
Empir Software Eng (2017) 22:3186–3218
DOI 10.1007/s10664-017-9516-2

Data Transformation in Cross-project Defect Prediction

Feng Zhang1 · Iman Keivanloo2 ·Ying Zou2

Published online: 14 April 2017
© Springer Science+Business Media New York 2017

Abstract Software metrics rarely follow a normal distribution. Therefore, software met-
rics are usually transformed prior to building a defect prediction model. To the best of
our knowledge, the impact that the transformation has on cross-project defect prediction
models has not been thoroughly explored. A cross-project model is built from one project
and applied on another project. In this study, we investigate if cross-project defect predic-
tion is affected by applying different transformations (i.e., log and rank transformations, as
well as the Box-Cox transformation). The Box-Cox transformation subsumes log and other
power transformations (e.g., square root), but has not been studied in the defect prediction
literature. We propose an approach, namely Multiple Transformations (MT), to utilize mul-
tiple transformations for cross-project defect prediction. We further propose an enhanced
approach MT+ to use the parameter of the Box-Cox transformation to determine the most
appropriate training project for each target project. Our experiments are conducted upon
three publicly available data sets (i.e., AEEEM, ReLink, and PROMISE). Comparing to the
random forest model built solely using the log transformation, our MT+ approach improves

Communicated by: Tim Menzies

Electronic supplementary material The online version of this article
(doi:10.1007/s10664-017-9516-2) contains supplementary material,
which is available to authorized users.

� Feng Zhang
feng@cs.queensu.ca

Iman Keivanloo
iman.keivanloo@ieee.org

Ying Zou
ying.zou@queensu.ca

1 School of Computing, Queen’s University, Kingston, Ontario, Canada

2 Department of Electrical and Computer Engineering, Queen’s University, Kingston,
Ontario, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9516-2&domain=pdf
http://orcid.org/0000-0001-9805-395X
http://dx.doi.org/10.1007/s10664-017-9516-2
mailto:feng@cs.queensu.ca
mailto:iman.keivanloo@ieee.org
mailto:ying.zou@queensu.ca

Empir Software Eng (2017) 22:3186–3218 3187

the F-measure by 7, 59 and 43% for the three data sets, respectively. As a summary, our
major contributions are three-fold: 1) conduct an empirical study on the impact that data
transformation has on cross-project defect prediction models; 2) propose an approach to uti-
lize the various information retained by applying different transformation methods; and 3)
propose an unsupervised approach to select the most appropriate training project for each
target project.

Keywords Defect prediction · Data transformation · Software metrics · Box-cox

1 Introduction

A defect is an error that can cause a software system to behave in an unexpected way or
produce incorrect results. In the last decade, defect prediction has attracted great attention
from both researchers and practitioners. Software metrics (e.g., lines of code and the number
of method calls) constitute the major part of the input data used to build a defect predic-
tion model. Earlier studies (e.g., Concas et al. 2007; Louridas et al. 2008; Zhang 2009)
report that software metrics rarely follow a normal distribution, but a power-law distribution,
which threats the fitness of prediction models to provide an accurate prediction (Cohen et al.
2003).

In the literature of defect prediction, researchers widely apply log and rank transfor-
mations to improve the normality of software metrics (e.g., Menzies et al. 2007; Jiang
et al. 2008; Cruz and Ochimizu 2009; Song et al. 2011; Zhang et al. 2014). The log trans-
formation is basically a mathematical operation that replaces the original metric values
by their logarithm, thus suits log-normal data (i.e., normally distributed data after the log
transformation). The rank transformation substitutes the original metric values with their
ranks.

Despite of the success to improve the normality of software metrics, the aforementioned
transformations fail to constantly improve the performance of defect prediction models in
a within-project setting (Jiang et al. 2008). A within-project model is built and applied
within the same project. However, to the best of our knowledge, the impact that such trans-
formations have on the performance of defect prediction models has not been thoroughly
investigated in a cross-project setting. A cross-project model is built using the training data
from one project and applied on the target data from another project.

Cross-project prediction is needed when the target project (e.g., a small or new project)
does not have sufficient historical data to build a prediction model (Nagappan et al.
2006). Cross-project prediction experiences a great challenge to deal with the heterogene-
ity between the training and target projects, since software metrics among different projects
often exhibit varied distributions (Zhang et al. 2013). Transformations, if learnt from both
the training and target projects, have the potential to mitigate the heterogeneity between the
training and target projects. For instance, our previous work (Zhang et al. 2014) successfully
implements the context-aware rank transformation towards generalizing defect prediction
models. In addition, Ma et al. (2012) propose to transform the training project based on the
statistical characteristics learnt from the target project. Nam et al. (2013) apply transfer com-
ponent analysis (TCA) approach to transform both the training and target projects. Although
both approaches on average significantly improve the performance of cross-project pre-
dictions, it is unclear how to choose an appropriate transformation for a particular pair of
training and target projects. Jiang et al. (2008) even show that the benefit of transformations
varies with modelling techniques on the same dataset.

3188 Empir Software Eng (2017) 22:3186–3218

Nonetheless, different transformations retain the information of the original data from
various perspectives, especially in the cross-project setting. Therefore, in this study, we set
out an exploratory study to investigate if using different transformations that retain distinct
characteristics of software metrics is beneficial to cross-project defect prediction.

We perform experiments using three publicly available data sets, i.e., AEEEM
(D’Ambros et al. 2010), ReLink (Wu et al. 2011), and PROMISE (Jureczko and Madeyski
2010). First, we examine if transformations have the same ability to improve the normality
of software metrics. Besides log and rank transformations, we study the Box-Cox trans-
formation (Box and Cox 1964) that represents a family of power transformations (e.g., the
log transformation) but has not been investigated in existing studies on defect prediction.
Second, we study if different transformations cause distinct predictions on the same file in
the cross-project setting. We propose an approach, namely Multiple Transformations (MT),
to integrate predictions by multiple models, with each model built using a single transfor-
mation. The weight of each model is determined by its accuracy in predicting defective
instances on the training data. We further enhance our approach (MT+) by automatically
selecting the most appropriate training project for each target project based on the parameter
of the Box-Cox transformation. Accordingly, we study four research questions:

RQ1. Are log, Box-Cox, and rank transformations equally effective in increasing the
normality of software metrics?

All three transformations can significantly improve the normality of software
metrics (i.e., reduce both the skewness and kurtosis). The three transformations have
similar ability to improve the normality of software metrics, with small or negligible
difference indicated by Cliff’s δ.

RQ2. Do different transformations result in distinct predictions in cross-project defect
prediction models?

In general, models built with each of the three transformations do not exhibit
significantly difference in terms of the six studied performance measures (i.e., pre-
cision, recall, false positive rate, balance, F-measure and AUC values). However,
the results of McNemar’s test indicate that the three prediction models judge differ-
ently about the defect proneness of each file. When a defective file is overlooked
by one model, it may be captured by other models.

RQ3. Can our approaches improve the performance of cross-project defect prediction
models?

The results show that our approach MT+ statistically significantly improves the
performance of cross-project defect prediction, comparing to models built with the
log transformation. On average, our MT+ approach increases F-measure of cross-
project defect prediction models built using logistic regression by 24% (i.e., from
0.34 to 0.42), 11% (i.e., from 0.54 to 0.60), and 29% (i.e., from 0.31 to 0.42) in
AEEEM, ReLink, and PROMISE datasets, respectively.

RQ4. Do our approaches work well for other classifiers?
We study the generalizability of our approaches using six other classifiers (e.g.,

Naive Bayes, and random forest), since different classifiers are reported to pre-
fer different transformations (Jiang et al. 2008). We find that our approach MT+
generally outperforms models built with the log transformation.

Our major contributions are: 1) study if data transformation impacts cross-project defect
prediction; 2) propose to utilize the various information retained through different trans-
formation methods; and 3) propose to use the parameter of the Box-Cox transformation to
select the most appropriate training project for each target project.

Empir Software Eng (2017) 22:3186–3218 3189

Negatively

skewed

Positively

skewed

Normal

Skewness

Negative

kurtosis

Positive kurtosis

Normal

Kurtosis

Fig. 1 The illustration of skewness and kurtosis in a distribution

Paper organization. Section 2 presents the three studied transformation methods.
The experimental setup is presented in Section 3. Our motivation study is described in
Section 4. Our approaches (i.e., MT and MT+) and evaluation are presented in
Sections 5 and 6, respectively. The related work is summarized in Section 7. The threats to
validity of our work are discussed in Section 8. We conclude the paper and provide insights
for future work in Section 9.

2 Background on transformation methods

In this section, we describe two common measurements of data normality, and present the
details of the three studied transformation methods.

2.1 Normality measurements

Skewness and kurtosis are two widely applied measurements of data normality. We compute
these two measurements to measure the normality of software metrics, using the R functions
skewness and kurtosis in the R1 package e1071.2

a) Skewness measures the degree of symmetry in the probability distribution of the val-
ues of a software metric. The value of skewness can be positive (indicating a long tail
to the right), negative (indicating a long tail to the left), or zero (indicating balanced
tails on both sides), as illustrated in Fig. 1a. The ideal value of skewness ranges from
−0.80 to 0.80 (Osborne 2010).

b) Kurtosis measures the “peakness” (e.g., the width of the peak) in the probability dis-
tribution of the values of a software metric. The value of kurtosis can be positive that
indicates a more acute peak, or negative that indicates a lower and wider peak. Pos-
itive and negative kurtosis are illustrated in Fig. 1b. The ideal value of kurtosis is
zero.

1https://www.r-project.org
2https://cran.r-project.org/web/packages/e1071

https://www.r-project.org
https://cran.r-project.org/web/packages/e1071

3190 Empir Software Eng (2017) 22:3186–3218

2.2 Log transformation

The log transformation is a mathematical operation that computes the logarithm (mostly the
natural logarithm) of software metrics to replace the original values. The log transformation
is widely used in building software defect prediction models (e.g., Menzies et al. 2007;
Song et al. 2011).

The log transformation can only transform numerical values that are greater than zero,
due to the limitation of the function “ln(x)”. To deal with zero values, a constant is often
added, such as “ln(x + 1)”. An alternative solution is to replace all values under 0.000001
by 0.000001. We apply the following commonly used equation:

Log(x) = ln(x + 1) (1)

where x is the value of a software metric.

2.3 Rank transformation

The rank transformation replaces the original values by their ranks. The rank transformation
is recommended to deal with heavy-tailed distributions (i.e., have high kurtosis) Bishara
and Hittner (2014) and Keren and Lewis (1993). In the literature of defect prediction, Jiang
et al. (2008) observe that the rank transformation can improve the performance of some
classifiers (e.g., Naive Bayes). Moreover, the rank transformation has been successfully
applied to mitigate the heterogeneity of software metrics across projects in the cross-project
setting (Zhang et al. 2014).

In this study, we convert the original values of each metric into ten ranks, using every
10th percentile of the corresponding metric, as defined in (2).

Rank(x) =
⎧
⎨

⎩

1 if x ∈ [0,Q1]
k if x ∈ (Qk−1,Qk], k ∈ {2, . . . , 9}
10 if x ∈ (Q9,+∞)

(2)

where Qk is the k*10% percentile of the corresponding metric in the union of the training
and target projects.

2.4 Box-Cox transformation

The Box-Cox transformation represents a family of power transformations, as defined in
(3). To the best of our knowledge, the Box-Cox transformation has not been explored in the
literature of defect prediction.

BoxCox(x, λ) =
{

xλ−1
λ

if λ �= 0
ln(x) if λ = 0

(3)

where x is the value of a metric, and λ is the only configuration parameter of the Box-Cox
transformation.

