count the number of fix-inducing and non-fixing com-
mits from a one-year period. We choose the 75 % quantile of the number of fix-inducing
(respectively non-fixing) commits as the threshold to filter out the projects with less defect
data. For projects hosted on SourceForge, the 75 % quantile of the number of fix-inducing
and non-fixing commits are: 152 and 1,689, respectively. For projects hosted on Google-
Code, the 75 % quantile of the number of fix-inducing and non-fixing commits are: 92 and
985, respectively.

Filtering Out the Projects Without Fix-Inducing Commits Subject projects in defect
prediction studies usually contain defects. For example, the 56 projects used by Peters et al.
(2013b) have at least one defect. We consider the projects that have no fix-inducing commits
during six months as abnormal projects, therefore we filter out such projects. Moreover,
there are 13 projects with few commits during the six-month period of collecting process
metrics. We filter out these 13 projects since process metrics are not available to them.

Description of the Final Experiment Dataset In the cleaned dataset, there are 931
SourceForge projects, and 454 GoogleCode projects. Among them, 713 projects employ
CVS as their version control system, 610 projects use Subversion, and 62 projects adopt
Mercurial. The number of projects that are mainly written in C, C++, C#, Java, and Pas-
cal are 283, 421, 84, 586, and 11, respectively. There are 810 projects using issue tracking
systems, and 575 projects without using any issue tracking system. We show the boxplot of
other four context factors in Fig. 2.
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Fig. 2 Boxplot of four numeric context factors (i.e., TLOC, TNF, TNC, and TND) in our dataset
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4.2 Software Metrics

Software metrics are used as predictors to build a defect prediction model. In this study,
we choose 21 code metrics, and 5 process metrics that are often used in defect prediction
models. The list of selected metrics is shown in Table 4. File and method level metrics are
available to all the five studied programming languages. Class level metrics are only avail-
able to object-oriented programming languages, and are set to zero in files written in C. As
defect prediction is performed at file level in this study, method level and class level metrics
are aggregated to file level using three schemes, i.e., average (avg), maximum (max), and
summation(total). The code metrics are computed by the Understand tool (SciTools 2015).
Process metrics include the number of revisions and bug-fixing revisions (see Section 4.3),
and lines of added/deleted/modified code. Process metrics are computed by our scripts. For
each file, we extract all revisions that are performed during the period for collecting pro-
cess metrics, and obtain the number of revisions and bug-fixing revisions. The number of

Table 4 List of software metrics. The last column refers to the aggregation scheme (“none means that
aggregation is not performed for file level metrics)

Type Metric Level Metric Name Description Aggregation

Code File LOC Lines of Code none

Metrics CL Comment Lines none

NSTMT Number of Statements none

NFUNC Number of Functions none

RCC Ratio Comments to Code none

MNL Max Nesting Level none

Class WMC Weighted Methods per Class avg, max, total

DIT Depth of Inheritance Tree avg, max, total

RFC Response For a Class avg, max, total

NOC Number of Immediate Subclasses avg, max, total

CBO Coupling Between Objects avg, max, total

LCOM Lack of Cohesion in Methods avg, max, total

NIV Number of instance variables avg, max, total

NIM Number of instance methods avg, max, total

NOM Number of Methods avg, max, total

NPBM Number of Public Methods avg, max, total

NPM Number of Protected Methods avg, max, total

NPRM Number of Private Methods avg, max, total

Methods CC McCabe Cyclomatic Complexity avg, max, total

FANIN Number of Input Data avg, max, total

FANOUT Number of Output Data avg, max, total

Process File NREV Number of revisions none

Metrics NFIX Number of revisions a file none

was involved in bug-fixing

ADDEDLOC Lines added avg, max, total

DELETEDLOC Lines deleted avg, max, total

MODIFIEDLOC Lines modified avg, max, total
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added, deleted, and modified lines between each two consecutive revisions of each file are
computed, and then aggregated to file level using the three aforementioned schemes. As
mentioned in Section 4.1.2, we look six months (i.e., 182.5 days) back from the last commit
to obtain the split date. The code metrics are computed using the files from the snapshot on
the split date. The process metrics are computed using the change history in the six-months
period before the split date.

4.3 Defect Data

Defect data are often mined from commit messages, and corrected using defect information
stored in an issue tracking system (Zimmermann et al. 2007). In our dataset, 42 % of subject
projects do not use issue tracking systems. For such projects, we mine defect data solely by
analyzing the content of commit messages. A similar method for mining defect data is used
by Mockus and Votta (2000) and in SZZ algorithm (Śliwerski et al. 2005). We first remove
all words ending with “bug” or “fix” from commit messages, since “bug” and “fix” can be
affix of other words (e.g., “debug” and “prefix”). A commit message is tagged as fixing
defect, if it matches the following regular expression:

(bug|f ix|error|issue|crash|problem|f ail|def ect |patch)

Using commit messages to mine defect information may be biased (Bird et al. 2009;
Kim et al. 2011; Herzig et al. 2013). However, Rahman et al. (2013) report that increasing
the sample size can leverage the possible bias in defect data. Our dataset contains 1,385
subject projects, and is around 140 to 280 times larger than most papers in this field (Peters
et al. 2013b). In addition, the modelling technique (i.e., Naive Bayes) used in this study is
proved by Kim et al. (2011) to have strong noise resistance with up to 20 %–35 % of false
positive and false negative noises in defect data. Finally, the defect data is collected in the
six-month’ period after the split date. We show the boxplot of the number of defects and the
percentage of defects in our dataset in Fig. 3.

5 Case Study Results

This section first describes the statistics of our project clusters, and then presents the
motivation, approach, and findings of the following five research questions.

RQ1. Can a context-aware rank transformation provide predictive power comparable to
the power of log transformation?
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Fig. 3 Boxplot of the number of defects and the percentage of defects in our dataset
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RQ2. What is the performance of the universal defect prediction model?
RQ3. What is the performance of the universal defect prediction model on external

projects?
RQ4. Do context factors affect the performance of the universal defect prediction model?
RQ5. What predictors should be included in the universal defect prediction model?

