
Noname manuscript No.
(will be inserted by the editor)

Learning to Rank Code Examples for Code Search
Engines

Haoran Niu · Iman Keivanloo · Ying
Zou

Received: date / Accepted: date

Abstract Source code examples are used by developers to implement unfa-
miliar tasks by learning from existing solutions. To better support developers
in finding existing solutions, code search engines are designed to locate and
rank code examples relevant to user’s queries. Essentially, a code search en-
gine provides a ranking schema, which combines a set of ranking features to
calculate the relevance between a query and candidate code examples. Con-
sequently, the ranking schema places relevant code examples at the top of
the result list. However, it is difficult to determine the configurations of the
ranking schemas subjectively. In this paper, we propose a code example search
approach that applies a machine learning technique to automatically train a
ranking schema. We use the trained ranking schema to rank candidate code
examples for new queries at run-time. We evaluate the ranking performance
of our approach using a corpus of over 360,000 code snippets crawled from 586
open-source Android projects. The performance evaluation study shows that
the learning-to-rank approach can effectively rank code examples, and outper-
form the existing ranking schemas by about 35.65% and 48.42% in terms of
normalized discounted cumulative gain (NDCG) and expected reciprocal rank
(ERR) measures respectively.

Keywords Learning to rank · Code example · Code search · Code
recommendation

H. Niu
Department of Electrical and Computer Engineering, Queen’s University, ON, Canada
E-mail: 13hn@queensu.ca

I. Keivanloo
Department of Electrical and Computer Engineering, Queen’s University, ON, Canada
E-mail: iman.keivanloo@queensu.ca

Y. Zou
Department of Electrical and Computer Engineering, Queen’s University, ON, Canada
E-mail: ying.zou@queensu.ca

2 Haoran Niu et al.

1 Introduction

A code example is a source code snippet, i.e., a few lines of source code, used
to show how a specific programming task can be implemented [31]. Developers
rely on code examples to learn the correct way to use an unfamiliar library,
framework, or Application Programing Interface (API) [25][45][52]. Moreover,
code examples are commonly used by developers as a form of pragmatic code
reuse, which involves copying and pasting code examples from external re-
sources (e.g., Web) into a product under development [26][33][51]. Code reuse
also contributes to the quality of products in software development [30].

Generally speaking, developers search the Web for code examples. Such
practice is referred to as Internet-scale code search [19] or simply code search
[12]. More specifically, a code search query usually consists of API tokens, i.e.,
class or method names. For example, if a developer wants to retrieve the last
known device location from GPS using the API, LocationManager, he or she
might use a code search engine, such as Codota1, to search code examples that
match with the query: “LocationManager, getLastKnownLocation()”. Then
the search process of code search engines exploits a corpus of code snippets
to automatically extract the candidate code examples that match with the
API tokens specified in the query. The candidate code examples are ranked
based on the relevancy to the query. The studies by Brandt et al. [6] and Sim
et al. [51] report that developers spend up to 20% of their time searching for
code examples on the Web. To provide a better support for developers to find
code examples, a plethora of code search engines and recommendation systems
(e.g., [32][39][43][54]) are proposed to locate and rank code examples relevant
to user’s queries [25].

However, not all code examples relevant to a query have equal quality
[12][60]. Effective code examples are expected to be concise [12][32], complete
[31], and easy to understand [60]. Fig. 1 and Fig. 2 show two candidate code ex-
amples relevant to the query “LocationManager, getLastKnownLocation()”.
The first candidate answer (Fig. 1) provides a complete solution as a code
example. At first, the developer should create a LocationManager object to
access to the system location services, and then check the status of the GPS
provider. Once the GPS status is enabled, the developer can register for lo-
cation updates and obtain the last known location from the GPS provider.
Finally, the latitude and longitude of the location can be retrieved. However,
the second candidate answer (Fig. 2) is not an effective code example since
it is incomplete and contains some irrelevant code. The second candidate an-
swer does not show how to register for location updates, and contains some
unwanted code lines, such as fetching information from the network provider
(highlighted in Fig. 2).

Similar to Web search, developers prefer to receive effective code examples
appearing toward the top of the ranked result list [9]. Therefore, the ranking
capability plays an important role in the success of code example search engines

1 Codota:http://www.codota.com/

Learning to Rank Code Examples for Code Search Engines 3

Fig. 1 Effective code example for the query LocationManager, getLastKnownLocation()

Fig. 2 Low-quality code example for the query LocationManager, getLastKnownLocation()

[25]. Several features, such as textual similarity between code examples and
a query [32][39][54] and popularity of code examples [31][54] are proposed for
ranking code examples. An earlier study [39] shows that it is not sufficient to
use a single feature for ranking.

A ranking schema specifies how to combine a set of ranking features at
run-time to produce the final ranked result set [37]. However, it is difficult
to subjectively determine the configurations of the existing ranking schemas
(i.e., the participating features or the weights of the participating features).
Existing work [1][47] has explored to automatically calibrate the configurations
using genetic algorithms. In this paper, we propose to apply learning-to-rank
techniques to automatically tune the configurations of ranking schemas for
code example search.

Learning-to-rank [34] is the application of machine learning algorithms
in building ranking schemas for information retrieval systems. Binkley and
Lawrie [5] find that learning-to-rank can provide universal improvement in
the retrieval performance by comparing learning-to-rank with three baseline
configurations of a search engine.The significance of the finding is that a de-
veloper does not need to struggle with the configuration problem, but can use
learning-to-rank to automatically build a ranking schema that performs bet-
ter than the best configuration. Learning-to-rank has also been demonstrated
to perform well in different tasks in the software engineering context, such
as fault localization [57], duplication detection [62], and feature traceability
[5]. In addition, Binkley and Lawrie [5] show that learning-to-rank is robust.
Similar to the existing ranking schemas, the learned ranking schema can be
done once, off-line, as part of the model construction, and can be applied to a
new dataset without a significant loss of performance.

4 Haoran Niu et al.

In this paper, we propose an approach that can automatically learn a
ranking schema from the training data for code example search. To create the
training data, we identify 12 features of 2,500 code examples for 50 queries,
and collect the relevances between the queries and the corresponding code
examples. Then we apply a learning-to-rank algorithm to learn how the 12
features should be combined to build a ranking schema. The learned ranking
schema can be used to rank the candidate code examples for a new query at
run-time.

To evaluate the performance of our learning-to-rank approach, we build a
large-scale corpus of more than 360,000 code snippets crawled from 586 open-
source Android projects. We address the following three research questions:

RQ1: Does the learning-to-rank approach outperform the existing ranking
schemas for code example search?

We observe that the performance of our approach using the learning-to-
rank technique is significantly better than the existing ranking schemas. The
improvement averages 35.65% and 48.42% in terms of two measures of ranking
quality, the normalized discounted cumulative gain (NDCG) and the expected
reciprocal rank (ERR), respectively.

RQ2: Are the studied features of code examples equally important to our
approach?

We have have used 8 uncorrelated features to build the ranking schema.
We analyze the impact of each feature in the performance of ranking code
examples. We find that similarity, frequency and context are three influential
features for the ranking performance of our approach.

RQ3: Does our approach using the learning-to-rank technique outperform
Codota?

Codota is the only publicly available code example search engine that is
capable of ranking Android code examples. We study whether our approach
can place effective code examples at the top of the ranked list by comparing
our approach with Codota. The study shows that our approach can outperform
Codota in recommending relevant code examples for queries related to Android
application development. Specifically, for 36 out of 50 queries, our approach
recommends better code example list, which is 44% higher than Codota’s
winning 14 queries.

In this paper, we make the following contributions:

– Propose a code example search approach which applies machine learning
techniques to automatically learn a ranking schema from training data.

– Evaluate our approach using the training and testing datasets consisting
of 2,500 code examples related to 50 queries for Android application de-
velopment. The evaluation results show that our approach can effectively
rank candidate code examples and recommend relevant code examples for
developers compared to the existing ranking schemas and online engines.

Organization of the rest of the paper. Section 2 outlines the ranking
schema for code search. Section 3 describes the details of our approach. Section
4 explains the design of the case study. Section 5 presents the results of the

Learning to Rank Code Examples for Code Search Engines 5

case study. Section 6 discusses the threats to validity. Finally, related work
and conclusion are presented in Sections 7 and 8.

2 Learning-to-rank

A ranking schema is used to estimate the relevance between a query and
candidate code examples using a scoring function. As shown in Eq. 1, the
scoring function is defined as a weighted sum of k (k= 12) features (Table 2),
where each feature fi(q, c) measures the relevancy between a query q and a
candidate code example c from the ith feature’s point of view:

rel(q, c) =

k∑
i=1

wi × fi(q, c) (1)

Where fi(q, c) represents the ith ranking feature; wi represents the weight of
the ith ranking feature [59].