The parameter λ determines the concrete format of the Box-Cox transformation. For
example, “λ = 1.0” means no transformation, “λ = 0.5” equals to the square root transfor-
mation, “λ = 0.0” represents the log transformation, and “λ = −1.0” indicates the inverse
transformation. As such, the Box-Cox transformation is often used to transform variables
that follow a power law distribution. The Box-Cox transformation is suggested to improve
the variance homogeneity, increase the precision of estimation, and simplify models
(Shang 2014).

Empir Software Eng (2017) 22:3186–3218 3191

The parameter λ can be estimated from a sample of data points. In the context of cross-
project prediction, the parameter λ is estimated from both the training and target projects.
The details to apply the Box-Cox transformation in our study are presented as follows.

1) Shifting metric values to 1.0. As suggested by Guo (2014), we shift the minimum
value of a metric in a distribution at exactly 1.0 before applying the Box-Cox trans-
formation. This treatment can increase the accuracy of the Box-Cox transformation
(Guo 2014). We use the equation x̃ = x−min(x)+1, where x is the value of a software
metric.

2) Estimating the parameter λ. The parameter λ is estimated for each metric indepen-
dently, since different metrics rarely follow the same distribution. To ensure the same
transformation applied on both the training and target projects, as aforementioned, we
estimate the parameter λ using the values of the corresponding metric from both sets.

We estimate the parameter λ in an iterative process. First, we select a set of candidate
λ values that range from−1.0 to 1.0. Second, we iterate the λ values from−1.0 towards
1.0 with a step of 0.1. At each iteration, we compute the skewness of transformed
values. We select the λ value that leads to the minimum skewness (i.e., the absolute
skewness value is the closest to zero) of transformed values. The iterative process can
be described using the following equation:

λ̂ = argmin
λ∈L

|skewness(BoxCox(x̃, λ)
x̃∈X

)| (4)

where L is a set of candidate λ values from -1.0 to 1.0 with a step by 0.1, and X is a
vector of shifted metric values.

3) Normalizing transformed values.Normalization creates equal scales of software met-
rics, and is useful for classification algorithms (Han et al. 2012; Nam et al. 2013). In
this study, we choose the min-max method (Han et al. 2012), since it can normalize
values exactly into the range of [0, 1]. Based on the benefit of shifting the minimum
value to 1.0 (Guo 2014), we slightly modify this method using the following (5).

Normalize(̂x) = x̂ − minx̂∈U (̂x)

maxx̂∈U (̂x) − minx̂∈U (̂x)
+ 1 (5)

where x̂ is the transformed value by (3) using x̃ and λ̂, and U is a set of x̂ from the
union of the training and target projects.

3 Experimental setup

In this section, we first describe our subject projects. Then, we present classifiers to build
cross-project defect prediction models, and six performance measures used in this study.

3.1 Subject projects

In this study, we choose three publicly available datasets, such as AEEEM (D’Ambros et al.
2010), ReLink (Wu et al. 2011), and PROMISE (Jureczko and Madeyski 2010). The three
datasets have been widely used for cross-project defect prediction (e.g., Nam et al. 2013).
The diversity of the three datasets can help verify the generalizability of our approach.
Table 1 presents the summary of the three datasets.

1) AEEEM dataset was made by D’Ambros et al. (2010), and contains 61 metrics. It has
the two largest projects (i.e., Mylyn and PDE) among the three datasets. The ratio of

3192 Empir Software Eng (2017) 22:3186–3218

Table 1 Descriptive statistics of all 18 subject projects from AEEEM, ReLink, and PROMISE datasets

Dataset Projects # of Files # of LOC # of Buggy Files (%)

AEEEM (A1) Eclipse JDT Core 997 224K 206 (20.7%)

(A2) Equinox 324 40K 129 (39.8%)

(A3) Apache Lucene 691 73K 64 (9.3%)

(A4) Mylyn 1862 156K 245 (13.2%)

(A5) Eclipse PDE UI 1497 147K 209 (14.0%)

ReLink (R1) Apache HTTP Server 194 89K 98 (50.5%)

(R2) OpenIntents Safe 56 8K 22 (39.3%)

(R3) Zxing 399 27K 118 (29.6%)

PROMISE (P1) Ant v1.7 745 209K 166 (22.3%)

(P2) Camel v1.6 965 113K 188 (19.5%)

(P3) Ivy v1.4 241 59K 16 (6.6%)

(P4) Jedit v4.0 306 145K 75 (24.5%)

(P5) Log4j v1.0 135 22K 34 (25.2%)

(P6) Lucene v2.4 340 103K 203 (59.7%)

(P7) POI v3 442 129K 281 (63.6%)

(P8) Tomcat v6.0 858 301K 77 (9.0%)

(P9) Xalan v2.6 885 412K 411 (46.4%)

(P10) Xerces v1.3 453 167K 69 (15.2%)

defective files in this dataset is relatively lower than the other two datasets (i.e., 9.3%
to 39.8%).

2) ReLink dataset was collected by Wu et al. (2011), and the defect information in this
dataset was manually verified. ReLink dataset has 26 metrics. Projects in this dataset
are relatively small (e.g., project OpenIntents Safe has the least number of files). This
dataset has a moderate ratio of defective files (i.e., 29.6% to 50.5%).

3) PROMISE dataset was prepared by Jureczko and Madeyski (2010). We select the same
ten projects as in our prior study (Zhang et al. 2016). PROMISE dataset has 20 metrics.
PROMISE dataset has the most diverse characteristics of projects, such as the number
of files ranges from 135 to 965, and the ratio of defective files varies between 6.6 and
63.6%.

3.2 Classifiers for defect prediction

Each classifier has its own advantages when used to build a defect prediction model. For
instance, logistic regression is easy to interpret and is widely used (Nam et al. 2013). Naive
Bayes is robust for defect prediction using data with observable noises (Kim et al. 2011).
In this study, we choose to use logistic regression as the main classifier in RQ2 and RQ3.
We further perform the sensitive analysis on the choice of classifiers in RQ4, since not
all classifiers are sensitive to data transformations (Kuhn and Johnson 2013). For instance,
in the defect prediction literature, data transformations have been reported to have varied
impacts on the performance of different classifiers (Jiang et al. 2008; Menzies et al. 2007;
Song et al. 2011). In addition to logistic regression, we evaluate the performance of our
approaches in RQ4 using six other classifiers such as Bayes net (BN), k-nearest neighbours
(IBk), decision tree (J48), naive Bayes (NB), random forest (RF), and random tree (RT).

Empir Software Eng (2017) 22:3186–3218 3193

3.3 Performance measures

In this study, we compute six commonly used measures (i.e., precision, recall, false posi-
tive rate, balance, F-measure, and AUC value) to evaluate the performance of cross-project
prediction models.

The first five measures can be calculated from the following four numbers: 1) true pos-
itive (TP) that counts the number of defective instances successfully predicted as defective
instances; 2) true negative (TN) that calculates the number of non-defective instances cor-
rectly predicted as non-defective instances; 3) false positive (FP) that is the number of
non-defective instances incorrectly predicted as defective instances; and 4) false negative
(FN) that measures the number of defective instances wrongly predicted as non-defective
instances. The details are described as follows:

Precision (prec) measures the ratio of correctly predicted defective instances. It is defined
as: prec = T P

T P+FP
.

Recall (pd) evaluates the proportion of defective instances that are predicted as defective
instances. It is defined as: pd = T P

T P+FN
.

False Positive Rate (fpr) captures the proportion of non-defective instances that are
predicted as defective instances. It is defined as: fpr = FP

FP+T N
.

Balance is proposed by Menzies et al. (2007) to balance recall and false positive rate. It

is defined as: balance = 1 −
√

(0−fpr)2+(1−pd)2√
2

.

F-measure is the harmonic mean of precision and recall. It is defined as: F -measure =
2×pd×prec
pd+prec

.

The five aforementioned measures depend on the cut-off value, which is used to compute
the four numbers TP, TN, FP, and FN. On the other hand, Area Under Curve (AUC) is
the area under the receiver operating characteristics (ROC) curve, thus the AUC value is
independent of the cut-off value. Therefore, we further compute AUC values to evaluate
cross-project defect prediction models as prior studies, such as (Rahman et al. 2012).

4 Motivation study

In this section, we aim to find if the three studied transformation methods have different
performances in the context of defect prediction. The investigation is performed from the
following two perspectives:

1) if they can equally improve the normality of software metrics.
2) if cross-project defect prediction models built using each of the transformation methods

have similar performance.

Accordingly, we formulate two research questions. We now present the findings of each
question, along with our motivation and approach.

4.1 RQ1. Are log, Box-Cox, and rank transformations equally effective
in increasing the normality of software metrics?

Motivation Data normality can impact the performance of a prediction model, particularly
the model that is not tree-based (Kuhn and Johnson 2013). Although log and rank trans-
formations have been applied in defect prediction (e.g., Jiang et al. 2008; Menzies 2007;

3194 Empir Software Eng (2017) 22:3186–3218

Zhang et al. 2014), their capability in improving the normality of software metric values
has not been explicitly explored. In addition, the Box-Cox transformation introduced in
Section 2.4 has not been used in the defect prediction studies.

To thoroughly examine the impact that transformations have on defect prediction mod-
els, it is necessary to investigate if the three transformation methods indeed have different
performance in improving the normality of software metric values.

Approach To address this question, software metrics need to be transformed using
each of the three transformation methods. As different software metrics exhibit various
distributions, we transform the values of each metric independently.

In each project, we apply the log transformation on software metric values to get log
transformed values. When applying the Box-Cox transformation, we first apply the steps
described in Section 2.4 to estimate the parameter λ using values of a single metric from the
same project, and then apply the Box-Cox transformation. To apply the rank transformation,
we compute every 10th percentile of the distribution of values of a single metric from the
same project, and obtain rank transformed values using (2).

On the transformed metric values, the skewness and kurtosis are computed to evaluate
the normality. To investigate if transformation improves the normality of software metric
values, we test the following null hypothesis for each transformation method:

H011: there is no difference in the normality of the transformed metric values and the
original metric values.

We conduct paired Wilcoxon rank sum test (Sheskin 2007), with the 95% confidence
level (i.e., p-value<0.05). The Wilcoxon rank sum test is a non-parametric statistical test to
assess whether two independent distributions are equal. Non-parametric statistical methods
make no assumptions about the distribution of assessed variables. If there is a statisti-
cal significance, we reject the hypothesis and conclude that the examined transformation
significantly changes the normality of software metric values.

Furthermore, we compare the capability of the three transformations in improving the
normality of software metric values. We apply paired Wilcoxon rank sum test to evaluate
the following null hypothesis, with the 95% confidence level (i.e., p-value<0.05).

H012: there is no difference in the normality of metric values that are processed by
transformations Ta and Tb.

Ta and Tb denote two different transformations. If there is a statistical significance, we
reject the hypothesis and conclude that the corresponding two transformations have different
capability in improving data normality. We further compute the Cliff’s δ (Romano et al.
2006) to quantify the difference. The Cliff’s δ is a nonparametric effect size that does not
assume a particular distribution. The difference is negligible if Cliff’s |δ| < 0.147, small if
Cliff’s 0.147 <= |δ| < 0.330, medium if Cliff’s 0.330 <= |δ| < 0.474, and large if Cliff’s
|δ| >= 0.474.