5.1 Project Clusters

In our dataset, there are 1,385 open source projects. The set of projects is stratified into
non-overlapped groups along the six context factors: programming language, issue tracking,
the total lines of code, the total number of files, the total number of commits, and the total
number of developers, respectively. In total, we obtain 478 non-empty groups. For each
metric, we perform

(478
2

) = 478!
2!×476! = 114, 003 times of Mann-Whitney U tests to compare

the difference of the distribution between any pair of groups. To control family-wise errors,
we adjust the threshold p-value using Bonferroni correction to 0.05/114, 003 = 4.39e-07.
Any pair of groups without statistically significant difference in their distribution are merged
together. Moreover, the pair of groups without a large difference (measured by Cliff’s δ)
are also merged together. The maximum number of clusters observed for a metric is 32,
which is the number of clusters obtained for the metric total CBO (i.e., the sum of values of
coupling between objects per file).

5.2 Research Questions

RQ1: Can a context-aware rank transformation provide predictive power compara-
ble to the power of log transformation?

Motivation We have proposed a context-aware rank transformation method to eliminate
the impact of varied scales of metrics among different projects. The rank transformation
converts raw values of all metrics to levels of the same scale. Before fitting the rank trans-
formed metric values to a universal defect prediction model, it is necessary to evaluate the
performance of our transformation approach. To achieve this goal, we compare the perfor-
mance of defect prediction models built using rank transformations to the models built using
log transformations. The log transformation uses the logarithm of raw metric values, and
has been proved to improve the predictive power in defect prediction approaches (Menzies
et al. 2007b; Jiang et al. 2008).

Approach For each project, we build two within-project defect prediction models using
metrics listed in Table 4. One uses log transformed metric values, and the other uses rank
transformed metric values. We call a model is a within-project defect prediction model if
both training and testing data are from the same project. To evaluate the performance of
predictions, we perform 10-fold cross validation on each project.

To investigate the performance of our rank transformation, we test the following null
hypothesis for each performance measure:

H01: there is no difference between the performance of defect prediction models built
using log and rank transformations.

Hypothesis H01 is two-tailed, since it investigates if rank transformation yields better or
worse performance than log transformation. We conduct two-tailed and paired Wilcoxon
rank sum test (Sheskin 2007) to compare the seven performance measures, using the 95 %



Empir Software Eng

confidence level (i.e., p-value<0.05). The Wilcoxon rank sum test is a non-parametric
statistical test to assess whether two independent distributions have equally large values.
Non-parametric statistical methods make no assumptions about the distribution of assessed
variables. If there is a statistical significance, we reject the hypothesis and conclude that the
performance of the two transformation techniques are different. Moreover, we compare the
proportion of the successful predictions. The success of predictions is determined using two
criteria: 1) strict criteria (i.e., precision and recall are greater than 0.75), as used by Zim-
mermann et al. (2009); and 2) loose criteria (i.e., precision is greater than 0.5 and recall is
greater than 0.7), as applied by He et al. (2012).

Findings There are 99 projects that do not contain enough files to perform 10-fold cross
validation. Hence, we compare the performance of log and rank transformations on the
remaining 1,286 projects. Table 5 presents the mean values of the seven performance mea-
sures of both log and rank transformations, and the corresponding p-values of Wilcoxon
rank sum test. We reject the hypothesis H01 for most measures (except recall), and con-
clude that there is significant difference between rank transformation and log transformation
in within-project defect prediction in precision, false positive rate, F-measure, g-measure,
MCC, and AUC. However, the differences between their average performance measures are
negligible (i.e., the absolute value of Cliff’s δ is less than 0.147), as shown in Table 5. To
better illustrate the differences, we show the boxplots of performance measures of models
built using log and rank transformation in Fig. 4.

Furthermore, the proportion of successful predictions for both approaches are identical
where it is 13 % and 27 % using the strict and loose criteria for successful prediction, respec-
tively. Therefore, we conclude that rank transformation achieves comparable performance
to log transformation. It is reasonable to use the proposed rank transformation method to
build universal defect prediction models.

RQ2: What is the performance of the universal defect prediction model?

Table 5 The results of Wilcoxon rank sum tests and mean values of the seven performance measures of log
transformation and our context-aware rank transformation in the within-project settings

Measures Log transformation Rank transformation p-value Cliff’s δ

prec 0.519 0.525 2.42e-04* −0.091

pd 0.576 0.580 0.08 −0.047

fpr 0.369 0.359 4.04e-04* 0.113

F-measure 0.527 0.534 8.19e-06* −0.113

g-measure 0.511 0.521 1.37e-09* −0.113

MCC 0.202 0.214 7.44e-06* −0.120

AUC 0.609 0.615 8.90e-05* −0.091

Bold font indicates a better performance

*Denotes statistical significance
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Fig. 4 Boxplots of performance measures of models built using log and rank transformations

Motivation The findings of RQ1 support the feasibility of our proposed rank transforma-
tion method for building defect prediction models. However, building an effective universal
model is still a challenge. For instance, Menzies et al. (2011) report to experience poor per-
formance of a model built on the entire set of diverse projects. This research question aims
to investigate the best achievable predictive power of the universal model. First, we evaluate
if the predictive power of the universal model can be improved by adding context factors as
predictors, together with code metrics and process metrics that are commonly used in prior
studies for defect prediction. Second, we study if the universal model can achieve compara-
ble performance as within-project defect prediction models. Accordingly, we split RQ2 to
two sub questions:

RQ2.1: Can context factors improve the predictive power?
RQ2.2: Is the performance of the universal model defect prediction comparable to within-

project models?

Approach We describe approaches to address each sub question, respectively.
To address RQ2.1, we build the universal model using five combinations of metrics: 1)

code metrics; 2) code and process metrics; 3) code metrics and context factors; 4) process
metrics and context factors; and 5) code, process metrics, and context factors. All metrics
are transformed using the context-aware rank transformation. To evaluate the performance
of predictions, we perform 10-fold cross validation on the entire set of projects. To compare
the performance of the universal model among different combinations of metrics, we test
the following null hypothesis for each pair of metric combinations:

H021: there is no difference between the performance of the universal defect prediction
models built using two metric combinations.