In this study, we attempt to train the weights automatically using the
learning-to-rank technique, which is the application of machine learning algo-
rithms in building ranking models. As stated by Li [34], learning to rank al-
gorithms can fall into three categories: pointwise approaches [17][35], pairwise
approaches [10][18][24], and listwise approaches [14][56]. Pointwise approaches
compute the absolute relevance score for each code example. In pairwise ap-
proaches, ranking is transformed to the classification on code example pairs to
reflect the preference between two code examples. In listwise approaches, code
example lists are generated through the comparison between code example
pairs. In our study, it is not necessary to obtain the complete order of candi-
date code examples for a query, we are more interested in placing relevant code
examples above less relevant ones. Thus, we apply the pairwise approach in
our work. Specifically, we apply a pairwise algorithm, called RankBoost [18],
to learn the ranking schema. The learning process identifies how the features
should be combined in Eq. 1 to create a ranking schema for code example
search.

3 Our Approach

In this section, we first introduce the overall process of our approach. Then,
we present the steps for extracting features of code examples. Lastly, we show
the details for learning a ranking schema from the training data.

3.1 Overall Process

The overall process of our code search approach consists of four major phases:
1) crawling Android projects; 2) extracting features; 3) learning a ranking
schema; and 4) ranking candidate code examples for new queries. The first

6 Haoran Niu et al.

Fig. 3 The process of the proposed code example recommendation approach for building
a ranking schema

Table 1 Summary of our corpus

Item Number
Num. of Projects 586
Num. of Java Files 65,592
Num. of Code Snippets 360,068
Loc. of Code Snippets 3,876,295

three phases are off-line processes, and are illustrated in Fig. 3. The ranking
phase occurs at run-time when a query is issued by a developer. The input
of our approach is the queries containing a class and one of its methods, and
a corpus of code snippets. Given a query, the approach retrieves all the code
snippets that contain the class or method names specified in the query from
the corpus, and computes the cosine similarities between the query and the
code snippets. Finally, we select the code snippets that are the most similar
to the query as the candidate code snippets. The candidates are ranked using
the trained ranking schema.

Crawling Android projects. To retrieve code examples for queries, we
have to prepare a corpus of code snippets. To build the corpus of code snippets
for Android application development, we crawl GoogleCode2 to find projects
labeled as “Android”. The crawler downloads the source code of the projects.
To extract code snippets from the open-source projects, we use a Java syn-
tax parser3 available in Eclipse JDT to extract one code snippet from each
method defined in the source code files with “java” extension. The approach
of extracting code snippets has been used by the earlier work [31][40] on code
example search and recommendation for Java source code. The extracted code
snippets are added to the corpus. Table 1 and Fig. 4 summarize the description
of the corpus used in this research.

Extracting features. We represent each candidate code example as a
vector, Vs, containing a set of feature values extracted from the code example.
The feature vector can be represented as Vs = (f1, ..., fi, ..., fn) where fi de-
notes the value of the ith feature, and n denotes the total number of features,
i.e., 12, in our approach.

2 Google Code project hosting: https://code.google.com/.
3 We use the parser from Eclipse JDT: http://www.eclipse.org/jdt/

Learning to Rank Code Examples for Code Search Engines 7

Fig. 4 Detailed summary of our corpus

Learning a ranking schema. In this phase, our approach automatically
learns a ranking schema from the training data. The training data contains
a set of queries and their candidate answers. We represent the training data
as a set of triples (q, r, Vs). More specifically, q represents a query. r denotes
the relevance between query q and candidate code example s. The relevance is
manually labeled by curators. Vs represents a vector that contains the feature
values of the candidate code example s. Then we learn a ranking schema from
the training data using RankBoost [18], one of the learning-to-rank algorithm.

Ranking candidate code examples for new queries. For a new query,
the trained ranking schema would compute a score for each candidate code
example. The score denotes the relevancy between the query and the candidate
code example. All the candidate code examples are then ranked based on the
computed scores in a descending order. The code examples appearing higher
in the ranked result list are more relevant to the query, i.e., more likely to be
effective code examples for the query.

3.2 Feature Extraction

In this section, we describe the features of code examples used in our approach
to train the ranking schema. In total, we adopt 12 features used in earlier stud-
ies [21][31][54]. As listed in Table 2, we classify the features in four categories:
similarity, popularity, code metrics and context. Furthermore, we can divide
the features into two groups: query-dependent and query-independent features
[36]. Query-dependent features are calculated with regard to a query. Query-
independent features only reflect characteristics of a code example regardless
of the query. The 12 features are described in the following subsections.

8 Haoran Niu et al.

Table 2 Selected features of code examples

Group Feature name Feature description Query-
dependent

Similarity Textual similarity Cosine similarity between a
query and a candidate code ex-
ample

yes

Popularity
Frequency

The number of times that the
frequent method call sequence
of a candidate code example
occurs in the corpus.

no

Probability
The probability of following
the method call sequence in a
candidate code example

Code Metrics

Line length The number of lines of code in
a candidate code example

no

Number of identifier The average number of iden-
tifiers per line in a candidate
code example

Call sequence length The number of method calls in
a candidate code example

Comment to code ratio
The ratio of the number of
comment lines to the LOC of
a candidate code example [11]

Fan-in
The number of unique code
snippets that call a specific
candidate code example

Fan-out The number of unique code
snippets called by a candidate
code example

Page-rank The measurement of the im-
portance of a candidate code
example

Cyclomatic complexity The number of decision points
(for, while, etc.) in a code ex-
ample

Context Context similarity Jaccard similarity between the
method signatures of a can-
didate code example and the
method body where a query is
issued

yes

3.2.1 Textual Similarity

Textual similarity between a query and candidate answers is the basic feature
used to judge relevancy in code search [32][39][54]. We use Vector Space Model
(VSM) [48] to compute the textual similarity between a query and candidate
answers. In this model, the query and the candidate code examples would be
represented as vectors of term weights. Then, we compute the term weight wt,d

for each term t using the classical term frequency-inverse document frequency
(tf−idf) weighting schema [38]. As defined in Eq. 2, tf−idf weighting schema
is intended to reflect the importance of a term to a document in a document

Learning to Rank Code Examples for Code Search Engines 9

collection.

wt,d = nft,d × idft

nft,d = 0.5 +
0.5× tft,d
maxt∈dtft,d

idft = log
N

dft

(2)

Manning et al. [38] defines tf−idf where term frequency tft,d means the
number of times that term t appears in document d (query or code exam-
ple); document frequency dft denotes the number of documents in which term
t appears; idft means the inverse document frequency which represents the
specificity of term t for the document that contains it. idft is defined as the
inverse of the number of documents in which term t appears, and N is the
total number of documents.

Then we compute the textual similarity between a query and a candidate
answer using cosine similarity [48] as defined in Eq. 3.

textualSim(Vq, Vc) =
V T
q Vc

|Vq||Vc|
(3)

Where Vq is a query vector and Vc is a candidate code example vector.

3.2.2 Popularity

Recent studies on code search [54], recommendation [12], and completion [58]
use popularity to identify candidate answers with a higher acceptance rate.
Popularity represents the closeness of a code snippet to the common implemen-
tation pattern frequently observed in a corpus of source code. The underlying
rationale is that the closer to the common patten in the corpus, the higher
chance for the recommended code snippet to be accepted by a developer. The
popularity of the underlying pattern in a code example is query-independent,
and it can be evaluated using frequency [54] or probability [55] feature.

To measure the popularity using frequency, we use the same approach
suggested by Keivanloo et al. ’s study [31]. An usage pattern is an ordered
sequence of method calls that are always used together to implement a rea-
sonable functionality. The frequency of a usage pattern is the number of times
that a set of method calls in the usage pattern are used together in the cor-
pus. The underlying usage pattern of a code example is the usage pattern most
similar to the call sequences of the code example. We consider the frequency
of the underlying usage pattern of a code example as the popularity of the
code example. To identify the underlying usage pattern of a code example, we
extract the method call sequence for each code snippet in the corpus and use
the frequent itemset mining technique [20] to identify the usage patterns in
the corpus by analyzing the method calls that are frequently used together.
Then, we identify the most similar usage pattern to the call sequence of a code
example by computing the cosine similarity between them, and consider the
most similar one as the underlying usage pattern of the code example.

10 Haoran Niu et al.

In addition to measuring the popularity using frequency, popularity can be
calculated using a probability-based approach proposed by Wang et al. [55].
We split the call sequences extracted from the corpus into pairs of two con-
secutive method calls. For example, a method call sequence in a code snippet
can denoted as Sm = m1,m2, ...,mn, where n represents the total number of
method calls in the code snippet. Then we can split the call sequence into
method call pairs P = p1, p2, pi, ..., pn−1, where pi denotes method call pair
(mi,mi+1); (mi,mi+1) means method mi is called before mi+1. After split-
ting all the method call sequences in the corpus into method call pairs, we
can compute the probability of method call pair pi as: P (pi) = 1

N , where N is
the number of method call pairs where method mi is called before the other
method in the corpus. The probability feature of a specific code example can
be computed as follows [55]:

probability =

n−1∏
i=1

P (pi) (4)

Where n represents the total number of method calls in the code example, P (pi)
is the probability of method call pair pi.