Findings All three studied transformations can significantly improve the normality
of software metrics. Figure 2 presents the skewness and kurtosis values of the transformed
metric values from all projects. The median skewness and kurtosis of the original metric
values among all three datasets are 4 and 22, respectively. It indicates that the original met-
ric values are highly skewed, because the ideal skewness value is between −0.80 and 0.80,
and the perfect kurtosis value is zero (see Section 2.1). Using any of the three transforma-
tions can make the skewness and kurtosis values become closer to zero (i.e., nearly normally

Empir Software Eng (2017) 22:3186–3218 3195

Raw Log BC Rank

0
2

4
6

8
1
0

S
k
e
w

n
e
s
s

Raw Log BC Rank

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

K
u
r
to

s
is

Fig. 2 The boxplot of the skewness and kurtosis values of the metrics that are transformed using each of the
three methods on all subject projects (“Raw”, “Log”, “BC”, and “Rank” represent no transformation, the log
transformation, the Box-Cox transformation, and the rank transformation, respectively)

distributed). As shown in Table 2, the results of Wilcoxon rank sum tests in the skew-
ness and kurtosis between the transformed values and the original values show statistically
significant difference, respectively. Hence, we reject hypothesis H011 for all three transfor-
mations. Moreover, the corresponding Cliff’s δ is always greater than 0.474 (as shown in
Table 2), indicating that each of the studied transformation methods yields a large improve-
ment on the data normality. The capabilities of the three transformations on improving data
normality are ordered as: the rank transformation > the Box-Cox transformation > the log
transformation. For any pair of the transformations, we reject hypothesis H012 as the p-
values of Wilcoxon rank sum tests are always less than 0.05. However, the Cliff’s δ is either
small or negligible, except the kurtosis value between log and rank transformations and the
kurtosis value between Box-Cox and rank transformations.

Regarding the Box-Cox transformation, the estimated parameter λ varies across
projects We present the boxplot of the estimated λ values for each project in Fig. 3. The
varying λ values across projects suggests that estimating λ values from both the training and
target projects can maximize the normality of metrics values in both projects. We observe
that few of the estimated λ values are zero (λ = 0 indicates a log transformation). There-
fore, the Box-Cox transformation is not close to the log transformation when dealing with
software metrics. In addition, the median value of the estimated λ is often less than zero
across projects, showing that most of the estimated λ values are negative. In other words, the

Table 2 The results of comparing cross-project defect prediction models built using the three transfor-
mations (n.s. denotes no statistical significance, and bold font is used if the corresponding model is
better)

Measurement Log vs. Raw BC vs. Raw Rank vs. Raw Log vs. BC Log vs. Rank BC vs. Rank

Skewness (δ) 0.620 0.694 0.833 0.159 0.267 -0.005

(p) 1.60e−96 8.05e−96 9.48e−96 7.01e−48 1.84e−55 2.71e−09

Kurtosis (δ) 0.594 0.672 0.859 0.238 0.691 0.476

(p) 9.11e−95 4.85e−95 1.17e−95 1.15e−74 6.46e−94 5.28e−82

3196 Empir Software Eng (2017) 22:3186–3218

A1 A2 A3 A4 A5 R1 R2 R3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

E
s
ti
m

a
te

d
 L

a
m

b
d
a

Fig. 3 Boxplot of estimated λ values for metrics in each project. (The full name of each project is presented
in Table 1)

Box-Cox transformation tends to reverse the order of metric values, i.e., making larger
metric values smaller, and vice versa. The reversed order of metric values does not affect
the performance of defect prediction models, since both the training and testing projects
are treated in the same way. However, researchers should keep in mind of such possible
alteration of the order of metric values when interpreting models built with the Box-Cox
transformation.

4.2 RQ2. Do different transformations result in distinct predictions
in cross-project defect prediction models?

Motivation Although all three transformations can effectively improve the normality of
software metric values, it is unclear if cross-project defect prediction models are impacted
by applying different transformations. We are interested to find if the same performance of
cross-project defect prediction models could be achieved, when applying each transforma-
tion method. In particular, we want to 1) compare the overall performance (e.g., F-measure
and AUC value) of cross-project defect prediction models built using the three transfor-
mations; and 2) examine if the three transformations result in distinct predictions in the
cross-project setting.

Approach To address this question, we build cross-project prediction models using all
possible pairs of the training and target projects in each dataset. In AEEEM, ReLink, and
PROMISE datasets, there are 5, 3, and 10 projects, respectively. Therefore, the total number
of possible pairs for cross-project defect prediction in the three datasets are 20 (= 5 × 4), 6
(= 3 × 2), and 90 (= 10 × 9), respectively.

Empir Software Eng (2017) 22:3186–3218 3197

Table 3 Contingency matrix to
perform McNemar’s test Correct prediction Wrong prediction

Correct prediction Ncc Ncw

Wrong prediction Nwc Nww

For each pair of the training and target projects, we build three models. Each model
is built using metrics transformed by one of the three studied transformation methods. As
some metrics correlate with other metrics, we perform the correlation analysis to remove
the redundancy among software metrics. To measure correlation, we compute Spearman’s
ρ (Sheskin 2007) that is more robust to outliers (Triola 2004) and preferred in the presence
of ties (Sheskin 2007). We define the distance between each pair of software metrics as
1− ‖ρ‖2, where ρ is their correlation. We perform hierarchical clustering using R function
hclust3 and obtain the metrics with a threshold of ‖ρ‖ < 0.8 (Succi et al. 2005; Selim et al.
2010; Fukushima et al. 2014) using R function cutree.4

To apply the same Box-Cox transformation on the training and target projects, we esti-
mate λ values for each metric using both projects (see Section 2.4). Similarly, for the rank
transformation, we calculate every 10th percentile of the values of each metric using both
projects.

We apply logistic regression to build cross-project prediction models using transformed
values of the training project, and apply the models on the target project. Next, we examine
the impact of three transformation methods on cross-project defect prediction from two
perspectives:

1) The overall performance: We compute precision, recall, false positive rate, balance,
F-measure, and AUC value to measure the overall performance of these models. To
compare the overall performance of the models built using the three transformations,
we test the following null hypothesis.

H021: there is no difference between the performance of models built with transfor-
mations Ta and Tb.

Ta and Tb represent two different transformations. We apply paired Wilcoxon rank
sum test with the 95% confidence level (i.e., p-value<0.05). If there is a statistical
significance, we reject null hypothesis H021 and further compute Cliff’s δ to quantify
the difference.

2) The prediction error: To evaluate if different transformations result in distinct
predictions, we compare the prediction errors among models built using the three trans-
formations. To this end, we test the following null hypothesis using McNemar’s test
with the 95% confidence level (i.e., p-value<0.05).

H022: there is no difference between the error rate of models built with transforma-
tions Ta and Tb.

McNemar’s test is commonly used to compare prediction errors of two prediction models
(Japkowicz and Shah 2011). As a nonparametric test, it makes no assumptions on the distri-
bution of a subject variable. McNemar’s test is applicable only if two models are applied on

3http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
4https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cutree.html

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cutree.html

3198 Empir Software Eng (2017) 22:3186–3218
0
.0

0
.4

0
.8

Precision

Log BC Rank

0
.0

0
.4

0
.8

Recall

Log BC Rank

0
.0

0
.4

0
.8

False positive rate

Log BC Rank

0
.0

0
.4

0
.8

Balance

Log BC Rank

0
.0

0
.4

0
.8

F−measure

Log BC Rank

0
.0

0
.4

0
.8

AUC

Log BC Rank

(a) AEEEM

0
.0

0
.4

0
.8

Precision

Log BC Rank

0
.0

0
.4

0
.8

Recall

Log BC Rank

0
.0

0
.4

0
.8

False positive rate

Log BC Rank

0
.0

0
.4

0
.8

Balance

Log BC Rank

0
.0

0
.4

0
.8

F−measure

Log BC Rank

0
.0

0
.4

0
.8

AUC

Log BC Rank

(b) ReLink

0
.0

0
.4

0
.8

Precision

Log BC Rank

0
.0

0
.4

0
.8

Recall

Log BC Rank

0
.0

0
.4

0
.8

False positive rate

Log BC Rank

0
.0

0
.4

0
.8

Balance

Log BC Rank

0
.0

0
.4

0
.8

F−measure

Log BC Rank

0
.0

0
.4

0
.8

AUC

Log BC Rank

(c) PROMISE

Fig. 4 The boxplots of the six performance measures with the three transformations

the same dataset with separated training and target sets. In this study, our models are built
on the same training project, and applied on the same target project that is different from
the training project. Therefore, McNemar’s test is applicable to our study.

To perform McNemar’s test, we need to compute a contingency matrix (see Table 3)
based on the predictions produced by two models (i.e., M1 and M2). In the contingency
matrix, Ncc is the number of instances that both models achieve correct predictions; Ncw is
the number of instances that model M1 makes correct prediction, but model M2 has wrong
prediction; Nwc is the number of instances that model M1 makes wrong prediction, but
modelM2 produces correct prediction; andNww is the number of instances that both models
result in wrong predictions.

The null hypothesis of McNemar’s test is that both models M1 and M2 have the same
error rates. We apply R function mcnemar.exact from R package exact2x25 to perform
McNemar’s test. The result of McNemar’s test can only indicate if there exists a statistical
significance, but can not show how much the difference is. Therefore, we further compute
odds ratio (OR) to measure the effect size of the difference. The odds ratio measures the
degree of the wrong prediction made by one model over the other model. We compute the
odds ratio using the equation OR = Ncw

Nwc
(Breslow and Day 1980). An OR = 1 means that

both models make the same amount of wrong predictions while the other model makes the
correct prediction. An OR<1 indicates that model M1 makes less wrong predictions than
model M2, and vice versa. An OR greater or less than implies a larger difference in the two
models.

5https://cran.r-project.org/web/packages/exact2x2/index.html

https://cran.r-project.org/web/packages/exact2x2/index.html

Empir Software Eng (2017) 22:3186–3218 3199

Findings Applying the three transformation methods yields a similar performance
of cross-project prediction models. Figure 4 depicts the boxplots of the six performance
measures on the prediction model that is obtained using each of the three transformations.
Table 4 presents the average performance measures of models built using the three trans-
formations for each data set. The results of Wilcoxon rank sum test show that in overall
there is no significant difference among the three transformation methods. Hence, we can
not reject the null hypothesis H021 for all the cases. We conclude that the performance of
cross-project prediction models built using the three transformations are similar. This find-
ing is consistent to our previous work (Zhang et al. 2014) that rank and log transformations
have a similar power for cross-project predictions, as well as the work of Jiang et al. (2008).
Although the rank transformation significantly outperforms the log and the Box-Cox trans-
formations in improving the normality of software metric values in terms of both skewness
and kurtosis (see RQ1), the predictive power of models built using the rank transformation
does not outperform models built using either the log or the Box-Cox transformations. One
possible reason is that information is lost after the rank transformation, which may offset
potential benefits of using well transformed metrics.

The predicted defective files are not consistent among the results of multiple defect
prediction models built using different transformation methods. Although having
similar overall performances (e.g., F-measure and AUC value), the three models do not

Table 4 The results of comparing cross-project defect prediction models built using the three transfor-
mations (n.s. denotes no statistical significance, and bold font is used if the corresponding model is
better)

Dataset Measures Average Performance Cliff’s δ and p-values of the Comparison

Log BC Rank Log v.s. BC Log v.s. Rank BC v.s. Rank

AEEEM prec 0.43 0.43 0.44 n.s. n.s. n.s.

pd 0.39 0.40 0.39 n.s. n.s. n.s.

fpr 0.19 0.19 0.18 n.s. n.s. n.s.

balance 0.49 0.51 0.50 n.s. n.s. n.s.

F-measure 0.32 0.32 0.31 n.s. n.s. n.s.

AUC 0.67 0.68 0.67 n.s. n.s. n.s.