To address RQ2.2, we obtain the performance of within-project and universal models for
each project, respectively. The predictive power of within-project models is obtained using
10-fold cross-validation (same as RQ1). The performance of universal models on a particu-
lar project is evaluated by applying a universal model built upon the remaining set of projects
on the project. We compute and compare the proportion of acceptable predictions of both
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Table 6 The seven performance measures (mean± std.dev) of comparing the universal models built using
code metrics (CM), code + process metrics (CPM), code metrics and context (CM-C), process metrics and
context (PM-C), and code + process metrics + contexts (CPM-C), respectively

Measures CM CPM CM-C PM-C CPM-C

prec 0.431 ± 0.067 0.437 ± 0.069 0.445 ± 0.061 0.438 ± 0.063 0.455 ± 0.065

pd 0.551 ± 0.020 0.548 ± 0.015 0.602 ± 0.048 0.557 ± 0.038 0.591 ± 0.040

fpr 0.404 ± 0.025 0.392 ± 0.020 0.419 ± 0.070 0.401 ± 0.073 0.396 ± 0.065

F-measure 0.480 ± 0.046 0.484 ± 0.048 0.508 ± 0.043 0.488 ± 0.048 0.510 ± 0.045

g-measure 0.572 ± 0.016 0.577 ± 0.013 0.587 ± 0.027 0.574 ± 0.029 0.594 ± 0.022

MCC 0.141 ± 0.032 0.150 ± 0.029 0.175 ± 0.047 0.150 ± 0.060 0.186 ± 0.045

AUC 0.600 ± 0.020 0.607 ± 0.019 0.636 ± 0.041 0.628 ± 0.046 0.641 ± 0.038

Bold font indicates a better performance

the universal model and the within-project models. To compare the performance of within-
project and universal models, we test the following null hypothesis for each performance
measure:

H022: there is no difference between the performance within-project and universal defect
prediction models.

Hypotheses H021 and H022 are two-tailed, since they investigate if one prediction model
yields better or worse performance than the other prediction model. We apply two-tailed
and paired Wilcoxon rank sum test at 95 % confidence level to examine each hypothesis.
If there is significance, we reject the null hypothesis and compute Cliff’s δ (Cliff 1993) to
measure the difference.

Findings We report our findings for two sub questions, respectively.

(RQ2.1) Table 6 provides the performance measures of the universal model using each
combination of metrics. In general, adding context factors increases five performance
measures (i.e., precision, F-measure, g-measure, MCC, and AUC value). AUC value is
the only measure that is independent of the cut-off value. As the space is limited, Table 7
only presents Cliff’s δ and p-value of Wilcoxon rank sum tests on comparisons of AUC
values. We observe that adding context factors significantly improves the performance
than using only code metrics. The Cliff’s δ is -0.734, indicating a large improvement (i.e.,
the absolute value of Cliff’s δ is greater than 0.474). In addition, adding context factors
yields significant improvement (Cliff’s δ is -0.707) in the performance than using code

Table 7 The Cliffs δ and p-value of Wilcoxon rank sum tests on the comparison of AUC values across the
universal model built using different combinations of metrics

Metric Sets CPM CM-C PM-C CPM-C

CM −0.572 0.07 −0.734 9.15e-03* −0.491 0.16 −0.804 5.89e-03*

CPM – – −0.606 0.04* −0.392 0.23 −0.707 8.00e-03*

CM-C – – – – 0.244 0.49 −0.631 0.02*

PM-C – – – – – – −0.406 0.13

*Denotes statistical significance
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Fig. 5 Boxplots of performance measures of within-project and universal models

and process metrics. Hence, we conclude that the context factors are good predictors for
building a universal defect prediction model.

(RQ2.2) The boxplots of performance measures of within-project and universal models
are shown in Fig. 5. Table 8 presents the Wilcoxon rank sum test results of performance
measures between within-project model and universal models built using rank trans-
formations. We reject the null hypothesis H022 for all measures except precision and
g-measure. The results show that the universal model and the within-project model have
similar precision, recall, false positive rate, g-measure, and MCC. The differences in
these five performance measures are neither significant (i.e., p-value is greater than 0.05)
nor observable (i.e., the absolute value of Cliff’s δ is less than 0.147). There is observable
small (i.e., the absolute value of Cliff’s δ is greater than 0.147, but less than 0.330) differ-
ence in F-measure and AUC value. The universal model has lower F-measure but higher
AUC value than within-project model. F-measure is computed based on the confusion
matrix (see Section 3.7) that is obtained using a cut-off value. On the other hand, calcu-
lating AUC does not require a cut-off value. The possible cause of lower F-measure but

Table 8 The results for Wilcoxon rank sum tests and average values of the seven performance measures of
within-project models and universal models

Measures Within-project models Universal models p-value Cliff’s δ

prec 0.525 0.518 0.47 0.047

pd 0.580 0.570 6.60e-03* 0.031

fpr 0.359 0.365 0.04* −0.016

F-measure 0.534 0.474 < 2.2e-16* 0.291

g-measure 0.521 0.534 0.19 −0.054

MCC 0.214 0.184 1.32e-03* 0.113

AUC 0.615 0.655 < 2.2e-16* −0.219

Bold font indicates a better performance

*Denotes statistical significance
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Table 9 The descriptive statistics of the five external projects used in this study

Project TLOC TNC # Classes # Defects Percentage of defects

Eclipse 224, 055 45, 482 997 206 20.7 %

Equinox 39, 534 3, 691 324 129 39.8 %

Lucene 73, 184 4, 329 691 64 9.3 %

Mylyn 156, 102 20, 451 1,862 245 13.2 %

PDE 146, 952 20, 228 1,497 209 14.0 %

higher AUC value of the universal model is that different cut-off values may be needed
for different projects when applying the universal model. Understanding how to choose
the best cut-off values might help improve the F-measure of the universal model.

