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Abstract Developers often reuse code fragments by copy-and-paste activities
to speed up code delivery. Through this copy-and-paste process, they create
duplicated code, also known as code clones. As the software system evolves,
the number of clones can increase substantially and impact code quality neg-
atively. Prior studies have shown that inconsistent changes on code clones can
introduce bugs in a software system and clones that have experienced some
specific evolutionary patterns being more at risk than others. As the number
of clone copies increases in a software system. it becomes tedious and time-
consuming for developers to track and maintain all code clones. Recent studies
have proposed approaches to analyze the clone evolution history for better
clone maintenance. However, these approaches do not provide a specified list
of code clones at a granular level (i.e., commits) that can help developers pri-
oritize their clone maintenance activities. It is important to track the code
clone changes at the commit level, as developers can fix/refactor code clones
early.

In this paper, we leverage machine learning to develop clone ranking models
that can help developers identify the most risky clones early on. Specifically, we
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detect clones from 52 projects (34 Java and 18 C) that have 534,672 commits
and build 469,239 clone genealogies. We extract 28 features capturing the
characteristics of code clones at commit level. We then train learning-to-rank
(LtR), classification, and regression machine learning models to rank the code
clones based on fault occurrence during their evolutionary history.

Our comparison of machine learning approaches indicates that classifica-
tion (for the probability of being faulty) and regression (for the proportion of
faulty changes) perform well in ranking code clones. Multiple unique devel-
opers who change a code clone and the age of a code clone (in terms of the
number of cloned code changes) have a significant effect on the risk of faults in
the code clones. Our results can help developers identify the most risky code
clones first and prioritize them for refactoring to prevent future faults.

Keywords code clones · clone genealogies · learning-to-rank · regression
approaches · mixed-effect models · clone evolutionary patterns

1 Introduction

Similar or identical code fragments in software projects are referred to as
code clones. A code fragment is a continuous section of source code that
has a well-defined start and end and implements certain functionality. For
example, a method implementing the addition of two numbers. A code clone
is a code fragment or sub-string of code appearing at least twice in the source
code of a program, a pair of clones is called a clone pair. Code clones can be
either syntactically or semantically similar [23]. Developers may use existing
code fragments by copy-and-paste activities to implement a similar function-
ality rather than writing the code from scratch. Once a code clone is created,
it undergoes multiple changes and evolves over time. The set of states and
changes between the states of a clone pair, across the revisions forms a clone
genealogy.

Over the lifetime of a project, the number of code clones may increase.
For example, at the start of project for nd4j1, there are 109 clones. As the
project evolved, the number of code clones increased to 9,550. With such
a large amount of code clones in a system, it becomes crucial to maintain
them, since (1) multiple, possibly unnecessary duplication of code can increase
maintenance cost [14], and (2) inconsistent changes to the cloned code can
introduce faults leading to incorrect product behaviours [23].

Existing approaches provide clone detection tools that can identify a large
number of code clones. However, it can be tedious and time-consuming for
the developers to examine all the code pairs in a project manually to identify
the risky clone pairs. For example, there can be multiple code clones in any
commit, and it is difficult for a developer to recognize which code clones should
be tracked first to prevent future faults.

1 https://github.com/deeplearning4j/nd4j
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Recent studies have used code clone evolution history to analyse the risk
of different clone evolution patterns [3], predict the consistency-maintenance
of code clones [55], and identify short-lived code clones [46]. Although these
previous work can help improve the maintenance of the code clones, they do
not support developers in assessing the risk of all the clones in a software
system. To the best of our knowledge, no prior studies aimed at ranking the
code clones in a software system, at the commit level, based on their fault-
proneness.