ReLink prec 0.66 0.67 0.60 n.s. n.s. n.s.

pd 0.51 0.35 0.41 n.s. n.s. n.s.

fpr 0.18 0.11 0.18 n.s. n.s. n.s.

balance 0.61 0.53 0.53 n.s. n.s. n.s.

F-measure 0.55 0.44 0.42 n.s. n.s. n.s.

AUC 0.73 0.72 0.68 n.s. n.s. n.s.

PROMISE prec 0.49 0.49 0.50 n.s. n.s. n.s.

pd 0.37 0.35 0.36 n.s. n.s. n.s.

fpr 0.18 0.18 0.18 n.s. n.s. n.s.

balance 0.49 0.48 0.49 n.s. n.s. n.s.

F-measure 0.30 0.29 0.30 n.s. n.s. n.s.

AUC 0.69 0.70 0.70 n.s. n.s. n.s.

The number of wins. 11 8 7 – – –

3200 Empir Software Eng (2017) 22:3186–3218

Table 5 The p-values of McNemar’s test and odds ratio (OR)

Dataset Training Target Log v.s. BC Log v.s. Rank BC v.s. Rank

Project Project OR p-value OR p-value OR p-value

AEEEM Eclipse Mylyn – n.s. 0.519 5.56e-04 0.551 8.36e-04

Eclipse PDE 0.418 3.78e-04 0.412 5.46e-05 – n.s.

Equinox Eclipse 11.8 4.22e-29 – n.s. 0.056 4.12e-33

Equinox Lucene 11.6 1.43e-28 – n.s. 0.125 7.03e-23

Equinox Mylyn 5.77 3.80e-19 6.00 1.36e-63 3.09 2.57e-31

Equinox PDE 5.40 9.65e-27 0.497 9.83e-08 0.164 6.27e-43

Lucene Eclipse 3.77 1.58e-12 0.712 0.03 0.204 4.35e-19

Lucene Equinox 6.50 0.01 – n.s. 0.353 0.05

Lucene Mylyn 3.96 1.82e-12 0.690 0.04 0.248 2.79e-16

Lucene PDE – n.s. 0.470 4.65e-07 0.378 1.78e-10

Mylyn Equinox – n.s. 0.091 3.59e-05 0.133 2.35e-03

Mylyn PDE – n.s. – n.s. 0.478 4.90e-03

PDE Eclipse – n.s. 1.78 4.20e-03 1.55 0.04

PDE Lucene – n.s. 1.88 0.04 3.00 7.17e-04

PDE Mylyn – n.s. – n.s. 0.468 1.20e-04

of significance (%) 8/20 (40%) 10/20 (50%) 14/20 (70%)

ReLink Apache Zxing 0.467 4.27e-03 – n.s. 1.81 0.02

Zxing Apache 0.316 3.06e-04 0.286 2.47e-04 – n.s.

of significance (%) 2/6 (33%) 1/6 (17%) 1/6 (17%)

PROMISE Ant Camel 0.362 6.34e-06 – n.s. 2.50 5.31e-05

Ant Log4j 0.513 0.02 – n.s. 2.44 2.67e-03

Ant Lucene24 4.25 0.01 – n.s. – n.s.

Ant Tomcat 3.56 4.31e-04 – n.s. 0.368 1.20e-03

Ant Xalan 2.70 0.01 0.443 3.74e-04 0.311 2.03e-07

Camel Ivy – n.s. – n.s. 0.200 0.04

Camel Lucene24 0.393 0.01 0.370 0.01 – n.s.

Camel Poi3 0.188 4.43e-03 0.250 0.01 – n.s.

Camel Tomcat 3.00 8.58e-06 2.17 2.12e-03 0.278 0.01

Camel Xalan 0.477 0.01 0.527 0.01 – n.s.

Ivy Xalan 0.531 0.04 0.404 7.56e-04 0.480 4.70e-02

JEdit Camel – n.s. 0.415 2.23e-03 0.435 1.86e-03

JEdit Lucene24 0.125 0.04 – n.s. 5.00 0.04

JEdit Poi3 0.200 0.04 – n.s. 2.63 0.02

JEdit Tomcat – n.s. 0.304 0.01 0.333 0.01

Log4j Ant 1.93 3.89e-06 2 3.00e-03 0.619 2.67e-03

Log4j Camel 2.99 8.81e-17 4.55 5.25e-12 0.471 1.83e-06

Log4j Ivy 6.82 7.37e-13 5.20 1.92e-04 0.189 3.38e-08

Log4j JEdit – n.s. 4.60 9.12e-04 – n.s.

Log4j Lucene24 0.400 1.32e-05 – n.s. 2.94 6.74e-05

Log4j Poi3 0.210 3.31e-18 0.414 2.22e-04 5.17 2.26e-13

Log4j Tomcat 7.68 2.82e-29 3.00 7.73e-05 0.179 1.35e-20

Empir Software Eng (2017) 22:3186–3218 3201

Table 5 (continued)

Dataset Training Target Log v.s. BC Log v.s. Rank BC v.s. Rank

Project Project OR p-value OR p-value OR p-value

Log4j Xerces 2.77 1.40e-03 – n.s. 0.278 1.56e-04

Lucene24 Ant 0.240 8.78e-04 – n.s. 3.75 4.72e-04

Lucene24 Camel 0.187 3.01e-11 – n.s. 4.28 7.25e-10

Lucene24 Ivy 41.0 1.96e-11 – n.s. 0.020 9.06e-14

Lucene24 JEdit 8.60 1.37e-08 12.0 3.42e-03 0.206 2.53e-05

Lucene24 Log4j 0.205 5.54e-06 – n.s. 5.13 1.96e-06

Lucene24 Tomcat 0.042 7.16e-18 – n.s. 14.0 1.08e-18

Lucene24 Xalan – n.s. 0.375 2.87e-04 0.406 0.01

Lucene24 Xerces – n.s. – n.s. 2.83 0.03

Poi3 Camel 6.36 1.60e-14 3.65 1.99e-10 – n.s.

Poi3 Ivy 12.0 3.42e-03 – n.s. 0.125 4.92e-05

Poi3 JEdit 3.40 3.88e-04 – n.s. 0.462 0.03

Poi3 Log4j 0.143 1.01e-07 – n.s. 3.90 3.85e-05

Poi3 Tomcat – n.s. – n.s. 1.82 0.01

Poi3 Xerces 0.054 2.84e-09 – n.s. 1.85 0.01

Xalan Camel 0.269 2.73e-24 0.542 0.01 3.57 8.25e-21

Xalan Ivy 0.019 3.11e-15 0.400 0.02 6.43 6.97e-08

Xalan Log4j 0.323 1.45e-03 – n.s. 2.40 4.60e-03

Xalan Poi3 0.407 3.13e-04 – n.s. 1.875 0.02

Xalan Tomcat 8.25 1.81e-12 – n.s. 0.274 3.59e-07

Xalan Xerces 2.67 0.01 – n.s. – n.s.

Xerces Ant 0.373 1.09e-14 – n.s. 2.55 4.56e-13

Xerces Camel 0.521 0.01 0.370 3.37e-04 – n.s.

Xerces Ivy 0.176 2.58e-03 – n.s. – n.s.

Xerces JEdit 0.359 1.27e-05 0.353 1.64e-03 1.70 0.03

Xerces Log4j 0.500 0.02 – n.s. 2.35 3.20e-03

Xerces Lucene24 3.13 5.78e-05 – n.s. 0.255 1.88e-06

Xerces Poi3 2.27 0.03 – n.s. 0.333 3.93e-03

Xerces Tomcat 0.455 3.69e-03 0.302 9.10e-06 – n.s.

Xerces Xalan 2.23 2.28e-05 – n.s. 0.532 1.18e-03

of significance (%) 45/90 (50%) 22/90 (24%) 42/90 (47%)

necessarily have similar prediction errors. More specifically, when some models make
wrong prediction on a file, other models may make correct prediction on the same file. To
the best of our knowledge, such distinct prediction existing in models built with various
transformation methods is overlooked in prior studies. We conjecture that it might improve
the predictive power of cross-project defect prediction models, if integrating multiple
models, with each model built using different transformation methods.

The detailed results of McNemar’s tests are presented in Table 5. We observe that
in AEEEM dataset, the prediction error of using the log transformation is significantly

3202 Empir Software Eng (2017) 22:3186–3218

different from using Box-Cox and rank transformations in 40 and 50% of all cross-project
prediction models, respectively. The prediction errors of using Box-Cox and rank transfor-
mations are significantly different in 70% of all cross-project prediction models. In cases
with a statistically significant difference, we can reject the null hypothesis H022 and con-
clude that the three models built using each of the three transformation methods do not
consistently make the same predictions on the same file. In other words, each transformation
method could capture different aspects of the metric values. Similar findings are observed
in ReLink and PROMISE datasets.

5 Our approach

Transformations may alter the nature of software metrics. Applying various transformations
on software metrics captures different perspectives of software metrics. In Section 3, we
find that cross-project defect prediction models built using different transformations do not
always make the same prediction on the same file. This observation motivates us to integrate
models built using different transformations.

In this section, we describe our approach to integrate a set of predictions made by models
built with multiple transformations. We present the details of our two approaches: 1) the
basic approach MT that integrates multiple models; and 2) the enhanced approach MT+ that
selects the most appropriate training project for each target project.

5.1 Our basic approach – MT (multiple transformations)

For a pair of training and target projects, we build multiple defect prediction models. Each
model is built using one of the three transformation methods. Our approach aims to uti-
lize the information obtained from multiple models other than a single model. The weight
of each model is determined by the accuracy of the model on the training data. Figure 5
illustrates the overview of our approach. The details are described as follows.

1) Notations. Let M = {M1, . . . , Mn} represents a set of prediction models built using
n transformations. A file f in a target project is represented as X, a vector of all soft-
ware metrics. PB,i(X) is the predicted probability of defect proneness on file f by
model Mi , and PC,i(X) is the predicted probability of file f as a clean file. Thus,
PB,i(X)+PC,i(X) = 1. We consider a file is defective, if PB,i(X) is greater than 0.5
(Zimmermann et al. 2009).

2) Computation of the probability of defect proneness. We use PB(X) to denote the
final probability of defect proneness on file f using all the n models. We compute
PB(X) in the following two ways: 1) weighting the probability PB,i(X) produced
by models that consider file f as defective; or 2) weighting the probability PC,i(X)

Empir Software Eng (2017) 22:3186–3218 3203

Fig. 5 Overview of our approach MT to integrate models built upon differently transformed data

produced by all models, if no model considers file f as defective. Accordingly, PB(X)

is defined in (6).

PB(X) =

⎧
⎪⎨

⎪⎩

min(1,
∑

Mi∈M wi×si (X)×PB,i (X)

NB(X)
) if NB(X) > 0

max(0, 1 −
∑

Mi∈M wi×PC,i (X)

n
) otherwise

(6)

where wi is the weight assigned to model Mi; si(X) is the selector for model Mi that
determines whether the probability predicted by model Mi is used to compute the final
probability of defect proneness or not; and NB(X) is the number of selected models.
The min and max limit PB(X) in the range [0, 1].

3) Weight of each model. A weight is assigned to each model, since the accuracy of
different models varies. We consider that models with higher accuracy should be
encouraged, and models with lower accuracy should be penalized. Hence, we use the
accuracy ai of a model to obtain the weight wi for each model Mi . The accuracy ai is
computed on the training data as the proportion of correct predictions (i.e., true posi-
tives and true negatives) relative to the total number of predictions. We set wi = 0, if
ai = 0. For a model with non-zero accuracy (i.e., ai > 0), we define its weight wi as
wi = ai

minAcc
, where minAcc is the minimum non-zero accuracy among n models.