3.2.3 Code Metrics

The code metric group contains four code metrics that are used in earlier
studies [11] on code search and code quality prediction. Code metrics are a set
of query-independent features. Table 2 summarizes the code metric features
used in our approach. As indicated by Buse and Weimer [11], lines of code
and the average number of identifiers per line can be used to predict code
readability as one of the quality aspects of code examples. Call sequence length
denotes the number of method calls in the call sequence of a code example.
Comment to code ratio represents the proportion of comments in the code
example. Fan-in, fan-out and page-rank measures the complexity of inter-code-
snippets. Fan-in is defined as the number of code snippets that call a specific
code snippet. Fan-out describes the number of code snippets called by a specific
code snippet. Page-rank works by counting the number links to a particular
code example to determine the importance of the code snippet. The underlying
assumption is that more important code snippets are likely to receive more
links from other code snippets. To measure page-rank for code search [39], we
build a graph for code snippets in the corpus based on the their call relations.
In the graph, if code snippet A calls code snippet B, then, a link would exist
between code snippet A and code snippet B. Then we compute the page-
rank value for each code snippet in the call graph using a R package called
“igraph”4. Assuming that code snippets, C1, ...Cn, call code snippet C, and
N(E) represents the number of code snippets called by code snippet E. Then
the package computes the page-rank of each code snippet E using Eq.5 [8]:

4 Igraph package: http://cran.r-project.org/web/packages/igraph/igraph.pdf

Learning to Rank Code Examples for Code Search Engines 11

PR(E) = (1− d) + d(PR(E1)/N(E1) + ...+ (PR(En)/N(En)) (5)

Where the parameter d is a damping factor, and is usually set to 0.85 [8].

3.2.4 Context Similarity

The context similarity refers to the similarity between the context of the query
and the candidate code snippets [61]. An earlier study [27] observed that the
context feature improves the success rate of code search. We use the method
signatures of a code example and the method signature of the method body
where a query is issued to represent the context of the code example and the
query, respectively. Hence, context similarity measures the method signature
similarity between candidate code examples and the method body where the
query is issued (the query formulation process is described in Section 4.1.1).

We tokenize the method signatures of the method where query q is issued
using camel case splitting, and represent the set containing the tokenized terms
as Sq. Similarly, we denote the set containing the tokenized terms from the
method signature of a candidate code example as Sc. Then, the context sim-
ilarity between a query and a code examples can be computed using Jaccard
index [28] between the two term sets as follows:

contextSim(Sq, Sc) =
Sq ∩ Sc

Sq ∪ Sc
(6)

Where Sq is the set containing the tokenized terms from the query context; Sc

is the set containing the tokenized terms from the code example context.
For example, for the query, “LocationManager, getLastKnownLocation()”,

assuming that the method signature of the method body which issues the query
is “private Location getLastBestLocation()”, i.e., the method getLastKnown-
Location() has been invoked by the class LocationManager in the method
body, and the method signature of the candidate code example (shown in
Figure 1) is “public Location getLocation()”, then we can tokenize the two
method signatures into {private, location, get, last, best} and {public, loca-
tion, get}, respectively. Therefore, the context similarity between the query
and the candidate code example can be computed as 2/6 = 0.33 using Eq. 6.

3.3 Training a Ranking Schema

In our approach, we train the ranking schema using a learning to rank algo-
rithm that is known as RankBoost proposed by Freund et al. [18]. RankBoost
is an efficient boosting algorithm, so the training process on our training data
just takes a few minutes. This section provides a summary of the algorithm as
defined in [18].

The input of the learning-to-rank algorithm is the training data which
contains the candidate code examples relevant to a set of queries. Each code

12 Haoran Niu et al.

example is represented as a record with the form (q, r, Vc), where q means
a query id; r denotes the relevance between a query q and a candidate code
example c, which is tagged by curators; and Vc is the vector containing different
feature values of a code example c.

The known relevance information of code examples in the training data
can be encoded as a feedback function φ. For any pair of code example (c0,
c1) in the training data, φ(c0, c1) denotes the difference between the tagged
relevance of c0 and c1. φ(c0, c1) > 0 means that the code example c1 is tagged
with higher relevance than c0. φ(c0, c1) < 0 means the opposite. A value of
zero indicates no preference between c0 and c1.

The learning algorithm aims to find a final ranking H that is similar to the
given feedback function φ. To maximize such similarity, we focus on minimizing
the number of pairs of the code examples which are misordered by the final
ranking relative to the feedback function. To formalize the goal, let D(c0, c1) =
x ∗max{0, φ(c0, c1)} so that all negative values of φ are set to zero. Here, x
is a positive constant chosen so that

∑
c0,c1

D(c0, c1) = 1. Let us define a pair
(c0, c1) to be crucial if φ(c0, c1) > 0. Now the goal of the learning algorithm
is transformed to find a final ranking H which can minimize the (weighted)
number of the crucial-pair misorderings, which is defined as ranking loss [18]
and shown in Eq. 7.

loss =
∑
c0,c1

D(c0, c1)|H(c1) ≤ H(c0)| (7)

Where |H(c1) ≤ H(c0)| is 1 if H(c1) ≤ H(c0) holds and 0 otherwise.
Algorithm 1 shows the details of the learning process of RankBoost [18]

for the final ranking H. RankBoost operates in rounds. In each round t, it
produces a ranking function ft based on the ranking feature listed in Table
2. Meanwhile, it maintains a value Dt(c0, c1) over each pair of code examples
to emphasize the different parts of the training data. As shown in Eq. 8, the
algorithm uses the ranking function ft to update the value Dt in round t.

Dt+1(c0, c1) = Dt(c0, c1)exp(αt(ft(c0)− ft(c1))) (8)

Where Dt(c0, c1) is the maintained value for each pair of code examples in
round t; ft is the produced ranking function at round t; αt is a parameter for
the ranking function ft, and αt > 0 [18].

Suppose we expect the code example c0 to be ranked higher than the code
example c1, based on the definition Dt+1(c0, c1) in Eq. 8, Dt+1(c0, c1) will
decrease if the ranking function ft gives a correct ranking (ft(c1) > ft(c0)) and
increase otherwise. Therefore, Dt+1 will tend to concentrate on the misordered
code example pairs. With the indication, the ranking loss of the final ranking
H is proven to hold the equation [18]: loss(H) ≤

∏T
t=1Dt+1. To minimize the

loss function of the ranking schema H, we have to minimize Dt+1. Freund et
al. study [18] shows that Dt+1 is minimized when

αt =
1

2
ln(

1 + lt
1− lt

), lt =
∑
c0,c1

Dt(c0, c1)(ft(c1)− ft(c0)) (9)

Learning to Rank Code Examples for Code Search Engines 13

Where Dt(c0, c1) is the maintained value for each code example pair at round
t; ft is the accessed ranking function at round t.

In the process of minimizing the ranking loss of the final ranking H, the
parameter αt for the ranking function ft is obtained using Eq. 9. Therefore,
the final ranking can be represented as a weighted sum of different ranking
features, i.e., H(c) =

∑T
t=1 αtft(c), which can achieve the best performance

with regard to the loss function.

Algorithm 1 : RankBoost [18]

Require: Initial values of D(c0, c1) over each code example pair in the training data.
1: Intialize:D1(c0, c1) = D(c0, c1)
2: for t = 1, ..., T (T = 12) do
3: Build ranking function ft(c) based on the ranking feature.
4: Choose αt using Eq. 9.
5: Update: Dt+1(c0, c1) = Dt(c0, c1)exp(αt(ft(c0) − ft(c1)))
6: end for
7: Output the final ranking H(c) =

∑T
t=1 αtft(c)

4 Case Study Setup

To evaluate the performance of our approach for code example search, we
conduct a case study. The goal of this case study is two-fold: (1) evaluate the
effectiveness of our proposed approach; and (2) compare the impact of the
studied features on the performance of our approach. For the case study, we
need a corpus of Android applications (i.e., source code), training and testing
data, and performance measures. We have described the steps for building the
corpus in Section 3.1. In this section, we discuss the methods for creating the
training and testing data, the definition of the performance measures and the
comparison baselines.

4.1 Training and Testing Data Collection

4.1.1 Selecting Query and Code Examples

To create the training and testing datasets, we need a set of queries and
candidate code examples. We use the automatic framework proposed by Bruch
et al. [9] to randomly select a set of queries from our corpus. In this framework,
first a code snippet is randomly selected from the corpus. The code snippet
acts as an expected answer. Then, a query is automatically generated for
the expected answer by randomly selecting a method call from the content
of the expected answer and extracting the class and the invoked method in
the method call. Our final query set used for both training and testing steps
includes 50 queries along with the corresponding expected answers. The 50

14 Haoran Niu et al.

queries have been listed in Table 3. The size of query set meets the acceptable
number of queries required for performance evaluation of ranking schemas [42].

For a given query, the number of code snippets that contains the class or
method specified in the query is very large. Building a training dataset covering
all candidates requires a considerable amount of time and resources for the
learning process, and it is not feasible in practice [59]. Therefore, as suggested
by Ye et al. study [59], as a practical solution for building the training dataset
in the field of learning-to-rank, we consider only the code snippets that are
the most similar to the query as the candidate code examples. This approach
is also used by the earlier studies in code search engines, e.g., Bajracharya et
al. [4]. For each query q in the query set, we first extract all the code snippets
that contain certain items of the query, and then use the cosine similarity
feature textSim(q, c) to rank all the extracted code snippets. Similiar to Niu
et al. study [42], we select the top 50 code snippets as the candidate code
examples for a query. In total, we select 2,500 candidate code examples for the
50 queries.