In this study, we examine the potential of various machine learning tech-
niques at providing an accurate ranking of code clones based on their fault-
proneness. We are interested to rank code clones at the commit level. The
commit is the smallest unit of code change in a repository, and code clones
can be refactored as soon as they are introduced or modified if they are tracked
at the commit level[32]. We use 52 projects (i.e., 34 Java and 18 C) with an
average of 893k SLOC per project to train the machine learning models. Using
the history of changes of a software system, we detect code clones and build
clone genealogies. Then, we leverage the SZZ algorithm [41] to identify buggy
commits in the clone genealogies. Next, we calculate 28 clone-related metrics
on the detected clones and train learning-to-rank (LtR), classification, and re-
gression machine learning models, to rank the code clones for fault-proneness.
We also conduct an analysis of the most important features of the models,
to understand the main factors affecting the fault-proneness of a code clone.
We assess the performance of the models and answer the following research
questions:

RQ1: Can we use learning-to-rank (LtR) algorithms to effectively rank
fault-prone code clones? In this research question, we train multiple learning-
to-rank (LtR) algorithms to assess their effectiveness at ranking clones. We
experiment with both early projects and mature projects to allow developers
to rank code clones during the early stages of the development process of their
projects. Our results show that the best performing approach (i.e., LightGBM)
is able to achieve a precision of 0.72 (for Java projects). Learning-to-rank algo-
rithms achieve moderate performance due to the unavailability of the labeled
ranked data for code clones.

RQ2: How well can classification algorithms rank fault-prone clones? In
this research question, we use classification algorithms to rank clones based on
the probability of being faulty (i.e., fault-proneness of code clones). To support
clone ranking in early development phases as well as mature development
phases, we constructed specialized models for the projects that have limited
clone history in the early phase as well as projects that have more longer
clone history in the mature phase. We performed 10-fold cross-validation of
the trained models and found that Random Forest achieves the highest AUC
among the studied classification approaches. Our analysis also shows that the
performance of the models increases as more information about the history of
code clones is available.

RQ3: Can we use regression algorithms to predict the proportion of faulty
changes in code clones and effectively rank fault-prone clones? In this research
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question, we rank code clones based on their predicted proportion of faulty
changes, using regression algorithms. Similar to the previous research ques-
tion, we also train two specialized models for early stage and mature stage
respectively. Our 10-fold cross-validation results show that LightGBM and
XGBOOST are able to identify the fault-prone code clones with a high R-
squared score (0.89 for Java projects). Similar to RQ2, the performance of
the models increase as more information about the history of code clones is
available.

RQ4: Which metrics are significantly correlated to the risk of faults in code
clones? In this research question, we investigate the most influential features
in determining the rank of the code clones. We use a mixed-effect model to
determine the most significant features when ranking code clones. Results
suggest that developers should closely monitor the code clones that have more
changes and the code clones that are changed by multiple developers.

Overall, this paper makes the following key contributions.

– We present the result of a large-scale empirical study that assesses the
efficiency of learning-to-rank, classification, and regression machine learn-
ing models at providing an accurate ranking of code clones based on their
fault-proneness.

– We provide approaches for ranking code clones and demonstrate the suit-
ability of regression techniques for ranking code clones.

– We provide specialized models for early projects and mature projects to
aid software developers at different phases of the software development
process.

– We perform a qualitative analysis of the studied projects to identify the
most significant features that correlate with fault occurrences in cloned
code.

The trained machine learning models presented in this paper can help
software maintainers identify the most risky code clones early on to prevent
the introduction of faults.

Paper Organization. The rest of the paper is organized as follows. Sec-
tion 2 provides background information on the multiple machine learning al-
gorithms used in the paper. Section 3 presents the design of our case study,
which includes project selection, clone detection, clone genealogy, fault iden-
tification using SZZ, and feature calculation. Section 4 presents the results of
our four research questions. Section 5 discusses the implications of our results
for developers. Section 6 summarizes the prior studies and related work in the
code clone domain. Section 7 discusses the threats to the validity of our study.
Finally, Section 8 concludes our work and outlines some avenues for future
work.

2 Background

This section presents background information on motivating example of rank-
ing code clones and multiple machine learning ranking techniques.
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Fig. 1 An example of clone pair. The code inside the red boxes are clone pairs from check-
style project.