4) Selection of each model. A selector si(X) for each model Mi is defined to capture
every possible defective file. We consider that a file is defective, if it is predicted as
defective by one or more models. As such, the selector si(X) is defined in (7). For each
file, as shown in (6), the predicted probability of model Mi is used only if the file is
predicted as defective by model Mi (i.e., PB,i(X) > 0.5).

si(X) =
{
1 if PB,i(X) > 0.5
0 otherwise

(7)

The number of selected models NB(X) for file f is defined in (8). As applied in
(6), NB(X) is used to normalize the predicted probability of a file that is predicted as
defective by at least one model.

NB(X) =
n∑

i=1

si(X) (8)

5) Prediction by the integrated model. As described in (6), the integrated model con-
siders a file as defective if it is predicted as defective by at least one model. Therefore,

3204 Empir Software Eng (2017) 22:3186–3218

the integrated model increases the recall of defective files but introduces false posi-
tives as well. To mitigate the inflation of false positive rate, we increase the cut-off
value by multiplying a factor of α, where α > 1. In this study, we empirically set
α = 1.2, thus the default cut-off value 0.5 is increased to 0.6 (=0.5×1.2). Changing
the value of α only affects performance measures that reply on the cut-off value of the
predicted probability of defect proneness, but does not alter the performance measure
AUC. Moreover, automatic determination on the cut-off value has been proposed in our
previous work (Zhang et al. 2015).

5.2 Our enhanced approach MT+

Our basic approach integrates defect prediction models built with various transformation
methods, but it can not select the most appropriate training project for each target project. If
there exist many candidate training projects, it is still unclear how to choose the best project
to build the model.

To this end, we further enhance our approach by automatically selecting the most appro-
priate training project for each target project in unsupervised fashion. For the automatic
selection, we propose to apply the knowledge learned from the Box-Cox transformation, as
the Box-Cox transformation has a parameter λ reflecting the distribution of the values of the
original metrics. For each candidate training project, we compute the best λ̂ value of each
metric using (4). Then we choose the training project with its average λ̂ value close to zero.
Note that λ = 0 indicates a log-normal distribution, therefore the distribution of the metric
values of the selected training project is the closest to the log-normal distribution. A log-
normal distribution can be observed in many natural growth processes where small changes
are accumulated. We conjecture that a software project that grows similar as natural growth
processes is more appropriate to build a cross-project defect prediction model.

As our approach in based on MT, we term our enhanced approach as MT+.

6 Evaluation of our approaches

In this section, we evaluate the effectiveness of using our approaches in cross-project defect
prediction.

6.1 RQ3. Can our approaches improve the performance of cross-project defect
prediction models?

Motivation When building defect prediction models, usually only one transformation
method is applied. The findings of RQ2 suggest that cross-project defect prediction models
built using the three transformation methods could make different predictions on the same
file. To improve the predictive power of cross-project defect prediction models, we propose
the approach MT to integrate multiple transformations (see Section 5) and the enhanced
approach MT+ to select the most appropriate training project. In this question, we aim to
investigate if our approaches can achieve better performance of cross-project predictions,
comparing to models built using only one transformation method.

Approach To evaluate the performance of our approaches, we choose five baselines: 1)
Raw models built without any transformation; 2) Raw+ models built without any transfor-
mation but the most appropriate training project is selected using the same strategy as MT+;

Empir Software Eng (2017) 22:3186–3218 3205

3) Min-max models built using the min-max scaling method (i.e., min-max = x−xmin

xmax−xmin
,

where x is the raw value of a metric); 4) Z-score models built using the normalization
method (i.e., z-score = x−μ

σ
, where x is the raw value of a metric, μ is the mean of the

metric, and σ is the standard deviation of the metric); and 5) Log models built using the log
transformation.

Similar to RQ2, we build cross-project defect prediction models using all possible pairs
of the training and target projects in each dataset. We perform the seven transformations on
each training project, and build seven logistic regression models, respectively. We apply the
seven models on the target project to obtain predictions on each file of the target project.
As described in Section 5, we use our approach MT to integrate the predictions of the three
models built with log, the Box-Cox, and rank transformations. We use the method described
in Section 5.2 to select the most appropriate training projects for Raw+ and MT+. The
most appropriate training projects in the three datasets are: “Eclipse JDT Core” followed
by “Eclipse PDE UI” (AEEEM), “Apache HTTP Server” followed by “OpenIntents Safe”
(ReLink), and “POI v3” followed by “Camel v1.6” (PROMISE).

To evaluate the performance of these models, we calculate precision, recall, false positive
rate, balance, F-measure, and AUC value. To investigate if our approaches can improve
the performance of cross-project prediction, we test the following null hypothesis for each
performance measure:

H031: there is no difference between the performance of two types of models.
For instance, we test the null hypothesis H031 between models built with our approach

MT and models built with the log transformation. We apply paired Wilcoxon rank sum
test with the 95% confidence level (i.e., p-value<0.05). If there is a statistical significance,
we reject the hypothesis and conclude that our approaches have statistically significant
improvement in the performance of cross-project predictions.

Findings In general, our approaches MT and MT+ statistically significantly improve
the performance of cross-project defect prediction, in terms of recall, balance, and
F-measure. Table 6 shows the detailed Cliff’s δ between the performance measures of
each pair of assessed models. When using logistic regression to build the model, our
strategy for selecting the most appropriate training project (i.e., Raw+) can statistically
significantly improve the performance of models built without transformation (i.e., Raw).
Using the min-max scaling method yields statistically significantly lower performance in
terms of recall and AUC than using no transformation. We do not observe any signifi-
cance between the performance of models built with z-score normalization method and
without transformation, in all six studied performance measures. Similarly, there is no sig-
nificant difference in the performance of models built with our approach MT and Raw+.
However, comparing to models built without transformation or with Min-max/Z-score/Log
transformation, our approach MT significantly improves the performance of cross-project
defect prediction in terms of recall, balance, F-measure and AUC, and the only excep-
tional case is that our approach MT achieves similar performance as log transformation.
From Table 6, we can observe that our enhanced approach MT+ can further improve the
performance of cross-project defect prediction than Raw+ and MT in terms of recall and
F-measure.

Table 7 presents the average value of the six measures for all possible cross-project pre-
dictions. In particular, the average F-measure of the models built using the log transforma-
tion in AEEEM dataset is 0.34. Log transformation is the most widely used transformation
in the literature of defect prediction. Comparing to log transformation, our approach MT+
achieves an improvement of 24% in the average F-measure (i.e., from 0.34 to 0.42). In

3206 Empir Software Eng (2017) 22:3186–3218

Table 6 The Cliff’s δ between the performance measures of two assessed models. (‘*’ indicates p-value<
0.05, ‘**’ for p-value< 0.01, and ‘***’ for p-value< 0.001)

Compared Transformations prec pd fpr balance F-measure AUC

Raw+ v.s. Raw n.s. 0.340* n.s. 0.377* 0.321* n.s.

Min-max v.s. Raw n.s. −0.241* −0.377* n.s. n.s. −0.272*

Z-score v.s. Raw n.s. n.s. n.s. n.s. n.s. n.s.

Log v.s. Raw n.s. 0.099* n.s. 0.111* n.s. 0.327***

MT v.s. Raw −0.123* 0.321*** 0.309** 0.355*** 0.302*** 0.370***

MT v.s. Raw+ n.s. n.s. n.s. n.s. n.s. n.s.

MT v.s. Min-max n.s. 0.549*** 0.580** 0.438*** 0.426*** 0.583***

MT v.s. Z-score n.s. 0.525** 0.494* 0.494** 0.432** 0.488***

MT v.s. Log −0.167*** 0.216*** 0.315*** 0.238*** 0.231*** n.s.

MT+ v.s. Raw −0.216* 0.519** 0.309* 0.481*** 0.463*** 0.414**

MT+ v.s. Raw+ n.s. 0.324** 0.216* n.s. 0.117* 0.259**

MT+ v.s. Min-max n.s. 0.617*** 0.426** 0.630*** 0.568*** 0.525***

MT+ v.s. Z-score −0.204* 0.562*** 0.389** 0.642*** 0.593*** 0.451**

MT+ v.s. Log −0.228** 0.494** 0.327** 0.414** 0.401*** n.s.

MT+ v.s. MT n.s. 0.364* 0.216* 0.278** 0.235** n.s.

ReLink and PROMISE datasets, we have similar observations that the average F-measures
are improved from 0.54 to 0.60 (i.e., 11% improvement), and 0.31 to 0.42 (i.e., 29%
improvement), respectively. Comparing to the models built with the log transformation, our
approach MT only achieves a trivial improvement in terms of F-measure. The p-values of
Wilcoxon test on three performance measures (i.e., recall, balance, and F-measure) between
models built with the log transformation and our approach MT+ are 1.93e-03, 1.58e-03
and 3.28e-04, respectively. Hence, we reject the null hypothesis H031 for the three per-
formance measures and conclude that our enhanced approach MT+ achieves statistically
significant improvement in these measures. We conclude that solely integrating models built
multiple transformations is not sufficient to improve the predictive power. It is more effec-
tive to improve the performance of cross-project defect prediction by selecting the most
appropriate training project for each target project (i.e., MT+).

Furthermore, we present F-measure and the AUC values of cross-project defect predic-
tion models for each project in Table 8. We consider a model wins if it achieves the best
performance among all models. We observe that models built without any transformation
win one or zero times in terms of F-measure and the AUC value. Models built with Raw+,
the log transformation and our basic approach MT achieve similar efficiency. However,
models built with our enhanced approach MT+ win 11 and 10 times in terms of F-measure
and the AUC value, respectively. This indicates that the strategy used in MT+ to select the
most appropriate training project is efficient. We recall that our strategy is to find the project
whose metrics are more likely to follow the log-normal distribution as the training project.
Our results confirm our assumption that a software project that grows similar as natural
growth processes is more appropriate to build a cross-project defect prediction model. In
other words, whether metrics of the training project follow the log-normal distribution is an
important factor to determine if a defect prediction model succeeds in cross-project defect
prediction.

Empir Software Eng (2017) 22:3186–3218 3207

Table 7 Average performance measures of cross-project defect prediction models obtained using five base-
line transformations and our approaches (MT and MT+). (Note: bold font is used if the corresponding model
is better)

Dataset Measures Raw Raw+ Min-max Z-score Log MT MT+

AEEEM prec 0.45 0.58 0.42 0.50 0.45 0.40 0.48

pd 0.42 0.30 0.40 0.29 0.43 0.50 0.41

fpr 0.22 0.06 0.18 0.11 0.21 0.26 0.11

balance 0.50 0.50 0.53 0.48 0.51 0.53 0.57

F-measure 0.32 0.37 0.34 0.29 0.34 0.35 0.42

AUC 0.66 0.71 0.65 0.65 0.68 0.69 0.74

ReLink prec 0.62 0.54 0.55 0.57 0.66 0.61 0.59

pd 0.52 0.61 0.25 0.40 0.48 0.55 0.63

fpr 0.23 0.35 0.10 0.22 0.16 0.22 0.28

balance 0.60 0.63 0.46 0.52 0.59 0.61 0.63

F-measure 0.54 0.57 0.32 0.41 0.54 0.57 0.60

AUC 0.68 0.67 0.65 0.68 0.73 0.73 0.73

PROMISE prec 0.50 0.39 0.48 0.51 0.50 0.48 0.37

pd 0.34 0.61 0.31 0.35 0.38 0.45 0.73

fpr 0.16 0.39 0.15 0.17 0.18 0.22 0.47

balance 0.49 0.59 0.46 0.48 0.50 0.53 0.58

F-measure 0.29 0.39 0.27 0.29 0.31 0.35 0.42

AUC 0.67 0.68 0.64 0.67 0.71 0.72 0.71

The number of wins 0 4 2 1 2 3 9

A recent work by Nam et al. (2013) has a similar concept as our approach, i.e., using
transformations (namely TCA+) to improve the performance of cross-project defect predic-
tion. In particular, Nam et al. (2013) propose a set of rules to automatically select the most
appropriate normalization method (e.g., min-max and z-score) for each pair of projects. The
TCA+ approach successfully improves the average F-measure by 28% (i.e., 0.32 to 0.41)
in the AEEEM dataset, and 24% (i.e., 0.49 to 0.61) in the ReLink dataset. Although TCA+
and MT+ achieve similar improvement, our approach MT+ can automatically determine
the most appropriate training project for each target project, therefore relieves practition-
ers from experimenting with every pair of training and target projects. Moreover, with the
training projects selected by our approach MT+, the F-measure of TCA+ can be further
improved (i.e., from 0.41 to 0.43 in the AEEEM dataset and from 0.61 to 0.62 in the ReLink
dataset).