4.1.2 Relevance Judgement

To create a training dataset for our approach to learn how to rank code exam-
ples, we need to provide the relevance between queries and their candidate code
examples. The relevance between a query and a candidate answer is described
by a label which represents the relevance grade. We use widely accepted multi-
graded absolute relevance judgment method [34] for labeling. Specifically, we
use four relevance levels, i.e., bad, fair, good, and excellent. The definition of
the relevance levels is listed in Table 4. Similar to earlier studies on learning-
to-rank or code search [12][34], we ask assessors to assign a relevance label to
each pair of query and candidate answer. Assessors need to judge the relevance
between each query and a candidate answer by comparing the candidate an-
swer to the expected answer of the query. We describe the setup of relevance
judgement process as follows:

Assessors. To judge the relevance and get different judgements for each
code example, we recruited 5 assessors to participate in our study. The 5 as-
sessors are 3 graduates and 2 undergraduates, the 3 graduates have more than
five-years’ Java programming experience, the 2 undergraduates have one-year’
Android application development experience. Before the assessment process,
they all received a 30-minutes’ training on the usage of our labeling tool and
the definitions of the four relevance levels.

Assignment. To reduce the subjectivity issue in human judgement, at
least three different judgements are needed to compute the agreement among
assessors. As suggested by Niu et al. [42], we divide the 50 queries into five
groups and label them as G1, G2, G3, G4, and G5. Each group contains 10
queries. Then three consecutive query groups, i.e., {G1, G2, G3}, {G2, G3, G4},
{G3, G4, G5}, {G4, G5, G1} and {G5, G1, G2}, are randomly assigned to one
assessor. Therefore, the candidate answers in each group are reviewed by three

Learning to Rank Code Examples for Code Search Engines 15

Table 3 Selected queries used for evaluation study

Id API class Method name
1 AnimatorSet start()
2 WifiInfo getIpAddress()
3 MediaPlayer start()
4 InetAddress getHostAddress()
5 Context getPackageManager()
6 Socket getInputStream()
7 SQLiteDatabase update()
8 ContentResolver query()
9 Camera getParameters()
10 Message setData()
11 MediaRecorder start()
12 Drawable draw()
13 ProgressDialog show()
14 Timer scheduleAtFixedRate()
15 HttpResponse setStatusCode()
16 ConnectivityManager getActiveNetworkInfo()
17 Canvas translate()
18 Transformer transform()
19 PowerManager isScreenOn()
20 SensorManager registerListener()
21 SAXParser parse()
22 ImageView setImageResource()
23 NotificationManager() notify
24 Digest update()
25 ViewPager addView()
26 Runtime exec()
27 SQLiteDatabase execSQL()
28 MessageDigest digest()
29 MenuInflater inflate()
30 GoogleAnalyticsTracker start()
31 Connection prepareStatement()
32 XmlPullParser require()
33 HttpClient executeMethod()
34 Animation initialize()
35 PackageManager getPackageInfo()
36 Graphics drawImage()
37 DatabaseHelper getWritableDatabase()
38 URL openStream()
39 DBAdapter open()
40 TimePicker setCurrentMinute()
41 Location getLatitude()
42 UriMatcher match()
43 Spinner setAdapter()
44 Parcel writeString()
45 Toast show()
46 BluetoothAdapter startDiscovery()
47 BluetoothServerSocket accept()
48 HttpURLConnection connect()
49 IBinder transact()
50 SmsManager divideMessage()

16 Haoran Niu et al.

Table 4 Relevance level instruction

Relevance level Comment
Excellent A candidate code example is exactly matched with or highly

similar to the expected answer
Good A candidate code example contains major operations of the

expected answer
Fair A candidate code example contains a part of operations of the

expected answer and contains many irrelevant lines of code
Bad A candidate code example contains few operations of the ex-

pected answer, or is totally irrelevant to the expected answer

where

Fig. 5 Interface of relevance labeling tool

assessors independently. In total, we gathered 7,500 relevance labels from the
five assessors for the 2,500 candidate answers of the 50 queries in our dataset.
The majority rule [55] is used when there is a disagreement on the relevance
labels for a specific candidate answer. In addition, we randomly select 10 code
examples out of 50 code examples (i.e., 20%) for each query, and evaluate
whether the obtained label for a code example reflects the relevancy between
the code example and the query properly. We found that 92% of the randomly
selected code examples are properly labeled. It confirms the accuracy of the
judgement results for our training and testing datasets.

Labeling Environment. We develop a labeling tool for four-graded rele-
vance judgment for code example search. The interface of the tool is illustrated
in Fig. 5. In this tool, a query and the query description are shown on top of
the window. A candidate answer (i.e., code snippet) and the expected answer
of the query are shown in the main area. Four-graded buttons are displayed
at the bottom of the interface. The assessors label the code examples query
by query. They would not jump back and forth among different queries during
the labeling process, but they could revise the final labeling results in case
certain code examples are wrongly labeled. To ensure fatigue does not affect
the labeling process, the labeling sessions are limited to 30 minutes to have
a 10-minute break [42]. On average, an assessor needs 5 sessions to label the
code examples for a specific group (i.e., 10 queries).

Learning to Rank Code Examples for Code Search Engines 17

4.2 Performance Measures

We evaluate the performance of our approach by ascertaining the goodness
of the ranked results lists produced by our approach. We need the graded
relevance metrics to evaluate the result lists since the multi-graded relevance
scale is used in the result lists. Discounted Cumulative Gain (DCG) is the only
commonly used metric for graded relevance [15]. Chapelle et al. [15] propose
another evaluation metric called Expected Reciprocal Rank (ERR) and find
that ERR quantifies user satisfaction more accurately than DCG. Therefore,
we use DCG and ERR to evaluate our approach. Since developers are always
interested in the top k answers, we use the extended evaluation measures, k-
DCG and k-ERR, to emphasize the importance of the ranking of the top k
answers.

DCG [29] measures whether highly relevant answers appear towards the
top of ranked list. The premise of DCG is that highly relevant code exam-
ples appearing lower in the result list should be penalized. To achieve better
accuracy, the DCG at each position for a chosen value of k (k-DCG) should
be normalized across queries. This is done by ranking the code examples in
a result list based on their relevances, producing the maximum DCG till po-
sition k, called ideal DCG (IDCG). Then, the normalized k-DCG (k-NDCG)
is defined as follows. The values of k-NDCG range from 0.0 to 1.0. Higher
k-NDCG values are desired.

k−NDCG =
k−DCG
k−IDCG

, k−DCG =

k∑
j=1

2rj − 1

log (1 + j)
(10)

Where rj is the relevance label of the code example in the jth position in the
ranked result list; k-IDCG is the k-DCG of an ideal ordering of top k code
examples, which means that top k code examples are ranked decreasingly based
on their relevances [42].

k-ERR [15] is defined as the expectation of the reciprocal of the position
k at which a developer stops when looking through a result list, which can be
denoted as

∑k
i=1

1
kP (user stops at position k). Suppose for a query, a ranked

result list of k code examples, c1, ..., ck, is returned. Stopping at position k
involves being satisfied with code example k, and not having been satisfied with
any of the previous code examples at the positions 1, ..., k−1, the probabilities
of which can be denoted as P (ck) and

∏k−1
j=1 (1−P (cj)), respectively. The two

probabilities are multiplied by 1/k, because it is the inverse stopping rank
whose expectation is computed. Therefore, the definition of k-ERR is given as
Eq. 11. The values of k-ERR range from 0.0 to 1.0. Higher k-ERR values are
desired.

k−ERR =

k∑
i=1

1

k
P (ri)

i−1∏
j=1

(1− P (rj)), P (r) =
2r − 1

2rmax
(11)

Where r denotes the relevance label of a code example; ri and rj are the rel-
evance labels of the code examples in the ith and jth position respectively in

18 Haoran Niu et al.

the ranked result list; rmax is the highest relevance label in the candidate code
example list. [15]

To make sure the stability of the training process, we conducted 10-fold
cross validation in the performance evaluation study. The queries are split
into 10 equally sized folds fold1, fold2, ..., fold10. In each round, 9 folds are
the training data, and the remaining fold is the testing data. The training
and testing data for each round are independent. For a given k value, we can
obtain 10 k-NDCG and k-ERR values for the evaluation of a ranking schema.
We compute the average of the 10 k-NDCG or k-ERR values to represent the
performance of the ranking schema.

4.3 Comparison Baselines

We summarize the ranking schemas used in the existing ranking approaches
into five schemas, including Random Ranking, Similarity Ranking, Weight-
edSum Ranking, Priority Ranking, and ReRanking. We list the five existing
ranking schemas as follows:

– Random Ranking randomly ranks the candidate answers within a result
set. It is a common practice in machine learning studies to measure the
improvement over random guesses [23].