Moreover, the universal models yield similar percentage (i.e., 3.6 %) of successful
predictions (see RQ1) as Zimmermann et al. (2009) who report a 3.4 % success rate. If
using loose criteria, the universal model achieves 13 % of successful predictions, much
higher than He et al. (2012) who report 0.32 % of successful predictions. The universal
model achieves up to 48 % (i.e., 13 % against 27 %) of the successful predictions by
within-project model. We conclude that our approach for building a universal model is
promising.

RQ3:What is the performance of the universal defect prediction model on external
projects?

Motivation In RQ2, we successfully build a universal model for a large set of projects.
The universal model slightly outperforms within-project models in terms of recall and AUC.
Although our experiments involve a large number of projects from various contexts, the
projects are selected from only two hosts: SourceForge and GoogleCode. It is still unclear if
the universal model is generalizable, i.e., whether it works well for external projects that are
not managed on the aforementioned two hosts. This research question aims to investigate
the capability of applying the universal model to predict defects for external projects that
are not hosted on SourceForge or GoogleCode.

Approach To address the question, we choose to use the publicly available dataset4 that
was collected by D’Ambros et al. (2010). The dataset contains four Eclipse projects (i.e.,
Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, and Mylyn), and one Apache
project (i.e., Lucene). We present the descriptive statistics of the five external projects in
Table 9.

We calculate the six context factors of the five aforementioned projects, and apply related
ranking functions to convert their raw metric values to one of the ten levels. We predict
defects on each project using the universal model which is learnt from 1,385 SourceForge

4http://bug.inf.usi.ch/download.php

http://bug.inf.usi.ch/download.php
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and GoogleCode projects. The seven performance measures of within-project models are
obtained via 10-fold cross validation for each project.

Findings Table 10 presents the average values of the seven performance measures of the
universal model and within-project models, respectively. Overall, there are clear differences
in the performance (all measures except AUC value) of the universal model and within-
project models. In particular, the universal model yields lower precision, larger false positive
rate, but higher recall than within-project models. However, these performance measures
depend on the cut-off value that is used to determine if an entity is defective or not (see
Section 3.7). Such performance measures can be significantly changed by altering the cut-
off value. The AUC value is independent of the cut-off value and is preferred for cross-
project defect prediction (Rahman et al. 2012). As the universal model achieves similar
AUC values to within-project models on the five subject projects, we conclude that the
universal model is as effective as within-project defect prediction models for the five subject
projects. However, various cut-off values may be needed to yield high precision or low false
positive rate, when applying the universal model on different projects. We present further
discussions on dealing with high false positive rate as follows.

Discussions on False Positive Rate In practice, high false positive is unacceptable, e.g.,
false positive rate is greater than 0.64 (Turhan et al. 2009). As shown in Table 10, the
universal model experiences high false positive rates in three projects (i.e., Eclipse, Lucene,
and PDE). In RQ2, we observe that the universal model exhibits similar false positive rate
to within-project defect prediction models in general. Hence, we conjecture that the high
false positive rate in external projects is due to the different percentages of defects in the
training set (e.g., the median percentage of defects is 40 %) and in the five external projects
(e.g., the median percentage of defects is 14 %). Nevertheless, it is of significant interest to
seek insights on how to determine cut-off values to reduce false positive rate.

Table 10 The performance measures for within-project model and the universal model

Measures Eclipse Equinox Lucene Mylyn PDE Type

prec 0.323 0.621 0.197 0.252 0.220 within-project

0.222 0.607 0.128 0.168 0.155 universal

pd 0.782 0.775 0.531 0.473 0.732 within-project

0.937 0.899 0.922 0.767 0.914 universal

fpr 0.427 0.313 0.222 0.213 0.422 within-project

0.853 0.385 0.643 0.578 0.806 universal

F-measure 0.457 0.690 0.287 0.329 0.338 within-project

0.359 0.725 0.224 0.275 0.266 universal

g-measure 0.661 0.728 0.631 0.591 0.646 within-project

0.254 0.731 0.515 0.545 0.320 universal

MCC 0.287 0.453 0.207 0.204 0.216 within-project

0.101 0.512 0.172 0.131 0.098 universal

AUC 0.764 0.804 0.727 0.677 0.700 within-project

0.766 0.821 0.750 0.664 0.704 universal

Bold font indicates a better performance
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1) Effort-aware estimation of the cut-off value. It is time consuming to examine all entities
that are predicted as defective. If a development team has limited resources or a tight
schedule, it is more realistic to inspect only the top X % of entities that are predicted
as defective. To this end, we choose the minimum predicted probability among the top
X % of entities as the cut-off value for each project. We recalculate the performance
measures, and present the detailed results in Table 11. We observe that the median false
positive is reduced to 0.053, if considering only the top 10 % of entities as defective.
When considering only the top 20 % and 30 % of entities as defective, the median
false positive rate becomes 0.137 and 0.230, respectively. As cut-off values change, the
other performance measures are also updated. For instance, the median recall becomes
0.270, 0.444, and 0.578, respectively, if considering only the top 10 %, 20 %, and 30 %
of entities as defective. The AUC values remain the same when altering cut-off values.
Therefore, we conclude that high false positive rate can be tamed by considering only
the top 10 %, 20 %, or 30 % of entities that are predicted as defective by the universal
model.

Table 11 The performance measures for the universal model on external projects with cut-off values deter-
mined by the minimum predicted probability by the universal model among the top 10 %, 20 %, and 30 % of
defective entities