2.1 Motivating Example

We use an example to illustrate the need to rank the buggy commits. In one
of the commits in project nd4j2, there are 87 code clones identified from the
clone detection tool (one of the clone pairs is shown in Figure 1). Suppose that
there are 48 faulty code clones. Currently, in practice, it is a manual process to
check 87 code clones in order to identify the potential faulty code clones and
fix them. Development teams are likely to have limited time and resources,
so they would need to prioritize which code clones to examine and test first.
However, some commits have a higher number of code clones identified by the
clone detection tools (e.g., a commit in nd4j has more than 600 code clones
identified). In such scenarios, it becomes imperative for the developers to have
a ranked list, so they can focus on the most risky code clones first by making
optimal use of their resources.

2.2 Learning-to-Rank Algorithms

Learning-to-Rank (LtR) algorithms stem from the application of machine
learning models (either supervised or semi-supervised) or reinforcement learn-
ing to solve ranking tasks. The significant difference between LtR and classical

2 https://github.com/eclipse/deeplearning4j/commit/0ec1c8f
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regression/classification problems is that LtR focuses on a list of items to pre-
dict the rank, while regression/classification problems focus on one item at a
time. The most common application of LtR algorithm is web search, while it
is also used in product recommendation and candidate selection.

Types of LtR Models. In general, there are three types of LtR algorithms:
pointwise, pairwise, and listwise. To understand the working of different types,
let us suppose to have the following ranking task. Given a list of documents D=
d1, d2,....dn, and a query q, we would like to learn a function f such that
f(q,D) will predict the relevance of the documents with respect to the query.
In our context, the list of clone pairs at a commit is the documents and our
query to identify fault-prone clone pairs. The three types of LtR algorithms
are different in terms of loss function formulation in the machine learning task.

– Pointwise. The documents are scored individually. It is useful in cases
where the relevance of the given documents is binary.

– Pairwise. The training example is constituted of pairs and are given rel-
evancy scores ranging from lowest to highest. For example, 0 is irrelevant
and 5 is the most relevant.

– Listwise. The training examples consist of all the documents available to
rank. This method is costly; however, it covers the full range of documents
that need to be ranked.

The pairwise and listwise algorithms are reported to outperform the point-
wise algorithms [29]. Therefore, in this paper, we experiment only with pairwise
and listwise algorithms using the following two popular frameworks; i.e., XG-
BOOST and LightGBM. Specifically, we use the pairwise algorithms (Rank-
Boost, and RankNet), the listwise algorithms (LambdaRank, LambdaMart,
and Random Forest), and the frameworks XGBOOST, LightGBM to rank
code clones.

Evaluation of LtR Models.
Several metrics have been proposed to evaluate the LtR models. They are

generally divided into two categories: binary relevance and graded relevance.
(1) Binary Relevance. Binary relevance evaluation is used when the ranking
task only considers the relevance or irrelevance of documents.
(a) Mean Average Precision (MAP). MAP is a measure based on the binary
label of relevancy where precision needs to be calculated at every ranking
position. The average ranking is calculated at every relevant position while
every irrelevant position is penalized. Equation 1 is used to calculate the MAP.

MAP =

∑Q
q=1AP (q)

Q
(1)

where

AP (q) = Average precision given at query q

Q = Total number of queries
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(2) Graded Relevance. Graded relevance metrics are used to evaluate the
LtR algorithms when the ranking task gives different scores to the documents
based on their relevancy to the query.
(a) Normalized Discounted Cumulative Gain (NDCG). Discounted cumulative
gain prefers the higher relevant item to be ranked higher. In Equation 2, the
numerator is an increasing function of relevance while the denominator is a
decreasing function of ranking position. Therefore, higher relevance gains more
points.

DCG@k =

k∑
i=1

2li − 1

log2(i+ 1)
(2)

where

DCG = Discounted cumulative gain

IDCG = Ideal discounted cumulative gain

l = relevance score

Normalized discounted cumulative gain (NDCG) is calculated using Equa-
tion 3. If DCG@k is calculated by re-sorting the list by correct relevance
labels, then the IDCG@k is the maximum possible value of DCG@k that can
be achieved given a ranking list.

NDCG@k =
DCG@k

IDCG@k
(3)

where

DCG = Discounted cumulative gain

IDCG = Ideal discounted cumulative gain

2.3 Classification Approaches

Classification approaches use selected machine learning algorithms to learn
how to assign a class label to examples from a problem domain. The class
labels can be binary (i.e., only two classes to chose from, e.g., 0 or 1) or
multiple (i.e., more than two classes, e.g., Types of grade for course A, B, C,
or F). From a modeling perspective, classification requires a training dataset
that has many example inputs (i.e., features) and outputs.