– Similarity Ranking ranks candidate code examples based on their tex-
tual similarity with the corresponding query.

– WeightedSum Ranking computes the relevance value between a query
and a candidate code example using a weighted summation of different
features of the code example with equal coefficients [21].

– Priority Ranking ranks code examples based on the primary feature. If
two code examples have the same value for the primary feature, then the
secondary feature is used to prioritize the two code examples [40][54].

– ReRanking would re-rank the top-k candidate answers determined by the
primary feature using a secondary feature [31].

We also compare our approach against a commercial code recommendation
system, Codota. More specifically, Codota is the only publicly available code
example search engine that is capable of ranking Android code examples. The
ranking algorithms used in Codota identify common, credible and clear code
snippets. However, the details of Codota’s ranking schema is not known since
it is a closed source commercial product.

5 Case Study Result

This section discusses the results of our three research questions. We describe
the motivation, analysis approach and findings for each research question.

RQ1: Does the learning-to-rank approach outperform the exist-
ing ranking schemas for code example search?

Learning to Rank Code Examples for Code Search Engines 19

Motivation. A ranking schema can sort the candidate answers as a ranked
list based on their relevances to the query. Existing ranking schemas are mainly
hand-crafted heuristics with predefined configurations. We propose a ranking
schema for code search using a learning-to-rank technique, which can auto-
matically learn a ranking schema from a training dataset. In this research
question, we evaluate whether the ranking performance of our learning-to-
rank approach is better than the existing ranking schemas for code example
search in the context of Android application development.

Approach. At first, we conduct correlation analysis for the 12 identified
features of code examples. Correlated features have similar contribution to
the training process of ranking schema. Minimizing the correlation between
features can reduce the time and resource of training process and increase the
stability of the trained ranking schema [50]. Spearman’s rank correlation coef-
ficient (Spearman’s rho) and Pearson product-moment correlation coefficient
(Pearson’s r) are two commonly used measures for the correlation analysis.
Pearson’s r evaluates whether two variables tend to change together at a con-
stant rate. When the relationship between the variables is not linear, Spear-
man’s rho is more appropriate to use. Since the different feature values of code
examples are not always change with a consistent rate, we use Spearman’s rho
to analyze the correlation between different features of code examples. The
values of Spearman’s rho range from -1 and +1. A value close to +1 or -1
means that one variable is a monotone function of the other. A value close
to 0 indicates that the two variables have no correlation. Table 5 shows the
mapping between the values of Spearman’s rho and the level of correlation
[13]. After finding the highly correlated features, we select one representative
feature from the correlated features.

Once we narrow down to minimally collinear features, we use these features
to train a ranking schema using our approach, and then compare the ranking
performance of our approach with the existing ranking schemas as described
in Section 4.3. We use the corpus and dataset described in Section 4.1 for
this study. To evaluate our approach, we conducted 10-fold cross validation
(described in Section 4.2) to obtain k-NDCG and k-ERR values as defined in
Eq. 10 and Eq. 11 respectively. Higher k-NDCG and k-ERR values are desired.
We compute the performance improvement of our approach by comparing
the performance of our approach with baseline ranking schemas using the
formula: Improvement = O−B

O , where O denotes the ranking performance of
our approach, B means the ranking performance of a baseline ranking schema.
To ensure the reliability of our results, we did sensitivity study, with k ranging
from 1 to 20.

Mann-Whitney U test is a non-parametric test that does not hold assump-
tion on the distribution of data [49]. We use Mann-Whitney U test to determine
if the observed difference in the performance of our approach and the existing
ranking schemas is significant or not. We conduct Mann-Whitney U test with
5% confidence level (i.e., p-value < 0.05). We also calculate effect size using
Cliff’s delta [46] to quantify the difference between our approach and the ex-
isting schemas. Cliff’s delta is -1 or +1 if all the values in one distribution are

20 Haoran Niu et al.

Table 5 Mapping Spearman’s rho with coefficient level [13]

Spearman’s rho Coefficient Level
over 0.8 very high
0.6 - 0.8 high
0.4 - 0.6 normal
0.2 - 0.4 low
less than 0.2 very low

Table 6 Mapping Cliff’s delta with Cohen’s standards [46]

Cliff’s Delta Cohen’s d Cohen’s standards
0.147 0.2 small
0.330 0.5 medium
0.474 0.8 large

larger than the other one, and it is 0 when two distributions are identical [16].
Cohen’s standards are commonly used to interpret effect size. Therefore, we
map the Cliff’s delta to Cohen’s standards as summarized in Table 6.

To test whether a limited training dataset can significantly affect the rank-
ing performance of the learned ranking schema, we used a subset of the entire
dataset (i.e., totaling 50 queries) to train a ranking schema. The subset con-
tains 10 queries and their candidate code examples (i.e., 500 code examples).
To avoid the bias incurred by the fact that training and testing data are in the
same dataset used for the 10-fold cross validation, we created a new testing
dataset which is not included in the 50 queries used for the 10-fold cross valida-
tion. The new testing dataset contains 5 new queries and their candidate code
examples (i.e., 250 code examples) extracted from our corpus as described in
Section 4.1.1. The ranking of the code examples for each new query is gener-
ated using the ranking schema trained using the 10 queries (i.e., the subset of
the 50 queries). To examine the correctness of the generated ranking, we asked
one assessor to label the relevance between the 5 new queries and their candi-
date code examples. We compare the generated ranking and labeled ranking
by computing k-NDCG and k-ERR values to evaluate the performance of the
ranking schema that is trained using 10 queries and tested using 5 new queries.

Result. Fig. 6 shows the correlation structure of the 12 identified features.
As indicated by Table 5, five features, including line length, call sequence
length, fan-in, fan-out and cyclomatic complexity are correlated. Since line
length is commonly used to judge about code quality, e.g., [11][41], we select
line length to represent the five correlated ones. Therefore, we have 8 code
example features to build the ranking schemas, that is, the features in Table
2 except for call sequence length, fan-in, fan-out and cyclomatic complexity.

Fig. 7 and Fig. 8 present the k-NDCG and k-ERR results for our approach
and five baselines, with k ranging from 1 to 20. We can observe from Fig.
7 and Fig. 8 that our approach achieves better performance than the other
ranking schemas on both k-NDCG and k-ERR. The k-NDCG improvement

Learning to Rank Code Examples for Code Search Engines 21

Fig. 6 The correlation structure of the 12 identified features

Fig. 7 The k-NDCG comparison result between our approach and the existing ranking
schemas

achieved by our approach ranges from 32.37% to 54.61%. The k-ERR improve-
ment achieved by our approach ranges from 43.95% to 51.66%. Considering
the fact that most search engines always show top 10 results in their first re-
sult page [39], we care more about the top 10 results (i.e., k = 10). As shown
in Fig. 9 and Fig. 10, 10-NDCG and 10-ERR results for our approach are
0.46 and 0.38, which are better than all of the studied baselines, i.e., Random
Ranking (0.26 and 0.22), Similarity Ranking (0.31 and 0.19), WeightedSum
Ranking (0.31 and 0.18), Priority Ranking (0.29 and 0.19), ReRanking (0.31

22 Haoran Niu et al.

Fig. 8 The k-ERR comparison result between our approach and the existing ranking
schemas

Fig. 9 The result of performance evaluation study between our approach and the existing
ranking schemas in terms of 10-NDCG

and 0.2). Tables 7 and 8 list the performance improvement of our approach,
p-values and effect size of performance comparison between our approach and
baselines using k-NDCG and k-ERR measures with k=10. On average, our
approach achieved 35.65% and 48.42% improvement than the existing ranking
schemas for 10-NDCG and 10-ERR respectively. Applying Wilcox rank sum
test and Cliff’s delta shows that the improvement achieved by our approach is

Learning to Rank Code Examples for Code Search Engines 23

Fig. 10 The result of performance evaluation study between our approach and the existing
ranking schemas in terms of 10-ERR

significant with large effect size. The 10-NDCG and 10-ERR values obtained
for the ranking schema trained from a subset (10 queries) and tested on 5 new
queries are 0.45 and 0.36, respectively, which are similar to the ranking per-
formance obtained using the entire training dataset (45 queries) and 10-fold
cross validation. Even with the smaller training dataset, we can observe that
the learning-to-rank approach does perform well in ranking code examples for
new queries.

Our learning-to-rank approach can outperform the existing ranking
schemas in ranking code examples, with an average improvement of
35.65% and 48.42% in terms of 10-NDCG and 10-ERR respectively.

RQ2: Are the studied features of code examples equally impor-
tant to our approach?

Motivation. Our approach uses 8 uncorrelated features used in earlier
studies to learn how to rank candidate answers for code example search. We
include the features since earlier studies reported an improvement on the rank-
ing capability when the features are combined with similarity feature (e.g.,
[3][21][54]). In this research question, we evaluate the impact of each feature
in the performance of ranking code examples using our approach.

24 Haoran Niu et al.

Table 7 Summary of the improvement achieved by our approach comparing with the ex-
isting ranking schemas for code example search using 10-NDCG.