Top % Measure Eclipse Equinox Lucene Mylyn PDE Median Average

10 % Cut-off 0.968 0.950 0.948 0.942 0.964 0.950 0.954

prec 0.722 0.844 0.309 0.404 0.331 0.404 0.522

pd 0.316 0.209 0.328 0.302 0.196 0.302 0.270

fpr 0.032 0.026 0.075 0.067 0.064 0.064 0.053

F-measure 0.439 0.335 0.318 0.346 0.246 0.335 0.337

g-measure 0.476 0.345 0.484 0.456 0.324 0.456 0.417

MCC 0.401 0.301 0.246 0.266 0.166 0.266 0.276

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

20 % Cut-off 0.958 0.912 0.905 0.903 0.946 0.912 0.925

prec 0.538 0.746 0.234 0.276 0.312 0.312 0.421

pd 0.510 0.364 0.500 0.412 0.435 0.435 0.444

fpr 0.114 0.082 0.167 0.164 0.156 0.156 0.137

F-measure 0.524 0.490 0.318 0.331 0.363 0.363 0.405

g-measure 0.647 0.522 0.625 0.552 0.574 0.574 0.584

MCC 0.404 0.349 0.242 0.211 0.244 0.244 0.290

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

30 % Cut-off 0.944 0.879 0.825 0.844 0.924 0.879 0.883

prec 0.444 0.680 0.198 0.225 0.274 0.274 0.364

pd 0.641 0.512 0.641 0.510 0.584 0.584 0.578

fpr 0.209 0.159 0.265 0.267 0.252 0.252 0.230

F-measure 0.525 0.584 0.303 0.312 0.373 0.373 0.419

g-measure 0.708 0.636 0.685 0.602 0.656 0.656 0.657

MCC 0.383 0.377 0.238 0.180 0.252 0.252 0.286

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741
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2) Other insights on selecting the cut-off value. Inspired by transfer learning (Pan and Yang
2010), we suppose that appropriate cut-off values may be learnt from target projects.
Intuitively, we conjecture that the appropriate cut-off values might depend on the per-
centage of defective entities in target projects. Alternatively, minimizing the total error
rates (i.e., FP+FN) may help reduce the false positive rate while maintain the recall.
Therefore, we examine if it is feasible to reduce false positive rate by inferring the
cut-off value based on: 1) the percentage of defects in the target project; and 2) the
minimized total error rates (i.e., FP+FN). Table 12 shows the detailed results of the two
methods. In particular, using the percentage of defects in the target project results in
median false positive rate as 0.323 along with 0.727 of recall. Minimizing error rates
yields median false positive rate as 0.255 along with 0.609 of recall. In both cases, the
performances are similar as the work by Turhan et al. (2009) that successfully reduces
high false positive rate to 0.33 along with 0.68 of recall by filtering the training set.

However, it is impractical to obtain the defectiveness of all entities in the target project.
Otherwise, a within-project defect prediction model can be constructed. Therefore, it is nec-
essary to investigate how many entities are required to estimate cut-off values. As using less
entities may yield unstable cut-off values, we average the cut-off values determined by the
aforementioned two methods as the final cut-off values. We perform an exploratory exper-
iment by randomly sampling 10, 20, and 30 entities from each project. We further repeat
the experiment 100 times for each project, and report the average performance measures
in Table 13. In general, we can observe that increasing the number of randomly sampled
entities improves the performance of the universal model in terms of five measures (i.e.,
precision, false positive rate, F-measure, g-measure, and MCC). When randomly sampling
10 entities, the universal model achieves the median false positive as 0.344 and the median
recall as 0.723. Apart from the work by Turhan et al. (2009) that customizes the prediction

Table 12 The performance measures for the universal model on external projects with cut-off values
obtained by using ratio of defects or minimizing the error rates on the entire set of entities

Measure Eclipse Equinox Lucene Mylyn PDE Median Average

Percentage Cut-off 0.793 0.602 0.907 0.868 0.860 0.860 0.806

of defects prec 0.265 0.625 0.235 0.241 0.219 0.241 0.317

pd 0.879 0.814 0.500 0.482 0.727 0.727 0.680

fpr 0.635 0.323 0.166 0.230 0.420 0.323 0.355

F-measure 0.407 0.707 0.320 0.321 0.337 0.337 0.418

g-measure 0.516 0.739 0.625 0.593 0.645 0.625 0.624

MCC 0.213 0.481 0.244 0.193 0.214 0.214 0.269

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

Minimized Cut-off 0.936 0.519 0.851 0.893 0.923 0.893 0.824

error rates prec 0.415 0.616 0.210 0.270 0.274 0.274 0.357

pd 0.699 0.884 0.609 0.449 0.593 0.609 0.647

fpr 0.257 0.364 0.234 0.184 0.255 0.255 0.259

F-measure 0.521 0.726 0.312 0.337 0.375 0.375 0.454

g-measure 0.721 0.740 0.679 0.579 0.661 0.679 0.676

MCC 0.376 0.514 0.245 0.217 0.256 0.256 0.322

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741
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Table 13 The performance measures for the universal model on external projects with cut-off values learnt
from both the ratio of defects and the minimized error rates, using a subset of randomly sampled entities

# Entities Measure Eclipse Equinox Lucene Mylyn PDE Median Average

10 prec 0.298 0.618 0.195 0.220 0.221 0.221 0.310

pd 0.832 0.815 0.644 0.575 0.723 0.723 0.718

fpr 0.537 0.344 0.298 0.342 0.445 0.344 0.393

F-measure 0.434 0.696 0.291 0.307 0.332 0.332 0.412

g-measure 0.573 0.712 0.647 0.585 0.596 0.596 0.623

MCC 0.249 0.472 0.225 0.174 0.202 0.225 0.264

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

20 prec 0.308 0.621 0.212 0.235 0.231 0.235 0.321

pd 0.816 0.824 0.593 0.545 0.687 0.687 0.693

fpr 0.498 0.338 0.259 0.310 0.402 0.338 0.361

F-measure 0.442 0.705 0.297 0.310 0.336 0.336 0.418

g-measure 0.608 0.727 0.629 0.578 0.607 0.608 0.630

MCC 0.265 0.483 0.228 0.182 0.210 0.228 0.274

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

30 prec 0.310 0.620 0.226 0.238 0.231 0.238 0.325

pd 0.814 0.836 0.559 0.529 0.690 0.690 0.686

fpr 0.488 0.344 0.231 0.290 0.399 0.344 0.350

F-measure 0.445 0.709 0.299 0.313 0.336 0.336 0.420

g-measure 0.618 0.730 0.615 0.583 0.614 0.615 0.632

MCC 0.270 0.488 0.232 0.185 0.212 0.232 0.277

AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

model (i.e., filtering the training set) based on the target project, the universal model is not
altered for a particular target project. Software organizations do not need to provide their
data for customizing prediction models, but tune cut-off values for their goals. The universal
model can help address the concern on sharing data or model across companies (Peters et al.
2013a). Although inspection on the defectiveness in the target project is needed, the propor-
tion of required entities is relatively low, such as 1 % (10/997) for Eclipse, 3 % (10/324) of
Equinox, 1 % (10/691) for Lucene, 1 % (10/1862) for Mylyn, and 1 % (10/1497) for PDE.