The false positive rate is increased by our approach MT+ in the ReLink and the
PROMISE datasets, but it is controllable We observe that our approach MT+ has a
higher false positive rate than the models built with the log transformation in two datasets.
For instance, the average false positive rate of the models built using our approach MT+
in the ReLink dataset is acceptable (i.e., 0.28, which is less than 0.3 (Moser et al. 2008)).
In the PROMISE dataset, the false positive rate is increased from 0.18 to 0.47. We con-
jecture that an appropriate cut-off may reduce the excessive false positive rate, since there
the AUC value is the same (i.e., both are 0.71 in the PROMISE dataset). Our previous

3208 Empir Software Eng (2017) 22:3186–3218

Table 8 The F-measure and AUC values of cross-project defect prediction models for each project (bold
font is used if the corresponding model is better)

Dataset Project Raw Raw+ Min-max Z-score Log MT MT+

(a) F-measure

AEEEM Eclipse JDT Core 0.46 0.57 0.46 0.33 0.48 0.46 0.56

Equinox 0.31 0.35 0.40 0.29 0.32 0.40 0.42

Apache Lucene 0.26 0.34 0.27 0.32 0.29 0.29 0.39

Mylyn 0.28 0.32 0.27 0.24 0.28 0.29 0.34

Eclipse PDE UI 0.27 0.27 0.28 0.28 0.31 0.34 0.38

ReLink Apache HTTP Server 0.70 0.68 0.35 0.33 0.69 0.71 0.70

OpenIntents Safe 0.61 0.64 0.44 0.48 0.67 0.69 0.80

Zxing 0.30 0.38 0.17 0.42 0.25 0.30 0.30

PROMISE Ant v1.7 0.37 0.43 0.33 0.33 0.36 0.40 0.48

Camel v1.6 0.18 0.32 0.16 0.24 0.22 0.25 0.33

Ivy v1.4 0.19 0.19 0.20 0.20 0.21 0.22 0.17

Jedit v4.0 0.37 0.34 0.28 0.31 0.40 0.43 0.46

Log4j v1.0 0.26 0.49 0.41 0.36 0.31 0.43 0.51

Lucene v2.4 0.30 0.72 0.31 0.30 0.32 0.37 0.74

POI v3 0.30 0.17 0.19 0.27 0.34 0.35 0.30

Tomcat v6.0 0.33 0.28 0.28 0.29 0.32 0.33 0.27

Xalan v2.6 0.38 0.51 0.37 0.31 0.37 0.43 0.53

Xerces v1.3 0.28 0.43 0.17 0.28 0.28 0.31 0.38

The number of wins 1 2 0 1 0 4 11

(b) AUC value

AEEEM Eclipse JDT Core 0.71 0.82 0.71 0.70 0.74 0.71 0.81

Equinox 0.69 0.74 0.62 0.63 0.68 0.72 0.80

Apache Lucene 0.68 0.69 0.67 0.67 0.73 0.72 0.73

Mylyn 0.58 0.60 0.60 0.59 0.59 0.58 0.61

Eclipse PDE UI 0.66 0.71 0.66 0.67 0.67 0.69 0.74

ReLink Apache HTTP Server 0.72 0.70 0.71 0.71 0.73 0.73 0.70

OpenIntents Safe 0.77 0.78 0.69 0.71 0.82 0.83 0.86

Zxing 0.55 0.53 0.55 0.61 0.65 0.62 0.64

PROMISE Ant v1.7 0.73 0.71 0.69 0.72 0.75 0.77 0.79

Camel v1.6 0.58 0.57 0.57 0.59 0.62 0.62 0.59

Ivy v1.4 0.64 0.78 0.62 0.65 0.71 0.72 0.73

Jedit v4.0 0.69 0.54 0.65 0.68 0.74 0.74 0.74

Log4j v1.0 0.69 0.79 0.67 0.71 0.75 0.75 0.84

Lucene v2.4 0.64 0.70 0.63 0.64 0.68 0.68 0.73

POI v3 0.69 0.61 0.68 0.70 0.73 0.73 0.59

Tomcat v6.0 0.76 0.78 0.71 0.74 0.79 0.80 0.82

Xalan v2.6 0.59 0.54 0.61 0.59 0.65 0.65 0.56

Xerces v1.3 0.71 0.74 0.61 0.69 0.74 0.73 0.72

The number of wins 0 3 0 0 8 5 10

Empir Software Eng (2017) 22:3186–3218 3209

work (Zhang et al. 2015) describes two concrete and practical solutions to reduce the false
positive rate by automatically determining the cut-off. Therefore, the inflated false positive
rate is controllable.

6.2 RQ4. Do our approaches work well for other classifiers?

Motivation We have demonstrated the effectiveness of our approach using a single classi-
fier (i.e., logistic regression). However, there are many other classifiers (e.g., random forest
and Naive Bayes) that are also frequently used to build defect prediction models (e.g., Jiang
et al. 2008; Kim et al. 2011; Menzies et al. 2007; Song et al. 2011). To understand the gener-
alizability of our approaches, it is necessary to study if our approaches can achieve a similar
improvement using other classifiers as using logistic regression.

Approach We follow the same approach as in RQ3, but using different classifiers to build
cross-project prediction models. As described in Section 3.2, we study six classifiers, i.e.,
Bayes net (BN), k-nearest neighbours (IBk), decision tree (J48), naive Bayes (NB), random
forest (RF), and random tree (RT).

To investigate if our approaches can improve the performance of cross-project prediction,
we test the following null hypothesis for each classifier. We apply paired Wilcoxon rank
sum test with the 95% confidence level (i.e., p-value<0.05).

H041: there is no difference between the performance of our approach and the models
built with the log transformation, when using classifier C to build the model.

Classifier C represents one of our studied classifiers. Same as in RQ3, we choose five
baselines: Raw, Raw+, Min-max, Z-score, and Log.

Findings In general, our approach MT+ can improve the performance of cross-
project defect prediction models. However, the improvement varies with classifiers.
Table 9 presents the average F-measures and AUC values of models built with the log trans-
formation and our approaches using each of the six classifiers. Comparing to models built
without any transformation, building models with a single transformation method (i.e., Min-
max, Z-score, or log transformation) generally can not improve the performance in terms
of F-measure and AUC values. From this perspective, improving the normality of software
metrics may not be sufficient to improve the performance of cross-project defect prediction
models. However, our approach MT generally improves the performance, indicating that
the integration of models built with multiple transformation is beneficial. Moreover, our
strategy of selecting the most appropriate training project (i.e., both Raw+ and MT+) can
further improve the performance. Therefore, although using a single transformation is not
proved beneficial, it is worth integrating models built multiple transformations and select-
ing the most appropriate training project based on the estimated parameter of the Box-Cox
transformation.

3210 Empir Software Eng (2017) 22:3186–3218

Table 9 Average F-measures and AUC values of cross-project defect predictions obtained using the log
transformations and our approach (bold font is used if the corresponding model is better)

Dataset Classifier Raw Raw+ Min-max Z-score Log MT (%) MT+ (%)

(a) F-measure

AEEEM BN 0.43 0.43 0.45 0.42 0.43 0.43 (0%) 0.45 (5%)

IBk 0.27 0.29 0.29 0.27 0.27 0.34 (26%) 0.37 (37%)

J48 0.25 0.25 0.27 0.25 0.25 0.36 (44%) 0.37 (48%)

LR 0.32 0.37 0.34 0.29 0.34 0.35 (3%) 0.42 (24%)

NB 0.40 0.39 0.41 0.41 0.41 0.40 (-2%) 0.41 (0%)

RF 0.30 0.34 0.33 0.27 0.29 0.29 (0%) 0.31 (7%)

RT 0.29 0.28 0.31 0.30 0.29 0.35 (21%) 0.35 (21%)

Avg. 0.32 0.34 0.34 0.32 0.33 0.36 (9%) 0.38 (15%)

ReLink BN 0.36 0.46 0.41 0.49 0.36 0.44 (22%) 0.56 (56%)

IBk 0.44 0.43 0.46 0.51 0.44 0.57 (30%) 0.57 (30%)

J48 0.31 0.46 0.38 0.39 0.31 0.52 (68%) 0.64 (106%)

LR 0.54 0.57 0.32 0.41 0.54 0.57 (6%) 0.60 (11%)

NB 0.55 0.58 0.34 0.46 0.54 0.61 (13%) 0.60 (11%)

RF 0.43 0.46 0.36 0.50 0.41 0.53 (29%) 0.65 (59%)

RT 0.47 0.51 0.39 0.48 0.39 0.60 (54%) 0.61 (56%)

Avg. 0.44 0.50 0.38 0.46 0.43 0.55 (28%) 0.60 (40%)

PROMISE BN 0.40 0.46 0.38 0.39 0.40 0.41 (2%) 0.46 (15%)

IBk 0.30 0.35 0.29 0.31 0.31 0.39 (26%) 0.41 (32%)

J48 0.33 0.43 0.32 0.32 0.32 0.37 (16%) 0.41 (28%)

LR 0.29 0.39 0.27 0.29 0.31 0.35 (13%) 0.42 (35%)

NB 0.36 0.41 0.37 0.36 0.45 0.48 (7%) 0.47 (4%)

RF 0.29 0.42 0.27 0.28 0.28 0.29 (4%) 0.40 (43%)

RT 0.32 0.40 0.31 0.30 0.32 0.41 (28%) 0.44 (38%)

Avg. 0.33 0.41 0.32 0.32 0.34 0.39 (15%) 0.43 (26%)

(b) AUC value

AEEEM BN 0.71 0.70 0.73 0.72 0.71 0.72 (1%) 0.72 (1%)

IBk 0.57 0.58 0.57 0.56 0.56 0.60 (7%) 0.63 (12%)

J48 0.55 0.55 0.57 0.55 0.55 0.62 (13%) 0.62 (13%)

LR 0.66 0.71 0.65 0.65 0.68 0.69 (1%) 0.74 (9%)

NB 0.67 0.65 0.67 0.67 0.68 0.68 (0%) 0.68 (0%)

RF 0.72 0.70 0.73 0.71 0.72 0.73 (1%) 0.69 (-4%)

RT 0.57 0.56 0.58 0.58 0.58 0.60 (3%) 0.60 (3%)

Avg. 0.64 0.64 0.64 0.63 0.64 0.66 (3%) 0.67 (5%)

ReLink BN 0.63 0.69 0.65 0.70 0.63 0.65 (3%) 0.70 (11%)

IBk 0.57 0.56 0.58 0.59 0.54 0.59 (9%) 0.61 (13%)