Evaluation of Classification Techniques.
The following four metrics are commonly used to evaluate a classification

technique.
Precision is the fraction of relevant instances among the retrieved instances

[18]. As shown in Equation 4, we use precision to identify the total number of
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correctly identify fault-prone code clones (true positives) over the the number
of the wrongly identified fault-prone code clones (false positives).

P =
TP

TP + FP
(4)

Recall is defined as a probability that a relevant object is returned by a
system [18]. As shown in Equation 5, we use recall to identify the number of
fault-prone clone pairs that are correctly identified (true positives) over the
number of the missed fault-prone clone pairs (false negatives).

R =
TP

TP + FN
(5)

F1-score is the weighted average of the precision and the recall that includes
the impact of the false positive as well as false negatives. Hence, we use F1-
score to evaluate the overall accuracy of our approach for our manually labeled
dataset (Sampletuning), as shown in Equation 6.

F1 = 2
P.R

P +R
(6)

AUC (Area under the ROC Curve). The discriminative power of the model
measures the ability of the model to distinguish value 0 and 1 of the dependant
variable (i.e., predicting the probability of the code clones being buggy). We
use Area Under Curve (AUC) [19] to determine the discriminative power of
the model. We use Receiver Operator Curve (ROC) to plot the true positives
against the false positive for different thresholds. The value of AUC ranges
from 0 to 1, 0 being the worst performance, 0.5 being the random guessing
performance, and 1 being the best performance. [19]

2.4 Regression Analysis

Regression analysis is a type of statistical method used to determine the
strength of a relationship between a dependent variable (usually denoted as
Y) and a number of independent variables. In contrast to only two possible
outcomes in the classification problem, a regression problem can have multiple
outcomes. For example, predicting the price of a house or the interest rate over
a period of time. There are multiple types of regression analysis that include
linear regression, logistic regression, ridge regression, and lasso regression.

Evaluation of Regression Approaches
Multiple metrics have been introduced in the literature to evaluate the

performance of regression models. Two of them are most commonly used by
the practitioners: (1) R-Squared (R2) and (2) Root mean square error (RMSE)

(1) R-Squared (R2). R-squared is a proportional improvement in the pre-
diction of a regression model as compared to the mean model. The scale of
R2 ranges from zero to one, with zero indicating that the regression model is
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not able to improve than the mean model while one depicts that the regres-
sion model performs perfectly in terms of prediction. Equation 7 is used to
calculate R2.

R2 =
Error from regression model

Simple average model
(7)

(2) Root Mean Square Error (RMSE). The RMSE is the square root of
the variance of the residuals that indicates the absolute fit of the model. In
simple words, it calculates how close are the predicted values and the actual
values. Lower values of RMSE are desirable for regression models. Equation 8
is used to calculate RMSE.

RMSE =

√∑N
i=1 Predictedi − actuali

N
(8)

2.5 Machine Learning Frameworks

This section briefly describes the machine learning frameworks used in this
paper.

XGBOOST. XGBOOST is a scalable machine learning system for tree
boosting proposed by Chen and Guestrin [7]. XGBOOST combines the original
model (i.e., gradient boosting) with weak base learning models in an iterative
manner to generate a robust learning model. The residual in each iteration
of the boosting is used to improve the previous predictor (i.e., optimizing the
loss function). The algorithm is engineered for time efficiency and memory
optimization. One of the most important features of the XGBOOST is the
sparse awareness that makes it useful even when some of the data values are
missing. XGBOOST offers a block structure that enables the algorithm to
make use of parallelization for tree construction. The models in XGBOOST
are constructed by computing the gradient descent using an objective function.

XGBOOST has been used in prior studies for cross-device identification
[47], intrusion detection [11], and fault localization [53].