Ranking Schema 10-
NDCG

Improvement p-values Cliff’s
Delta

Effect
Size

Our Approach 0.46 - - - -
Random Ranking 0.26 43.48% 1.30e-04 0.92 large
Similarity Ranking 0.31 32.61% 2.09e-03 0.78 large
Weighted Ranking 0.31 32.61% 2.09e-03 0.78 large
Priority Ranking 0.29 36.96% 1.05e-03 0.82 large
ReRanking 0.31 32.61% 4.87e-04 0.86 large

Table 8 Summary of the improvement achieved by our approach comparing with the ex-
isting ranking schemas for code example search using 10-ERR.

Ranking Schema 10-
ERR

Improvement p-values Cliff’s
Delta

Effect
Size

Our Approach 0.38 - - - -
Random Ranking 0.22 42.11% 1.47e-02 0.64 large
Similarity Ranking 0.19 50% 3.89e-03 0.74 large
Weighted Ranking 0.18 52.63% 2.88e-03 0.76 large
Priority Ranking 0.19 50% 5.20e-03 0.72 large
ReRanking 0.2 47.37% 8.93e-03 0.68 large

Approach. We consider the ranking schema built using our approach with
8 uncorrelated features, as the baseline ranking schema sbase. Then, we build
alternative ranking schemas to analyze the impact of each feature on the rank-
ing performance. We use the same approach as Breiman study [7] to build
alternative ranking schemas. We randomly order the values of one feature for
the candidate code examples each time when building ranking schemas using
our approach. The rationale is that the impact of one feature on the per-
formance of the baseline approach can be observed when the feature values
are randomized. In total, we generate eight alternative ranking schemas. The
first alternative ranking schema salt−sim considers all of the features used in the
baseline ranking schema sbase except for the similarity feature. Following the
same naming convention, the other alternative ranking schemas are denoted by
salt−sim, salt−ctx, salt−fre, s

alt
−len, salt−cmt, s

alt
−ran, salt−pro, and salt−ide where they consider

all the features except for similarity, context, frequency, line length, comment
to code ratio, page-rank, probability, and number of identifier respectively. Fi-
nally, we compare the performance of the baseline with the alternative ranking
schemas to analyze the impact of features on the performance of the baseline
approach in terms of k-NDCG and k-ERR, with k ranging from 1 to 20.

Mann-Whitney U test is a non-parametric test that does not hold assump-
tion on the distribution of data [49]. We conduct Mann-Whitney U test with
5% confidence level (i.e., p-value < 0.05) to study whether there is a statistical
difference between the performance of an alternative schema and the baseline.
If the difference of ranking performance between an alternative schema and
the baseline is significant, we can conclude that the feature randomized when

Learning to Rank Code Examples for Code Search Engines 25

building the alternative schema is actually important to the success of ranking
code examples using learning-to-rank approach.

Result. Fig. 11 and Fig. 12 summarize the result of the performance com-
parison study between the baseline ranking schema and the alternatives in
terms of k-NDCG and k-ERR, with k ranging from 1 to 20. We can see from
Fig. 11 and Fig. 12 that randomizing similarity, context or frequency obviously
reduces the performance of our approach from k-NDCG and k-ERR point of
view. Similar to the earlier studies on code example search [39], we look into
the comparison result when k is set to 10. Fig. 13 and Fig. 14 show the 10-
NDCG and 10-ERR comparison result between the baseline and alternative
ranking schemas. Table 9 lists the decrease in performance and p-values when
we compare the baseline schema with the alternative schemas using 10-NDCG
and 10-ERR. We observe that randomizing similarity (salt−sim) or frequency
(salt−cntx) features decreases the performance in terms of 10-NDCG significantly.
Randomizing similarity (salt−sim) or context (salt−cntx) features decreases the per-
formance in terms of 10-ERR significantly. However, randomizing the other
features does not affect the performance significantly. Therefore, we can con-
clude that similarity, context, and frequency are the three influential features
for the ranking performance of our approach.

Discussion. As illustrated in Fig. 13 and Fig. 14, the alternative rank-
ing schema salt−ide performs better than the baseline ranking schema sbase. It
indicates that the feature, the number of identifiers per line, constitutes no
predictive influence on the code example ranking. To elaborate, assuming two
code examples that are relevant to the same query have the same source code,
and the statements in one of the code examples are broken down into multi-
ple lines while the other does not.The total number of identifiers of the two
code examples are the same since the content of the two code examples are
the same. However, the lines of code of the two code examples are different.
In other words, the two code examples are different in terms of the number
of identifiers per line. However, the code examples should be ranked with the
same relevance labels. Therefore, the number of identifiers per line, is not a
positive feature to predict the code example ranking.

Similarity, frequency and context are three influential features for
the ranking performance of the learning-to-rank approach in the
context of code example search and recommendation.

RQ3: Does our approach using the learning-to-rank technique
outperform Codota?

Motivation. Code examples can help developers learn how to use a specific
API or class [31]. Successful code example search engine should place effective
code examples at the top of ranked list to improve the user experience in
searching for code examples [42]. In this research question, we compare our
approach with Codota in terms of recommending effective code examples to
evaluate the usefulness of our approach.

26 Haoran Niu et al.

Fig. 11 Studying the impact of features on the performance of our approach based on
k-NDCG measure

Fig. 12 Studying the impact of features on the performance of our approach based on
k-ERR measure

Approach. Similar to the earlier studies on the comparison of Web search
engines [2], we design a user study to identify which code search engine is
more successful in providing effective code examples at the top of the ranked
result set. There are five assessors participating in our user study by expressing
the preference between the code examples recommended by our approach and
Codota for 50 randomly selected queries. The five assessors are the same people
who judge the relevances between the queries and the corresponding code
examples in the labeling process. To avoid the issue of knowledge transfer, we
assign an assessor with the queries he or she has never judged before in the
labeling process. For each query, an assessor is provided with two lists of top
5 answers from our approach and Codota respectively. The two result sets are
presented side by side anonymously [53]. Therefore, the assessors do not know
which list belong to which engine. Also for each query, the location (i.e., left or
right side of the window) of the result for each engine is selected randomly as
suggested by Bailey et al. [2]. Assessors have to express the preference between

Learning to Rank Code Examples for Code Search Engines 27

Fig. 13 Performance comparison between baseline and alternative ranking schemas in terms
of 10-NDCG measure

Fig. 14 Performance comparison between baseline and alternative ranking schemas in terms
of 10-ERR measure

28 Haoran Niu et al.

Table 9 Summary of ranking performance for identifying the most influential features

Ranking schemas
10-NDCG 10-ERR
Avg. Impact p-value Avg. Impact p-value

sbase (all features) 0.46 - - 0.38 - -

salt−sim(all features ex-
cept for similarity)

0.36 -21.74% 9.77e-03 0.32 -15.79% 1.37e-02

salt−ctx(all features ex-
cept for context)

0.4 -13.04% 6.45e-02 0.3 -21.05% 5.86e-03

salt−fre(all features ex-

cept for frequency)

0.4 -13.04% 2.73e-02 0.32 -15.79% 0.1055

salt−len(all features ex-

cept for line length)

0.45 -2.17% 0.2807 0.37 -2.63% 0.2807

salt−cnt(all features ex-
cept for comment to
ratio)

0.45 -2.17% 0.6356 0.37 -2.63% 0.9397

saltran(all features ex-
cept for page-rank)

0.46 -0.00% 1.00 0.38 -0.00% 1.00

salt−pro(all features ex-

cept for probability)

0.46 -0.00% 0.6356 0.37 -0.00% 0.6356

salt−ide(all features ex-

cept for identifier)

0.47 +2.17% 0.5566 0.39 +2.63% 0.6953

the two code examples at rank k where 1 ≤ k ≤ 5, i.e., 5 code example pairs
for one query. Each assessor evaluates 50 code example pairs for 10 queries. In
total 250 pairs of code examples are evaluated by five assessors for 50 randomly
selected queries as described in Section 4.1.1. If one of the result sets has more
preferred code examples than the other one, we refer to it as the winner result
set. Finally, we report (1) the average number of preferred code examples in
the result set for each query by each engine, and (2) the number of winning
result sets for each engine.

Mann-Whitney U test is a non-parametric test that does not hold assump-
tion on the distribution of data [49]. We conduct Mann-Whitney U test to
check if the difference in the numbers of the preferred code examples in the
result sets recommended for a query by our approach and Codota is signifi-
cant. However, Mann-Whitney U test is not suitable to be used to compare
the difference in the number of winning results since the recorded observations
are boolean. We use Chi-Square test [22] to determine if there is a significant
difference between the studied code search engines in terms of the number of
winning result sets. We use the 5% confidence level (i.e., p-value < 0.05) to
identify the significance of the comparison results.