J48 0.57 0.64 0.59 0.59 0.57 0.64 (12%) 0.73 (28%)

LR 0.68 0.67 0.65 0.68 0.73 0.73 (0%) 0.73 (0%)

NB 0.67 0.67 0.61 0.69 0.69 0.69 (0%) 0.68 (-1%)

RF 0.68 0.71 0.68 0.70 0.68 0.71 (4%) 0.74 (9%)

RT 0.62 0.65 0.56 0.60 0.56 0.61 (9%) 0.62 (11%)

Avg. 0.63 0.66 0.62 0.65 0.63 0.66 (5%) 0.69 (10%)

Empir Software Eng (2017) 22:3186–3218 3211

Table 9 (continued)

Dataset Classifier Raw Raw+ Min-max Z-score Log MT (%) MT+ (%)

PROMISE BN 0.70 0.72 0.70 0.70 0.70 0.70 (0%) 0.72 (3%)

IBk 0.56 0.55 0.56 0.57 0.57 0.59 (4%) 0.56 (-2%)

J48 0.59 0.64 0.57 0.57 0.59 0.61 (3%) 0.57 (-3%)

LR 0.67 0.68 0.64 0.67 0.71 0.72 (1%) 0.71 (0%)

NB 0.66 0.69 0.66 0.67 0.72 0.73 (1%) 0.72 (0%)

RF 0.71 0.72 0.70 0.70 0.71 0.72 (1%) 0.72 (1%)

RT 0.57 0.59 0.56 0.56 0.57 0.59 (4%) 0.58 (2%)

Avg. 0.64 0.66 0.63 0.63 0.65 0.67 (3%) 0.65 (0%)

Note: Due to space limit, we only present average performance in the paper. We provide in our supplement
file that the boxplots of all six performance measures of cross-project defect prediction models built on each
dataset using every classifier

In terms of F-measure, our approach MT can achieve statistically significant improve-
ment over models built with the log transformation, when using IBk (26% to 30%), J48
(16% to 68%), logistic regression (3% to 13%), and random tree (21% to 54%). In terms
of the AUC value, four classifiers can benefit from our approach MT, i.e., IBk (4% to 9%),
J48 (3% to 13%), random forest (1% to 4%) and random tree (3% to 9%). In all cases, the
AUC values remain the same or are increased by using our approach MT.

Our enhanced approach MT+ statistically significantly improves the F-measure for
almost all studied classifiers (except Naive Bayes), such as BayesNet (5% to 56%), IBk
(30% to 37%), J48 (28% to 106%), logistic regression (11% to 35%), random forest
(7% to 59%), and random tree (21% to 56%). The AUC values are statistically signif-
icantly improved for one classifier Bayes net (1% to 11%). As shown in Table 9, our
enhanced approach MT+ achieves the same or higher AUC values in most cases, except four
cases.

In summary, our approaches generally improve the performance of cross-project defect
prediction models for multiple classifiers, although the improvement varies with classifiers.

7 Related work

In this section, we first describe prior studies on data transformation in defect prediction,
and then present related work regarding cross-project defect prediction.

7.1 Data transformation in defect prediction

Data normality benefits both parametric and non-parametric statistical methods (Osborne
2008), and improves the performance of linear models (Kuhn and Johnson 2013).
Transformation is a common method to reduce skewness and improve data normality

3212 Empir Software Eng (2017) 22:3186–3218

(Bishara and Hittner 2014; Gaudard and Karson 2000). Data transformation is essential
in defect prediction studies, since many software metrics follow power law distributions
(Zhang 2009).

To build a defect prediction model, researchers often apply the natural log transforma-
tion (e.g., Menzies et al. 2007; Jiang et al. 2008; Cruz and Ochimizu 2009; Song et al.
2011) and the rank transformation (e.g., Jiang et al. 2008; Zhang et al. 2014) on software
metrics.

However, applying the log transformation only benefits some classifiers (e.g., Naive
Bayes) (Menzies et al. 2007; Song et al. 2011). For some other classifiers (e.g., decision
tree), there is no statistically significant difference (Menzies et al. 2007; Song et al. 2011).
Jiang et al. (2008) further compare the performance of defect prediction models built using
log and rank transformations. After examining ten classifiers, Jiang et al. (2008) conclude
that different classifiers prefer different transformations. For instance, random forest per-
forms better if using the log transformation; and Naive Bayes performs better if using rank
transformation. There are also studies that use different transformations for different classi-
fiers. He et al. (2013) apply the rank transformation for Naive Bayes, but use original value
for random forest and logistic regression.

7.2 Cross-project defect prediction

The major challenge in cross-project defect prediction is the heterogeneity between the
training and target projects (Zimmermann et al. 2009). To address this problem, Menzies
et al. (2013) and Bettenburg et al. (2012) investigate if it is beneficial to build models based
on instances (e.g., files or classes) that are similar with the target project. Both studies
observe that using only the instances that are similar to the target project achieves better
performance in cross-project defect prediction models than using all instances. Turhan et al.
(2013) recommend to mix the within-project and cross-project data to build a model, since
models built with the mixed data outperform models built with only cross-project data. As
a summary, the aforementioned studies propose to select similar instances to reduce the
heterogeneity between the training and target projects.

An alternative solution is to transform the training and target projects to mitigate their
heterogeneity (e.g., Ma et al. 2012; Nam et al. 2013). For instance, Ma et al. (2012) pro-
pose an approach to transform the training project using statistical characteristics extracted
from the target project. Nam et al. (2013) propose an approach based on transfer compo-
nent analysis (TCA) to transform the training and target projects together. Jing et al. (2015)
propose to unify metric representation between the training and target projects based on the
canonical correlation analysis (CCA). These three approaches achieve significant improve-
ment for cross-project predictions. Furthermore, in our prior work (Zhang et al. 2014), we
propose a context-aware rank transformation to convert the values of metrics to exactly the
same scales across projects. The rank transformation enables us to build a generalized model
that on average provides comparable performance as within-project models. Different from
the aforementioned studies, we focus on a in-depth analysis of three simple transformation
methods (i.e., log, Box-Cox, and rank) in the cross-project setting. We perform a thoroughly
analysis on the capability of these transformations on improving the normality of software
metrics (i.e., RQ1), and on the benefits of applying these transformations for cross-project
predictions (i.e., RQ2).

In addition to reducing the heterogeneity between the training and target projects, there
are few other approaches aiming to improve cross-project predictions. For instance, Jing
et al. (2016) propose a feature learning method, namely subclass discriminant analysis

Empir Software Eng (2017) 22:3186–3218 3213

(SDA), to effectively solve the class-imbalance problem in cross-project defect prediction.
In the case where the training and target projects do not share the same set of metrics, Nam
and Kim (2015) provide a solution. Canfora et al. (2013) propose to build multiple models
other than a single model. Similarly, we propose to integrate predictions by models built
using the three transformations (i.e., RQ3 and RQ4).

8 Threats to validity

In this section, we describe the threats to validity of our study under common guidelines by
Yin (2002).

Threats to conclusion validity concern the relation between the treatment and the out-
come. The main threats come from our implementation of the three transformations. For
instance, we normalize metric values transformed by the Box-Cox transformation to [1, 2].
We clearly describe our treatments of the three transformations, so that researchers can
replicate our work and yield the same conclusion when applying the same treatments as our
study.

Threats to internal validity concern our selection of subject systems and analysis meth-
ods. We choose subjects from the three publicly available data sets that have been used in
many other studies (He et al. 2012; Nam et al. 2013; Tantithamthavorn et al. 2016). The
selected projects have diversity in size and ratio of defectiveness. The threats to our analysis
method come from our choice of random forest to study RQ2 and RQ3. Thus, in RQ4, we
examine the effectiveness of our approach using six other classifiers.

Threats to external validity concern the possibility to generalize our results. Our
approach is based on log, Box-Cox, and rank transformations. All the three transforma-
tions are applicable to software metrics, since many metrics follow power law distributions
(Concas et al. 2007; Louridas et al. 2008; Zhang 2009). The diversity in size and defect-
proneness of our subject projects helps verify the generalizability of our approach. Never-
theless, further validations on other open source projects and even commercial projects are
welcome.

Threats to reliability validity concern the possibility of replicating this study. All three
data sets used in this study are publicly accessible. We also provide all necessary details of
our experiments on the internet.6

9 Conclusion

Cross-project defect prediction is still a challenging problem, since the heterogeneity
between the training and target projects (Nam et al. 2013; Zimmermann et al. 2009).
For instance, the values of software metrics exhibit varied distributions across projects
(Zhang et al. 2013). To this end, (Ma et al. 2012; Nam et al. 2013), and (Zhang et al.
2014) successfully apply appropriate transformations to improve the performance of

6http://www.feng-zhang.com/replications/EMSEtransformation.html

http://www.feng-zhang.com/replications/EMSEtransformation.html

3214 Empir Software Eng (2017) 22:3186–3218

cross-project defect prediction models. Apart from such complex transformations, several
simple transformations are overlooked. Therefore, we set out to investigate the impact
of three simple transformations (i.e., log, Box-Cox, and rank transformations) in the
cross-project setting.

In this paper, we observe that all three transformation methods have a similar power to
significantly improve the normality of software metrics. Moreover, cross-project prediction
models built with each of the three transformation methods achieve similar performances
(i.e., precision, recall, false positive rate, balance, F-measure and AUC value). However,
we find that these models do not always make the same prediction on the same file, since
the results of McNemar’s tests clearly show that these models can experience significantly
different error rates.

Therefore, we propose an approach MT (Multiple Transformations) to integrate pre-
dictions by the cross-project defect prediction models built using each of the three
transformation methods (i.e., log, Box-Cox and rank). We further enhance our approach
(i.e., MT+) by automatically selecting the most appropriate training project for each target
project. We perform an experiment using three public data sets, such as AEEEM (D’Ambros
et al. 2010), ReLink (Wu et al. 2011), and PROMISE (Jureczko and Madeyski 2010). The
results show that, comparing to the models built with only one transformation method (i.e.,
the widely used log transformation), our enhanced approach MT+ statistically significantly
improves recall, balance, and F-measure in all three data sets. For instance, the average F-
measures are improved by 24, 11 and 29% in AEEEM, ReLink, and PROMISE datasets,
respectively. Our approaches also leads to the performance improvement in cross-project
defect prediction models for various classifiers under study (e.g., random forest). Further-
more, we compare the performance of using untransformed values (Raw), untransformed
values but with the selection of the most appropriate training project (Raw+), rescaled val-
ues by the min-max method (Min-max), normalized values by the z-score method (Z-score),
transformed values by logarithm, and our approaches MT and MT+. We find that using
a single transformation method usually can not improve the performance of cross-project
defect prediction models. Instead, the models built with multiple transformations should
be integrated, and more importantly it is necessary to select the most appropriate training
project which can be done in an unsupervised way (i.e., by estimating the parameter of the
Box-Cox transformation).

For the future work, we recommend future studies to experiment with our approach for
potential gains in the predictive power of cross-project defect prediction models, since our
approach introduces little overhead by only adding simple mathematical operations. We are
interested to apply more advanced ensemble learners (e.g., Xia et al. 2015; Misirli et al.
2011; Panichella et al. 2014) to enhance our approach. In addition, it worths studying if it is
beneficial to apply multiple transformation methods when building other types of prediction
models (e.g., effort estimation).