LightGBM. LightGBM is a gradient boosting framework that uses tree-
based algorithms [26]. The most distinctive feature of LightGBM among other
tree-based algorithms is that it grows trees vertically. In other words, Light-
GBM grows tree leaf-wise while other tree-based algorithms grow trees level-
wise. This allows it to reduce more loss than a level-wise algorithm. LightGBM
is highly effective for large scale data. LightGBM supports GPU learning, but
it is sensitive to the size of datasets; there is a risk of overfitting if used on a rel-
atively smaller dataset. Similar to XGBOOST, LightGBM computes gradient
descent using an objective function.

LightGBM has been used in prior studies for intrusion detection [45] and
malware detection [34].
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Fig. 2 Overview of our approach

2.6 Cross Validation

Cross-validation is a resampling technique used to evaluate machine learning
models on limited data samples. Essentially, there are multiple folds (known as
k-folds) where the k value is the number of folds. We choose the value of k as
10. The data is randomly divided into ten groups, and first nine folds are used
for training and validation, and the last fold is used for testing. This process
is repeated ten times using different folds each time for testing. In each fold
for training, data is divided into a training set (t1) and validation set (v1).
The model is trained on the data from the group’s training set (t1) and then
validated within the same group’s validation set (v1). The performance results
of each fold are aggregated.

3 Experiment Setup

This section describes the experiment setup used in this paper to examine the
effectiveness of machine learning techniques at ranking code clones. Figure 2
presents the overview of our approach.

3.1 Project Selection

We use GHTorrent on the Google cloud3 to extract all projects that have more
than 1,000 commits, 1,000 issues, and 1,000 pull requests. We use such a high
number of commits, pull requests, and issues to ensure that we have enough
history of clone genealogies. We limit our study to Java and C projects. We
focus on these two programming languages because code clones studies often
use Java and C projects [3] [4]. Our selection criteria provide us with 66 Java
and 29 C projects. Then, we discard the projects that are younger than five
years (i.e., created after June 2015). A recent study on clone genealogies [3]
suggests including projects with more than 100K source lines of code (SLOC).
We remove the projects with less than 100K SLOC using the GitHub project
SLOC calculator extension4. Furthermore, we remove the forked projects and
the projects with less than 70% of code files (i.e., Java or C). The percentage

3 https://ghtorrent.org/gcloud.html
4 https://github.com/artem-solovev/gloc

https://ghtorrent.org/gcloud.html
https://github.com/artem-solovev/gloc
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of code files is calculated using the language information for each project in
GitHub. After applying all the selection criteria, we obtain 34 Java projects
and 18 C projects that are used in this study. The following steps are applied to
both the Java and C projects. The details of the selected projects are provided
in Table 6 available in appendix.

3.2 Building Clone Genealogies

The selected projects are all Git-based projects. Git provides multiple func-
tions to extract the history of the projects. The history includes the renamed
files, changed files, and changes made to each file using the blame function.
We perform the following steps on each of the projects in our dataset. After
downloading the repositories, we extract identifiers, committer emails, commit
dates, and messages of each commit using the following command.

git log -- pretty=format:"%h,%ae, %ai, %s"

Detecting Code Clones. We use the latest version of the iCLONES clone
detection tool[17] to identify the clones from the projects. We select iCLONES
because it is recommended by Svajlenko et al. [43] who have evaluated the
performance of 11 different clone detection tools. iCLONES uses a hybrid
approach that includes the suffix tree and multiple revisions of the program
to perform incremental clone detection. We use the settings recommended by
Svajlenko et al. [43] since such settings are reported to achieve higher precision
and recall values. We use the git checkout command to extract a snapshot of
a project at a specific commit. We sort all commits chronologically and run
the clone detection on each commit.

Extracting Clone Genealogies. Code clones may experience changes
during the development and maintenance phases of the project. Such changes
can be consistent or inconsistent based on a relative similarity score. If the
copies of the clone are changed together, the clone pair is considered consistent.
However, if only one copy is changed, the clone pair becomes inconsistent. An
inconsistent clone pair can be later re-synchronized to make the clone pair
consistent. A consistent clone pair can also diverge into an inconsistent state.
The set of states (i.e., consistent and inconsistent) and the history of changes to
any clone pair are known as clone pair genealogy. We identified the genealogies
of all the clones in the studied projects as follows.