As a summary, the results show that our universal model can provide comparable
performances to within-project defect prediction models for the five subject projects. Con-
sidering the five projects might conduct different development strategies than SourceForge
or GoogleCode projects, there is a high chance to apply the universal model on more
external projects with acceptable predictive power.

RQ4: Do context factors affect the performance of the universal defect prediction
model?
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Motivation In RQ3, we verified the capability of the universal model to predict defects
for five external projects. The universal model can interpret general relationships between
metrics and defect proneness, regardless of the place where projects are hosted. However,
the five external projects have limited diversity. For example, they are all written in Java.
The generalizability of the universal model is not deeply examined in RQ3. This threatens
the applicability of the universal model to projects from different contexts (Nagappan et al.
2013). Hence, it is essential to investigate whether the performance of the universal model
varies across projects with different context factors.

Approach To address this question, we compare the performance of the universal model
across projects with different context factors (see Section 3.2). To train a universal model
with the largest number of projects, we apply leave-one-out cross validation (e.g., Zhou and
Leung 2007). For a particular project, we use all other projects to build a universal model
and apply the universal model on the project. We repeat this step for every project and obtain
the predictive power of the universal model on each project. As the findings of RQ2 and
RQ3 suggest that different projects may prefer different cut-off values, we choose to only
compare AUC values to avoid the impact of cut-off values on our observations.

We divide the entire set of projects along each context factor, respectively. There are three
types of context factors: categorical factor (i.e., programming language), boolean factor
(i.e., issue tracking), and numerical factors (e.g., the total lines of code). For categorical
factor, we obtain a group per category. We get two groups for boolean factor. For numerical
factors, we compute quantiles of the numbers and then derive four groups. All groups are
listed in Table 14. The details on these groups are described in Section 3.3. Please note
that these groups are created solely based on context factors, other than the distribtuion of
software metrics.

For each pair of groups on a particular context factor, we test the following null
hypothesis:

H04: there is no difference in the performance of the universal model between projects of
the group-pair.

Hypothesis H04 is two-tailed, since it investigates if the universal model yields better or
worse performance in one project group than the other project group of a group-pair. As the
size of two groups may be different, we apply two-tailed and unpaired Wilcoxon rank sum
test at 95 % confidence level to examine the hypothesis.

Table 14 Groups of projects split along different context factors

Context factor Groups

Programming language (PL) Gc , Gc++, Gc#, Gjava , and Gpascal

Issue Tracking (IT) GuseIT and GnoIT

Total Lines of Code (TLOC) GleastT LOC , GlessT LOC , GmoreT LOC , and GmostT LOC

Total Number of Files (TNF) GleastT NF , GlessT NF , GmoreT NF , and GmostT NF

Total Number of Commits (TNC) GleastT NC , GlessT NC , GmoreT NC , and GmostT NC

Total Number of Developers (TND) GleastT ND , GlessT ND , GmoreT ND , and GmostT ND
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Findings For each context factor, we present our findings on the generalizability of the
universal model.

1) Programming language (PL): The average AUC values for groups Gc, Gc++, Gc#,
Gjava , and Gpascal are 0.64, 0.65, 0.61, 0.64, and 0.64, respectively. There are 5
groups of projects divided by programming languages, and the number of pairwise
comparisons is 10. Hence, the threshold p-value is 5.00e-03 after Bonferroni correc-
tion. The p-values of Wilcoxon rank sum test are always greater than 5.00e-03. We
do not find enough evidence to support that there are significant difference across
projects with different programming languages. In other word, the universal model
yields similar performance for projects written in any of the five studied program-
ming languages. There exist common relationships between software metrics and
defect proneness, no matter whether projects are developed using C, C++, C#, Java,
or Pascal. Future work is needed to understand such common relationships more
deeply.

2) Issue tracking (IT): The average AUC values for groups GuseIT and GnoIT are 0.64
and 0.65, respectively. There is only one pair of groups of projects divided by the usage
of issue tracking systems, and therefore the threshold p-value is 0.05. The p-value
of Wilcoxon rank sum test is 0.14, indicating that there is no significant difference
between projects with or without usage of issue tracking systems.

3) Total lines of code (TLOC): The average AUC values for groups GleastT LOC ,
GlessT LOC , GmoreT LOC , and GmostT LOC are 0.63, 0.65, 0.65, and 0.64, respectively.
There are 4 groups of projects divided by the total lines of code, and the number of
pairwise comparisons is 6. Hence, the threshold p-value is 8.33e-03 after Bonferroni
correction. The p-values of Wilcoxon rank sum test are always greater than 8.33e-
03. The universal model can reveal general relationships between software metrics and
defect proneness for small, medium, or large projects.

4) Total number of files (TNF): The average AUC values for groups GleastT NF , GlessT NF ,
GmoreT NF , and GmostT NF are 0.62, 0.65, 0.64, and 0.64, respectively. Similarly, the
threshold p-value is 8.33e-03 after Bonferroni correction. The p-values of Wilcoxon
rank sum test are always greater than 8.33e-03. We conclude that no matter how many
number of files a project has, the universal model can predict defect proneness without
significant difference in its performance.

5) Total number of commits (TNC): The average AUC values for groups GleastT NC ,
GlessT NC , GmoreT NC , and GmostT NC are 0.64, 0.65, 0.65, and 0.63, respectively. There
are 4 groups and 6 pair-wise comparisons. We correct the threshold p-value to 8.33e-
03. The p-values of Wilcoxon rank sum test are always greater than 8.33e-03. There
is no significant difference in the performance of the universal model across projects
with different total number of commits.

6) Total number of developers (TND): The average AUC values for groups GleastT ND ,
GlessT ND , GmoreT ND , and GmostT ND are 0.63, 0.65, 0.64, and 0.64, respectively.
There are 4 groups and 6 pair-wise comparisons. We correct the threshold p-value to
8.33e-03. The p-values of Wilcoxon rank sum test are always greater than 8.33e-03.
The performance of the universal model does not change significantly across projects
with different number of developers.