References

Bettenburg N, Nagappan M, Hassan AE (2012) Think locally, act globally: improving defect and effort
prediction models. In: Proceedings of the 9th IEEE working conference on mining software repositories,
MSR ’12, pp 60–69

Bishara AJ, Hittner JB (2014) Reducing bias and error in the correlation coefficient due to nonnor-
mality. Educational and Psychological Measurement http://epm.sagepub.com/content/early/2014/11/10/
0013164414557639.full.pdf+html

Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 26(2):211–252

http://epm.sagepub.com/content/early/2014/11/10/0013164414557639.full.pdf+html
http://epm.sagepub.com/content/early/2014/11/10/0013164414557639.full.pdf+html

Empir Software Eng (2017) 22:3186–3218 3215

Breslow NE, Day NE (1980) Statistical methods in cancer research. vol. 1. the analysis of case-control
studies. International Agency for Research on Cancer Scientific Publications 1(32):338

Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-
project defect prediction. In: 2013 IEEE sixth international conference on software testing, verification
and validation (ICST), pp 252–261

Cohen J, Cohen P, West S, Aiken L (2003) Applied multiple Regression/Correlation analysis for the
behavioral sciences, 3rd edn. Lawrence Erlbaum, Mahwah, NY, USA

Concas G, Marchesi M, Pinna S, Serra N (2007) Power-laws in a large object-oriented software system. IEEE
Trans Softw Eng 33(10):687–708

Cruz A, Ochimizu K (2009) Towards logistic regression models for predicting fault-prone code across soft-
ware projects. In: ESEM 2009. 3rd international symposium on empirical software engineering and
measurement 2009, pp 460–463

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In:
Proceedings of the 7th IEEE working conference on mining software repositories, MSR’10, pp 31–
41

Fukushima T, Kamei Y, McIntosh S, Yamashita K, Ubayashi N (2014) An empirical study of just-in-time
defect prediction using cross-project models. In: Proceedings of the working conference on mining
software repositories, ACM, MSR’14, pp 172–181

Gaudard M, Karson M (2000) On estimating the box-cox transformation to normality. Commun Stat Simul
Comput 29(2):559–582. doi:10.1080/03610910008813628

Guo W (2014) A unified approach to data transformation and outlier detection using penalized assessment.
PhD thesis University of Cincinnati, Arts and Sciences: Mathematical Sciences

Han J, Kamber M, Pei J (2012) Data Mining: concepts and techniques, 3rd edn. Morgan Kaufmann,
Boston

He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the feasibility of cross-project defect
prediction. Autom Softw Eng 19(2):167–199

He Z, Peters F, Menzies T, Yang Y (2013) Learning from open-source projects: an empirical study on
defect prediction. In: 2013 ACM/IEEE international symposium on empirical software engineering and
measurement, pp 45–54

Japkowicz N, Shah M (2011) Evaluating learning algorithms: a classification perspective. Cambridge
University Press, New York, NY, USA

Jiang Y, Cukic B, Menzies T (2008) Can data transformation help in the detection of fault-prone modules?
In: Proceedings of the 2008 workshop on defects in large software systems, DEFECTS ’08, pp 16–20

Jing X, Wu F, Dong X, Qi F, Xu B (2015) Heterogeneous cross-company defect prediction by unified
metric representation and cca-based transfer learning. In: Proceedings of the 2015 10th joint meet-
ing on foundations of software engineering, ACM, New York, NY, USA, ESEC/FSE 2015, pp 496–
507

Jing XY, Wu F, Dong X, Xu B (2016) An improved sda based defect prediction framework for both within-
project and cross-project class-imbalance problems. IEEE Trans Soft Eng PP(99):1–1

Jureczko M, Madeyski L (2010) Towards identifying software project clusters with regard to defect predic-
tion. In: Proceedings of the 6th international conference on predictive models in software engineering,
PROMISE ’10, pp 9:1–9:10

Keren G, Lewis C (1993) A handbook for data analysis in the behavioral sciences: statistical issues. Lawrence
Erlbaum Hillsdale, NY, USA

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: Proceedings of the 33rd
international conference on software engineering, ICSE ’11, pp 481–490

Kuhn M, Johnson K (2013) Data pre-processing. In: Applied predictive modeling. Springer, New York,
pp 27–59

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Trans Softw Eng Methodol
18(1):2:1–2:26

Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-company software defect prediction. Inf
Softw Technol 54(3):248–256

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors. IEEE
Trans Softw Eng (TSE) 33(1):2–13

Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmermann T (2013) Local versus
global lessons for defect prediction and effort estimation. IEEE Trans Softw Eng 39(6):822–834

http://dx.doi.org/10.1080/03610910008813628

3216 Empir Software Eng (2017) 22:3186–3218

Misirli AT, Bener AB, Turhan B (2011) An industrial case study of classifier ensembles for locating software
defects. Softw Qual J 19(3):515–536

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: Proceedings of the 30th international conference on software
engineering, ICSE ’08, pp 181–190

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: Proceedings of the
28th international conference on software engineering, ACM, ICSE ’06, pp 452–461

Nam J, Kim S (2015) Heterogeneous defect prediction. In: Proceedings of the 2015 10th joint meeting on
foundations of software engineering, ACM, New York, NY, USA, ESEC/FSE, 2015, pp 508–519

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proceedings of the 2013 international conference
on software engineering, ICSE ’13, pp 382–391

Osborne JW (2008) 13 best practices in data transformation: the overlooked effect of minimum values, 0
edn, SAGE Publications, Inc., pp 197–205

Osborne JW (2010) Improving your data transformations: applying the box-cox transformation. Practical
Assessment Research & Evaluation 15(12)

Panichella A, Oliveto R, De Lucia A (2014) Cross-project defect prediction models: L’union fait la force. In:
2014 software evolution week - IEEE conference on software maintenance, reengineering and reverse
engineering (CSMR-WCRE), pp 164–173

Rahman F, Posnett D, Devanbu P (2012) Recalling the “imprecision” of cross-project defect prediction.
In: Proceedings of the ACM SIGSOFT 20th international symposium on the foundations of software
engineering, FSE ’12, pp 61:1–61:11

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’s d for evaluating group differences on the nsse and other surveys?
In: meeting of the Florida association of institutional research, pp 1–33

Selim G, Barbour L, Shang W, Adams B, Hassan A, Zou Y (2010) Studying the impact of clones on software
defects. In: Proceeddings of the 17th working conference on reverse engineering, pp 13–21

Shang H (2014) Selection of the optimal box–cox transformation parameter for modelling and forecasting
age-specific fertility. J Popul Res pp 1–11

Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman &
Hall/CRC

Song Q, Jia Z, Shepperd M, Ying S, Liu J (2011) A general software defect-proneness prediction framework.
IEEE Trans Softw Eng 37(3):356–370

Succi G, Pedrycz W, Djokic S, Zuliani P, Russo B (2005) An empirical exploration of the distributions of
the chidamber and kemerer object-oriented metrics suite. Empir Softw Eng 10(1):81–104

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated parameter optimization
of classification techniques for defect prediction models. In: Proceedings of the 38th international
conference on software engineering, ACM, ICSE’16, pp 321–332

Triola M (2004) Elementary statistics. Pearson/Addison-Wesley
Turhan B, Misirli AT, Bener AB (2013) Empirical evaluation of the effects of mixed project data on learning

defect predictors. Inf Softw Technol 55(6):1101–1118
Wu R, Zhang H, Kim S, Cheung SC (2011) Relink: recovering links between bugs and changes. In: Pro-

ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering, ESEC/FSE ’11, pp 15–25

Xia X, Lo D, Shihab E, Wang X, Yang X (2015) Elblocker: predicting blocking bugs with ensemble
imbalance learning. Inf Softw Technol 61:93–106

Yin RK (2002) Case study research: design and methods, 3rd edn. SAGE Publications
Zhang F, Mockus A, Zou Y, Khomh F, Hassan AE (2013) How does context affect the distribution of

software maintainability metrics? In: Proceedings of the 29th IEEE international conference on software
maintainability, ICSM ’13, pp 350–359

Zhang F, Mockus A, Keivanloo I, Zou Y (2014) Towards building a universal defect prediction model. In:
Proceedings of the 11th working conference on mining software repositories, MSR ’14, pp 41–50

Zhang F, Mockus A, Keivanloo I, Zou Y (2015) Towards building a universal defect prediction model with
rank transformed predictors. Empir Soft Eng pp 1–39

Zhang F, Zheng Q, Zou Y, Hassan AE (2016) Cross-project defect prediction using a connectivity-based
unsupervised classifier. In: Proceedings of the 38th international conference on software engineering,
ICSE ’16, pp 309–320

Empir Software Eng (2017) 22:3186–3218 3217

Feng Zhang is currently a postdoctoral research fellow with the Department of Electrical and Computer
Engineering at Queen’s University in Canada. He obtained his PhD degree in Computer Science from
Queen’s University in 2016. His research interests include empirical software engineering, software re-
engineering, mining software repositories, source code analysis, and defect prediction. His research has been
published at several top-tier software engineering venues, such as the International Conference on Software
Engineering (ICSE), and the Springer Journal of Empirical Software Engineering (EMSE). More about Feng
and his work is available online at http://www.feng-zhang.com.

Iman Keivanloo is currently a Post-doctoral researcher in the Department of Electrical and Computer Engi-
neering at Queens University, Canada. He received his MSc in Computer Science from Sharif University of
Technology, Iran in 2008. He graduated with his PhD from Concordia University, Montreal, Canada in 2013.
His research focuses on the area of source code similarity search and clone detection. He has published over
20 papers in major refereed international journals, conferences and workshops. Dr. Keivanloo has also served
as a committee member on several international conferences and workshops in the area of clone detection
and program comprehension.

Zhang H (2009) Discovering power laws in computer programs. Inf Process Manag 45(4):477–483
Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large

scale experiment on data vs. domain vs. process. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on the foundations of
software engineering, ESEC/FSE ’09, pp 91–100

http://www.feng-zhang.com

3218 Empir Software Eng (2017) 22:3186–3218

Ying Zou is a Canada Research Chair in Software Evolution. She is an associate professor in the Department
of Electrical and Computer Engineering, and cross-appointed to the School of Computing at Queen’s Univer-
sity in Canada. She is a visiting scientist of IBM Centers for Advanced Studies, IBM Canada. Her research
interests include software engineering, software reengineering, software reverse engineering, software main-
tenance, and service-oriented architecture. More about Ying and her work is available online at http://post.
queensu.ca/∼zouy.

http://post.queensu.ca/~zouy
http://post.queensu.ca/~zouy

	Data Transformation in Cross-project Defect Prediction
	Abstract
	Introduction
	Background on transformation methods
	Normality measurements
	Log transformation
	Rank transformation
	Box-Cox transformation

	Experimental setup
	Subject projects
	Classifiers for defect prediction
	Performance measures

	Motivation study
	RQ1. Are log, Box-Cox, and rank transformations equally effective in increasing the normality of software metrics?
	Motivation
	Approach
	Findings
	Regarding the Box-Cox transformation, the estimated parameter varies across projects

	RQ2. Do different transformations result in distinct predictions in cross-project defect prediction models?
	Motivation
	Approach
	Findings
	The predicted defective files are not consistent among the results of multiple defect prediction models built using different transformation methods.

	Our approach
	Our basic approach – MT (multiple transformations)
	Our enhanced approach MT+

	Evaluation of our approaches
	RQ3. Can our approaches improve the performance of cross-project defect prediction models?
	Motivation
	Approach
	Findings
	The false positive rate is increased by our approach MT+ in the ReLink and the PROMISE datasets, but it is controllable

	RQ4. Do our approaches work well for other classifiers?
	Motivation
	Approach
	Findings

	Related work
	Data transformation in defect prediction
	Cross-project defect prediction

	Threats to validity
	Threats to conclusion validity
	Threats to internal validity
	Threats to external validity
	Threats to reliability validity

	Conclusion
	References