The iCLONES tool produces a list of clones that exist in a project at any
specific commit. We link the clone pairs between each commit to create a set
of genealogies. A change to a clone can affect its size, while a change to a file
containing the clone can shift the position of the clone (i.e., changes its line
numbers). To address this issue, we use the git diff command to detect all
the changes to a specific file. We track the clone positional changes affected by
the changes to the non-clone part of the file. We include only the changes to
the clone contents rather than the clone line number since a shift in the line
numbers does not change the state of the clone.
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The clones are identified based on similarity. A pair of similar code snippets
or a group of similar code snippets are reported by the clone detection tools.
A number of recent studies [1][4][3][44] use clone pairs for performing different
types of analysis on the code clones.

The prior studies show that clones need to maintain consistency in order to
reduce the number of bugs. A clone pair is the fundamental unit for maintain-
ing consistency. Moreover, the clone siblings in the clone group are not equally
fault-prone [3], it is viable to perform fault proneness analysis on clone pairs,
the most fundamental unit in clone analysis. It allows developers to pinpoint
the problematic clone pairs in order to resolve the issues in the clone pairs
instead of analyzing siblings in the whole clone group.

We build a clone genealogy for each clone pair detected by the iCLONES
tool. We start by extracting the commit sequence of each project under study.
We use the commit sequence to identify the modifications in the clone pairs of
each commit. If a commit C2 changes a file that contains code in the clone pair,
we use the diff command to compare the changes to a previous commit C1.
If a clone snippet is changed in C2, we update the start and end line numbers
of the clone from C2. To generate the mapping and check the modifications,
we used a third-party python patching parser, called whatthepatch [10]. If
the start or the end of the clone snippet is deleted, we move the clone line
numbers accordingly to reflect the deleted lines.

A clone pair is said to be changed if a clone snippet is modified or deleted.
When a clone pair is changed, we assess whether such a change is consistent
or inconsistent. We verify this by searching the list of clone pairs generated
by iCLONES. For each clone fragment having start and end line numbers, if
another clone of this fragment is found in the tool results, a consistent state
is assigned to the clone genealogy at that specific change point. Otherwise, an
inconsistent state is assigned to the clone genealogy. It is important to note
that a clone pair may undergo many changes where each change may have
a different state. We repeat the process until one or both of the clones are
deleted or until we reach the latest commit in the project.

The names of code files may also change during the development of the
project. For each commit, we extract a file pair between the current and pre-
vious commits where an old file is deleted, and a new file is added. If the
code similarity between the deleted file and the new file is more than 99%, we
consider this as a renaming operation. A similar approach to identify renamed
files is used by Barbour et al. [3]. We use the following command to extract
the file pairs to detect renaming operations:

git diff [old-commit] [new-commit] --name-status -M

3.3 Detecting Faulty Clones

We use the SZZ algorithm [41] to identify the changes that introduced faults.
First, we use the heuristic proposed by Fischer et al. [13], to identify fault fixing
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commits using a regular expression. The regular expression identifies the bug-
ID in the commit messages. If a bug-ID appears in the commit message, we
map the commit to the bug as a bug-fixing commit. Second, we mine the
issue reports of each project from GitHub. For the issues that are closed, we
identify if there are any pull requests associated with such issues. If there is a
pull request associated with an issue, we identify all the commits included in
the pull request and map the commits to the issue as a bug-fixing commit.

Once we have a list of all bug-fixing commits, we use the following command
to identify all the modified files in each commit.

git log [commit-id] -n 1 --name-status

We consider only changes to code (i.e., Java and C) files in a commit. For
all changes to a specific file of a bug-fixing commit, we use the following git
blame command to identify all the commits when the same snippet is changed.

git blame -L startLineNumber,endLineNumber filePath

The startLineNumber and endLineNumber are the start and end of the
code clone under consideration while filePath is the file name where code
clone exists. We consider such commits as the “candidate faulty changes”. We
exclude the changes that are blank lines or comments. Finally, we filter the
commits that are submitted before the creation date of the bug reports. We
then check whether the commits identified as bug-inducing commits include
clone pairs. If a clone snippet is included in the bug-inducing commits, we
label the clone change as “buggy”.