Results. Fig. 15 shows the average number of preferred answers in the
result set recommended by our approach and Codota. We observe that out of
five answers per query, our approach achieves 3 preferred code examples while
2 answers of Codota are preferred in the top 5 answers. The p-values for the
comparison of preferred code examples between our approach and Codota is
1.72e − 04. In addition, 36 out of 50 queries, our approach can recommend
winning result sets. It is 44% higher than Codota’s 14 winning queries. The

Learning to Rank Code Examples for Code Search Engines 29

Fig. 15 Comparison results between our learning-to-rank approach and Codota in terms
of the number of preferred candidate code examples for one query

comparison between Codota and our approach in terms of the number of
winning result sets is significant, with the p-value of 1.813e−11. Therefore, we
conclude that our approach can outperform Codota for recommending effective
code examples for queries related to Android application development.

Our learning-to-rank approach performs better than Codota by
44% in recommending effective code examples for queries.

6 Threats to Validity

In this section, we analyze the threats to validity for this study following the
common guidelines provided in [44].

Threats to construct validity concern whether the setup and measure-
ment in the study reflect real-world situations. In our study, the construct
validity threats mainly come from the manual labeling of the relevances be-
tween queries and candidate code examples. The subjective knowledge about
programming may affect the accuracy in judging on relevance. To reduce the
subjectivity in relevance labeling, the relevance between a query and each can-
didate code example are judged by three independent assessors, and we apply
the majority rule if there is a disagreement. In addition, the candidate code
examples are shown to the assessors query by query. It might be concerned

30 Haoran Niu et al.

that an assessor may just select one code example as relevant one and label the
other code examples irrelevant. To alleviate the concern, we ask the assessors
to independently judge each code example based on the description and the
relevance label specification for a specific query. The concern can be further
reduced by comparing the relevance labels from three independent assessors
and the final validation for randomly selected labels.

Threats to internal validity concern the uncontrolled factors that may
affect the experiment result. In our experiment, the main threats to internal
validity come from feature extraction from code snippets. We use Eclipse JDT
AST parser to parse the source code of Android projects and extract code
snippets. For each code snippet, we compute the values of its features using
the definition described in Section 3.2.

Threats to conclusion validity concern the relation between the treat-
ment and the outcome. We conducted 10-fold cross validation as sensitivity
study. When computing the significance of comparison results, we have used
non-parametric test that does not assume the distribution of the data. The
difference in the code corpus used by our approach and Codota may affect the
conclusion. However, our code corpus is large-scale and created by extracting
code snippets from open-source Android projects in GoogleCode. Therefore,
it is comparable to the corpus used by Codota.

Threats to external validity concern whether our experimental results
can be generalized for other situations. The main threats to external validity
in our study is the representativeness of our corpus and queries. Our code
base contains more than 360,000 code snippets extracted from open-source
Android projects in Google Code. And we extract 2,500 code examples rele-
vant to 50 queries to create the training data. The size of the training data
is sufficient to learn a ranking schema that performs better than other base-
line ranking schemas. In practice, the training data can be obtained from the
usage logs of code search engines which contains the searching queries and
the selected(relevant) candidate code examples. Therefore, the trained rank-
ing schema can perform better using more training data available in practice.
As for the queries, the size of our query set (i.e., 50) is comparable to the
similar studies on learning-to-rank [42], and meets the minimum number of
queries recommended for search engine evaluation [37].

Threats to reliability validity concern the possibility to replicate this
study. All the necessary details that are needed to replicate our work are
publicly available: https://www.dropbox.com/s/4gxs85dii1nms9t/Rep
lication.rar?dl=0.

7 Related Work

In this section, we review the studies related to ranking code examples for
source code search, and the application of learning-to-rank techniques in other
areas.

Learning to Rank Code Examples for Code Search Engines 31

7.1 Ranking for Source Code Search

Code search engines, such as Google Code Search and Ohloh Code can return
code snippets by ranking them based on their textual similarity to queries.
Sourcerer [3] is a search engine for open-source code. It implements a basic
notion of CodeRank by extracting structural information from the code to
enable structure-based search instead of conventional keyword-based forms.
Thummalapenta and Xie [54] develop an approach called PARSEWeb which
recommends method-invocation sequences (MIS) to benefit object transfor-
mation tasks. The approach uses the frequency and length of MISs to rank
final result list. McMillan et al. [21] propose a search engine called Exemplar
to find highly relevant software projects to natural-language query. In this
search engine, they adopt three different ranking schemes called WOS (word
occurrences schema), DCS (dataflow connection schema) and RAS (relevant
API calls schema) to sort the list of the retrieved applications. Mishne et al.
[40] present an approach to answer semantic code search. In this approach, re-
turned code snippets are ranked based on the number of similar code snippets
which follows the call sequence extracted from the code snippets. Keivanloo et
al. [31] propose a pattern-based approach for spotting working code examples.
The approach considers the code snippet’s similarity to query, popularity and
line length to rank working examples.

The above approaches use a single feature or propose some heuristics to
combine the adopted features to rank software-related entities (e.g., code ex-
ample or software packages). As opposed to the existing work on ranking for
code search, we automatically build a ranking schema using machine learning
techniques in this paper. In RQ1, we identified the major approaches proposed
in the earlier work on ranking code examples, and compared them with our
approach.

7.2 Learning-to-Rank

Learning-to-rank has been applied to specific problems related to software
maintenance and evolution. Zhou and Zhang [62] has proposed a method,
BugSim, which uses learning-to-rank approach to automatically retrieve du-
plicate bug reports. The evaluation results show that their proposed method
outperforms previous methods using SVM and BM25Fext. Xuan and Mon-
perrus [57] propose Multric, which locates fault position in source code by
applying learning-to-rank. It is observed that Multric performs more effec-
tively than existing approaches in fault localization. Ye et al. [59] introduce a
learning-to-rank approach to rank source code files that might cause a specific
bug. It shows that their proposed approach significantly outperforms two state-
of-the-art methods in recommending relevant files for bug reports. Binkley and
Lawrie [5] explores the application of learning-to-rank in feature location and
traceability. It demonstrates that learning-to-rank works well in the context
of software engineering.

32 Haoran Niu et al.

Based on the results of applying learning-to-rank in different areas, we
can see that learning-to-rank is robust and is widely applicable. In this study,
we apply learning-to-rank on code example search for Android application
development.

8 Conclusion

In this paper, we have proposed a code example search approach which applies
a learning-to-rank technique to automatically build a ranking schema. To cre-
ate training and testing data, we have identified 12 features of code examples.
Then we learn a ranking schema from a training dataset. The learned ranking
schema can be used to rank candidate code examples for new queries.

We evaluate our approach using k-NDCG and k-ERR measures. The result
of the case study shows that the performance of our approach is significantly
better than the existing ranking schemas in searching code examples for An-
droid application development. Among the selected 12 features, similarity,
frequency and context are the three influential features for the ranking per-
formance of our approach. Finally, we compare our approach with Codota, a
commercial online code example search engine for Android application devel-
opment. Our approach outperforms Codota by 44% in terms of recommending
effective code examples.

The better performance of our approach using the learning-to-rank tech-
nique can help code search engines place effective code examples at the top
of result list and then further improve the user experience in searching for
code examples. In the future, we plan to evaluate the performance of learning-
to-rank approach using more queries selected from the usage logs of existing
code search engines and queries containing multiple keywords. We also would
like to study the application of the approach for recommending other types of
software artifact, e.g., components or libraries, for pragmatic reuse.

Acknowledgements Many thanks to Liam Gordon, Graem Daly, Bipin Upadhyaya, Ehsan
Salamati, and Feng Zhang for their valuable help in relevance labeling at this work.

References

1. A. Panichella B. Dit, R.O.M.D.P.D.P., Lucia, A.D.: How to effectively
use topic models for software engineering tasks? an approach based on
genetic algorithms. In: Proceedings of the 2013 International Conference
on SOftware Engineering (ICSE), pp. 522–531 (2013)

2. Bailey, P., Thomas, P., Hawking, D.: Does brandname influence percerived
search result quality? yahoo!, google, and webkumara. In: Proceedings of
ADCS (2007)

3. Bajracharya, S., Ngo, T., Linstead, E., Rigor, P., Dou, Y., Baldi, P., Lopes,
C.: Sourcerer: A search engine for open source code supporting structure-

Learning to Rank Code Examples for Code Search Engines 33

based search. In: Proceedings of International Conference on Object-
Oriented Programming Systems, Systems, Languages, and Applications
(2006)

4. Bajracharya, S.K., Ossher, J., Lopes, C.V.: Leveraging usages similarity
for effective retrieval of examples in code repositories. In: Proceedings of
the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, pp. 157–166 (2010)

5. Binkley, D., Lawrie, D.: Learning to rank improves ir in se. In: Proceed-
ings of 2014 IEEE International Conference on Software Maintenance and
Evolution (2014)

6. Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M., Klemmer, S.: Two
studies of opportunistic programming: interleaving web foraging, learning,
and writing code. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1589–1598 (2009)

7. Breiman, L.: Random forests pp. 5–32 (2001)
8. Brin, S., L.Page: The anatomy of a large-scale hypertextual web search

engine. In: Proceedings of 7th International World-Wide Web Conference
(1998)

9. Bruch, M., Schfer, T.: On evaluating recommender systems for api usages.
In: Proceedings of the 2008 international workshop on Recommendation
systems for software engineering, pp. 16–20 (2008)

10. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
Hullender, G.: Learning to rank using gradient descent. In: Proceedings of
the 22nd international conference on Machine learning, pp. 89–96 (2005)

11. Buse, R.P.L., Weimer, W.: Learning a metric for code readability. IEEE
Transactions on Software Engineering 36, 546–558 (2010)

12. Buse, R.P.L., Weimer, W.: Synthesizing api usage examples. In: 34th
International Conference on Software Engineering (2012)

13. Campbell, M., Swinscow, T.D.V.: Statistics at square one (2009)
14. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from

pairwise approach to listwise approach. In: Proceedings of the 24th inter-
national conference on Machine learning, pp. 129–136 (2007)

15. Chapelle, O., Metzler, D., Zhang, Y., Grinspan, P.: Expected reciprocal
rank for graded relevance. In: Proceedings of the 18th ACM conference
on Information and knowledge management, pp. 621–630 (2009)

16. Cliff, N.: Dominance statistics: Ordinal analysis to answer ordinal ques-
tions (1993)

17. Crammer, K., Singer, Y.: Pranking with ranking. In: Advances in Neural
Information Processing Systems 14, p. 641647 (2001)

18. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting al-
gorithm for combining preferences. In: The Journal of Machine Learning
Research, pp. 933–969 (2003)

19. Gallardo-Valencia, R.E., Sim, S.E.: Internet-scale code search. In: Proceed-
ings of the 2009 ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, pp. 49–52 (2009)

34 Haoran Niu et al.

20. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent item-
sets. In: IEEE ICDM Worshop on Frequent Itemset Mining Implementa-
tions (2003)

21. Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., Cumby,
C.: Exemplar: A source code search engine for finding highly relevant
applications. IEEE Transactions on Software Engineering 38, 1069–1087
(2012)

22. Greenwood, P.E., Nikulin, M.S.: A guide to chi-squared testing (1996)
23. Harrington, P.: Machine learning in action (2012)
24. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries

for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–
132. MIT Press (2000)

25. Holmes, R., Cottrell, R., Walker, R.J., Denzinger, J.: The end-to-end use of
source code examples: An exploratory study. In: 25th IEEE International
Conference on Software Maintenance (2009)

26. Holmes, R., Walker, R.J.: Systematizing pragmatic software reuse. ACM
Transactions on Software Engineering and Methodology 21 (2012)

27. Holmes, R., Walker, R.J., Murphy: Strathcona example recommendation
tool. In: Proceedings of European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pp. 237–240 (2005)

28. Jaccard, P.: tude comparative de la distribution florale dans une portion
des alpes et des jura. In: Bulletin de la Socit Vaudoise des Sciences Na-
turelles 37, p. 547579 (1901)

29. Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of ir tech-
niques. In: ACM Transactions on Information Systems, pp. 422–446 (2002)

30. Kapser, C., Godfrey, M.W.: ”cloning considered harmful” considered
harmful. In: 13th Working Conference on Reverse Engineering, pp. 19–28
(2006)

31. Keivanloo, I., Rilling, J., Zou, Y.: Spotting working code examples. In:
Proceedings of the 36th International Conference on Software Engineering,
pp. 664–675 (2014)

32. Kim, J., Lee, S., Hwang, S., Kim, S.: Towards an intelligent code search en-
gine. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (2010)

33. Lange, B.M., Moher, T.G.: Some strategies of reuse in an object-oriented
programming environment. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 69–73 (1989)

34. Li, H.: A short introduction to learning to rank. IEICE Transactions on
Information and Systems 94, 1854–1862 (2011)

35. Li, P., Burges, C., Wu, Q.: Mcrank: Learning to rank using multiple clas-
sification and gradient boosting. In: Proceedings of the 21st Annual Con-
ference on Neural Information Processing Systems, pp. 897–904 (2008)

36. Liu, T.Y.: Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 38, 225–331 (2009)

Learning to Rank Code Examples for Code Search Engines 35

37. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to information
retrieval (2008)

38. Manning, C.D., Raghavan, P., Schutze, H.: Scoring, term weighting, and
the vector space model (2008)

39. McMillan, C., Poshyvanyk, D., Grechanik, M., Xie, Q., Fu, C.: Portfolio:
Searching for relevant functions and their usages in millions of lines of
code. ACM Transactions on Software Engineering and Methodology 22
(2013)

40. Mishne, A., Shoham, S., Yahav, E.: Typestate-based semantic code search
over partial programs. In: Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications,
pp. 997–1016 (2012)

41. Nagappan, N., Ball, T.: Use of relative code churn measures to predict
system defect density. In: Proceedings of 27th international conference on
Software engineering, pp. 284–292 (2005)

42. Niu, S., Guo, J., Lan, Y., Cheng, X.: Top-k learning to rank: labeling,
ranking and evaluation. In: Proceedings of the 35th international ACM
SIGIR conference on Research and development in information retrieval,
pp. 751–760 (2012)

43. Reiss, S.P.: Semantics-based code search. In: Proceedings of the 31st In-
ternational Conference on Software Engineering, pp. 243–253 (2009)

44. Robert, K.Y.: Design and methods (2002)
45. Robillard, M.P.: A field study of api learning obstacles. Empirical Software

Engineering 16 (2011)
46. Romano, J., Kromrey, J., Coraggio, J., Skowronek, J.: Appropriate statis-

tics for ordinal level data: Should we really be using t-test and cohen’s d
for evaluating group differences on the nsse and other surveys? In: AIR
Forum, pp. 1–33 (2006)

47. S. Lohar S. Amornborvornwong, A.Z., Huang, J.C.: Improving trace ac-
curacy through data-driven configuration and composition of tracing fea-
tures. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 378–388 (2013)

48. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic
indexing. In: Communications of the ACM, pp. 613–620 (1975)

49. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman and Hall/CRC (2007)

50. Shihab, E., Zhen, M., Ibrahim, W.M., Adams, B., Hassan, A.E.: Under-
standing the impact of code and process metrics on post-release defects:
A case study on the eclipse project. In: Proceedings of 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (2010)

51. Sim, S., Gallardo-Valencia, R., Philip, K., M. Umarji, M.A., Lopes, C.,
Ratanotayanon, S.: Software reuse through methodical component reuse
and amethodical snippet remixing. In: Proceedings of the ACM 2012 con-
ference on Computer Supported Cooperative Work, pp. 1361–1370 (2012)

36 Haoran Niu et al.

52. Stylos, J., Faulring, A., Yang, Z., Myers, B.A.: Improving api documen-
tation using api usage information. In: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, pp. 119–126 (2009)

53. Thomas, P., Hawking, D.: Evaluation by comparing result sets in con-
text. In: Proceedings of ACM International Conference on Information
and Knowledge Management (2006)

54. Thummalapenta, S., Xie, T.: Parseweb: A programmer assistant for
reusing open source code on the web. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 204–213 (2007)

55. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining
succinct and high-coverage api usage patterns from source code. In: Pro-
ceedings of the 10th Working Conference on Mining Sotware Repositories,
pp. 319–328 (2013)

56. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval.
In: Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, p. 391398 (2007)

57. Xuan, J., Monperrus, M.: Learning to combine multiple ranking metrics
for fault localization. In: Proceedings of 30th International Conference on
Software Maintenance and Evolution (2014)

58. Ye, X., Bunescu, R., Liu, C.: On the naturalness of software. In: Proceed-
ings of IEEE International Conference on Software Engineering (2012)

59. Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports
using domain knowledge. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp.
689–699 (2014)

60. Ying, A.T.T., Robillard, M.P.: Selection and presentation practices for
code example summarization. In: Proceedings of 22nd ACM SIGSOFT In-
ternational Symposium on the Foundations of Software Engineering (2014)

61. Zhong, H., Xie, T., Pei, P., Mei, H.: Mapo: Mining and recommending
api usage patterns. In: Proceedings of Euuropean Conference on Object-
Oriented Programming, pp. 318–343 (2009)

62. Zhou, J., Zhang, H.: Learning to rank duplicate bug reports. In: Pro-
ceedings of the 21st ACM international conference on Information and
knowledge management, pp. 852–861 (2012)

Haoran Niu received the BEng degree from Harbin Institute of Technol-
ogy, China, in 2013. She is currently working towards the M.A.Sc degree in
the Department of Electrical and Computer Engineering at Queen’s Univer-

Learning to Rank Code Examples for Code Search Engines 37

sity, Canada. Her research interests are code search, code recommendation,and
their applications in mobile application development.

Iman Keivanloo received his PhD degree in 2013 from Concordia University,
Canada. He is currently a Post Doctoral Fellow in the Department of Elec-
trical and Computer Engineering at Queen’s University. His research interests
include source code similarity search, clone detection, source code recommen-
dation, and their applications for software evolution and maintenance.

Ying Zou is a Canada Research Chair in Software Evolution. She is an asso-
ciate professor in the Department of Electrical and Computer Engineering and
cross-appointed to the School of Computing at Queen’s University in Canada.
She is a visiting scientist of IBM Centers for Advanced Studies, IBM Canada.
Her research interests include software engineering, software re-engineering,
software reverse engineering, software maintenance, and service-oriented ar-
chitecture.