As a summary, we can not find enough evidence to support the hypothesis that the uni-
versal model performs significantly different for projects with different context factors.
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Hence, we conclude that the universal model is applicable to projects with different context
factors.

RQ5:What predictors should be included in the universal defect prediction model?

Motivation The purpose of RQ3 and RQ4 is to show that our universal model is applicable
to external projects, and is context-insensitive, respectively. Therefore in earlier experi-
ments, we use all metrics together for building Naive Bayes models. However, many of
these metrics may be strongly correlated. To build an interpretable model, we need to select
a subset of these metrics that are not strongly correlated. In within-project settings, the
importance of various metrics has been examined in depth (e.g., Shihab et al. 2010). For the
universal model, we aim to find an uncorrelated interpretable set of predictors that are asso-
ciated with the chance that a file will have a fix in the future. We do this to understand the
general relationship between predictors and defect proneness for the entire set of projects.

Approach To make the model more interpretable, we chose to use logistic regression to
build the universal model. Our choice was motivated by the ease with which logistic regres-
sion coefficients can be interpreted (Zimmermann et al. 2012). For instance, the sign of a
coefficient presents the direction of the impact, i.e., positive or negative. The magnitude
indicates the strength of the impact, i.e., how much the probability of defect proneness is
affected by a one-unit change in the corresponding predictor. Further details on the con-
vention from coefficients to exact probabilities can be found in the book by Hosmer et al.
(2013).

Because predictors may be highly correlated, we first need to select an uncorrelated
subset of predictors. We use the following rules to select predictors:

1) Select well-known simplest predictors that are uncorrelated. We choose lines of code
(LOC) as code metrics and number of revisions (NREV) as process metrics that have
been often associated with future fixes.

2) We analyze the correlation among context factors, and find that context factors are
strongly associated. Hence, we choose the total number of files (TNF) as a context mea-
sure of project size and the total number of developers (TND) as a context measure of
project activity. Using the first, second, and third quartiles, we convert the two context
measures to four levels, respectively. We treat them as categorical variables (same as
programming language) in the model because the odds of future fixes may not increase
by the same amount as we go from one level (defined by quartiles) to the next.

3) We perform hierarchical clustering for all predictors using distance defined as 1 −
‖cor(p1, p2)‖2, where p1 and p2 are two predictors. We use R function hclust5 to get
clusters of predictors as shown in Fig. 6. We then apply R function cutree6 to get eight
distinct clusters.

4) For each cluster not containing the aforementioned predictors, we choose the first
predictor that uses the simplest aggregation (avg).

5http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
6http://stat.ethz.ch/R-manual/R-patched/library/stats/html/cutree.html

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/cutree.html
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Fig. 6 Cluster dendrogram of predictors

We then use these selected predictors to build the universal model. The glm7 method in
R is use to build the logistic regression model. We then inspect the coefficients for each
metric to interpret the universal model.

Findings There are eight code and process metrics selected, i.e., lines of code (LOC),
average number of immediate subclasses (avgNOC), average number of instance variables
(avgNIV), average number of protected methods (avgNPM), average number of private
methods (avgNPRM), average number of input data (avgFANIN), the number of revisions
(NREV), and average added lines of code (avgADDEDLOC). The correlation matrix of the
selected eight predictors in Table 15 does not show any correlations above 0.5.

Table 16 presents the coefficient for each predictor and the amount of deviance that each
predictor explains. The final model explains 7 % of deviance of the probability of fixes for
the entire set of projects. The null deviance is 177,497 on 136,160 degrees of freedom, while
residual deviance is 165,003 on 136,142 degrees of freedom. It is important to note that each
predictor should be considered as a representative of all tightly correlated predictors within
the cluster. In particular, avgNIV represents a very large number of metrics, including CBO,
LCOM, WMC, NPBM, NIM, and NOM. Also, avgNPRM is not significantly different from
zero, suggesting that all predictors in the small cluster are not helping model defect prone-
ness. Furthermore, coefficients for avgADDEDLOC and avgNOC do not explain as much
variance as the remaining predictors and have coefficient values that are barely significantly
different from zero. All of these three predictors should be removed from the final model
used for prediction in practice.

In models where each predictor is measured in different units, it is difficult to compare
coefficient magnitudes among predictors. In our study, coefficient magnitudes of code and
process metrics can be compared, as they have exactly the same units after the rank trans-
formation. In the resulting model, The most important code metric is lines of code (LOC),
followed by average number of input data (avgFANIN) and average number of private meth-
ods (avgNPM). The three code metrics can explain 4,876 of deviance for the probability of

7http://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html
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Table 15 The Pearson correlation among selected code and process metrics

avgNOC avgNIV avgNPM avgNPRM avgFANIN NREV avgADDEDLOC

LOC −0.08* 0.18* 0.03* 0.15* 0.49* 0.32* 0.27*

avgNOC – 0.02* 0.00 0.01* −0.02* 0.03* 0.02*

avgNIV – – 0.20* 0.27* 0.07* 0.09* 0.04*

avgNPM – – – 0.05* −0.02* 0.04* −0.05*

avgNPRM – – – – 0.05* 0.08* 0.06*

avgFANIN – – – – – 0.18* 0.12*

NREV – – – – – – 0.28*

*Denotes statistical significance

defect proneness for the entire set of projects. The most important process metrics is the
number of revisions (NREV), which can explain 1,493.7 of deviance.

Among context factors, the most important predictor is the total number of files, fol-
lowed by the programming languages and the total number of developers. The three context
factors explain 6,027.4 of deviance in total. The R tool treats the alphabetically earliest cate-
gory of each categorical factor as the reference level, and folds it into the intercept term. The

Table 16 The coefficents of each predictor in the logistic regression model. The numerical intercept is -2.68.
For context factors PL, TNF and TND, “C”, “leastT NF ” and “leastT ND” are folded into the intercept
term, respectively

Type Metric Name Coefficients p-value Deviance p-value of

explained χ2-test

(Intercept) −2.68 < 2.2e-16*

Context Factors TNF lessT NF −0.24 < 2.2e-16* 4969.5 < 2.2e-16*

moreT NF −0.44 < 2.2e-16*

mostT NF −1.33 < 2.2e-16*

TND lessT ND 0.05 9.03e-03* 508.9 < 2.2e-16*

moreT ND 0.15 1.60e-15*

mostT ND 0.36 < 2.2e-16*

PL C++ −0.28 < 2.2e-16* 549.0 < 2.2e-16*

C# 0.07 0.01*

Java −0.29 < 2.2e-16*

Pascal −0.91 < 2.2e-16*

Code Metrics LOC 0.10 < 2.2e-16* 4555.8 < 2e-16*

avgNOC 0.06 1.23e-03* 11.4 7.53e-04*

avgNIV −0.04 < 2.2e-16* 65.7 5.15e-16*

avgNPM 0.10 < 2.2e-16* 89.5 < 2.2e-16*

avgNPRM −0.01 0.29 7.7 5.40e-03*

avgFANIN 0.04 < 2.2e-16* 230.7 < 2.2e-16*

Process Metrics NREV 0.10 < 2.2e-16* 1493.7 < 2.2e-16*

avgADDEDLOC 0.01 1.35e-04* 12.0 5.27e-04*

*Denotes statistical significance
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intercept represents the base probability of defect proneness when all categorical factors are
at reference levels. In our case, “C” programming language, “leastTNF”, and “leastTND”
are the reference levels, therefore not shown in Table 16. There are differences among lan-
guages with “C” code having more fixes than “Java”, “C++”, and “Pascal” code. Projects
with more developers involved (relatively to other projects in the cluster) are also more
likely to contain a fix. But projects with more files (relatively to other projects in the cluster)
are less likely to contain a fix. Future research is needed to fully understand the mechanisms
and causes that affect both the predictor values and the chances of future fixes.

The final universal model can be obtained by the following equation:

P = 1 − 1

1 + exp(β0+β1∗m1+...+βk∗mk)
(9)

where P is the probability of a file to be defective, k is the total number of predictors (in
our case k=11, including three context factors and eight metrics), β0 is the intercept, and βi

is the coefficient of metric mi (i = 1, . . . , k). For instance, if m1 is metric LOC, then β1
is 0.10. This model can be implemented in an integrated development environment (IDE)
for instant evaluation of defect proneness, and be used to compare defect proneness across
projects.

6 Threats to Validity

We now discuss the threats to validity of our study following common guidelines provided
by Yin (2002).

Threats to Conclusion Validity concern the relation between the treatment and the out-
come. One conclusion validity threat comes from data cleaning methods. For instance, we
remove the projects with negligible fix-inducing or non-fixing commits (both using 75 %
quantile as the threshold). We plan to investigate the impact of different thresholds in future
study. Another threat is due to the extraction of defect data. We mine defect data solely
based on commit messages, since 42 % of our subject projects do not use issue tracking
systems. To deal with this threat, we use a large set of subject projects (Rahman et al. 2013)
and apply Naive Bayes as the modelling technique that have strong noise resistance with
defect data (Rahman et al. 2013).

Threats to Internal Validity concern our selection of subject projects and analysis meth-
ods. SourceForge and GoogleCode are considered to have a large proportion of not well
managed projects. We believe that our data cleaning step increases the data quality. The
other threat to internal validity is the possible bias in the defect data. We plan to include
well managed projects (e.g., Linux projects, Eclipse projects, and Apache projects) in future
study.
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Threats to External Validity concern the possibility to generalize our results. Although
we demonstrate the capability of the universal model on predicting defects for four Eclipse
projects and one Apache project, it is unclear if the universal model also performs well for
commercial projects. Future validation on commercial projects is welcome.

Threats to Reliability Validity concern the possibility of replicating this study. The
subject projects are publicly available from SourceForge and GoogleCode. We attempt to
provide all necessary details to replicate our study.8

7 Conclusion

In this study, we attempt to build a universal defect prediction model using a large set
of projects from various contexts. We first propose a context-aware rank transformation
method to pre-process the predictors. This step makes predictors (i.e., software metrics)
from the entire set of projects have the same scales. We compare our rank transformation
with widely used log transformation, and find that the rank transformation performs as good
as log transformation in within-project settings. We then build a universal model using the
rank-transformed metrics. For building a universal model, we add different metric sets (i.e.,
code metrics, process metrics, and context factors) step by step. The studied context fac-
tors include programming languages, presence of issue tracking systems, the total lines of
code, the total number of files, the total number of commits, and the total number of devel-
opers. The results show that the context factors further increase the predictive power of the
universal model besides code and process metrics.

To evaluate the performance of the universal defect prediction model, we compare with
within-project models. We find that the universal model has higher AUC values but lower F-
measures than within-project models, suggesting that different cut-off values may be needed
for different projects. We also study the generalizability of the universal model. First, we
apply the universal model that are built using projects from SourceForge and GoogleCode
on five external projects from Eclipse and Apache repositories. We observe that the AUC
values of the predictions by the universal model are very close to within-project models
built from each project. Moreover, we provide several insights on how to select appropriate
cut-off values to control false positive rate. For instance, the median false positive rate is
reduced to 0.053, if considering only the top 10 % of entities as defective.

We further investigate if the universal model performs differently for projects with dif-
ferent contexts, and find that there is no statistically significant difference for all context
factors. Based on our findings, we conclude that our universal model is context-insensitive
and applicable to external projects. Finally, we investigate the importance of different met-
rics using logistic regression model and present coefficients of each metric in the universal
model. The universal model not only relieves the need for training defect prediction models
for different projects, but also helps interpret basic relationships between software metrics
and defects.

In future, we plan to evaluate the feasibility of the universal model for commercial
projects. We will also evaluate the possibility to embed the universal model as a plugin
for a version control system or an integrated development environment (IDE) to provide
developers with an immediate feedback on risk.

8http://fengzhang.bitbucket.org/replications/universalModel.html

http://fengzhang.bitbucket.org/replications/universalModel.html
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