The buggy commit is a commit in which a fault introducing change is made.
We only associate a commit to the genealogy if there is a change within the
cloned lines of code. Once a buggy change is introduced via a buggy commit,
a code clone becomes buggy at that specific change instance. If any future
changes are made to fix the bug, the clone again becomes bug-free. To sum-
marize, the clone genealogy can experience different state changes from buggy
to bug-free and vice versa.

In our dataset, we treat each change in a code clone as a separate data
point. For example, if there are 10 changes in a clone genealogy for any clone
pair, there are 10 different data points for this instance. It essentially means
that we are labelling the clone pair as faulty in any of the specific commit.
Let us assume that a bug introducing change is in the third commit and bug
fixing change happens in the fifth commit. The clone pair would be labelled
as faulty in only the third and the fourth commit and would be fault-free in
the fifth commit and on-wards unless a new bug happens in the genealogy.

During the lifetime of a clone genealogy, there can be buggy changes and
subsequent bug-fixing changes later in the lifetime of the clone genealogy. In
our dataset, we observe that more than 60% of the buggy clone changes are
fixed at some points in the later stage of the project while the rest of the clone
genealogies remain buggy. It is also interesting to note that while the clone
genealogy is in a buggy state, more than 90% of the clone pairs are inconsistent.
It means that both copies of the code clones are not changed together in such
cases. To calculate the above-mentioned statistics, we identify the bugs in the
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code clones and match them with the state of the code clones (more details in
the replication package). To identify the clone genealogies with the bug fixing
changes, we measure if a code clone has a bug at any stage of the lifetime and
later the bug is fixed.

3.4 Collecting Features

For each instance in a clone pair genealogy, we extract multiple features that
may help rank fault-prone code clones. Some of the computed features were
used in a prior study by Barbour et al. [3]. The features are divided into four
categories; product, process, genealogy, and user metrics. Table 1 presents the
description of our collected features.
Removing Correlated and Redundant Features. We remove the redun-
dant features to avoid the possibility of having correlated features interfering
in the interpretation of our models [40]. We use the Spearman rank correla-
tion test with a cut-off value of 0.7 to identify the redundant features [20]. To
construct the hierarchical overview of inter-feature relationships, we run the
varclus function from the R package Hmisc [22]. The results indicate that: 1)
clone age in days (CAgeDays) and clone age in commits (CAgeCommits) are
correlated; and 2) submitted pull requests (NFixPR), accepted pull requests
(NAccPR), and rejected pull requests (NRejPR) are correlated. We therefore
retained CAgeCommits and NFixPR, and removed the rest of the redundant
features from our model training step.

4 Results

In this section, we present the results of all of the research questions. We
discuss motivation, approach and findings for each of the research question.

4.1 RQ1: Can we use learning-to-rank (LtR) algorithms to
effectively rank fault-prone code clones?

Motivation. Developers in software projects aim to make the best use of
their available time and resources. The maintenance of code clones can be a
hectic task, especially in large software systems, as the number of clones can
be immense. To identify the code clones at each commit level, developers can
run a clone detection tool that provides developers with the list of clones at a
specific commit. To identify clones that need to be maintained in priority, they
often have to browse through a long list of clone candidates, which is time-
consuming. If the risk of each code clone could be assessed accurately through
an automatic process, we could save developers some precious time. Although
previous studies [3] have examined the fault-proneness of different clone evo-
lutionary patterns, to the best of our knowledge, they did not prioritize clones
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Table 1 The calculated features for the clone pair genealogies

Metric Description

Product Metrics
CLOC The number of cloned lines of code.
CPathDepth The number of common folders within the project directory structure.
CCurSt The current state of the clone pair (consistent or inconsistent).
FChgFreq The average of the file changes experienced by clone pair.
CAgeCommits The clone age in terms of the number of commits.
CAgeDays The clone age in terms of the number days.
CSib The number of siblings of the clone pair at any specific commit.

Process Metrics
EFltDens The number of fault fix modifications to the clone pair since it was created divided by the

total number of commits that modified the clone pair.
TChurn The sum of added and the changed lines of code in the history of a clone.
TPC The total number of changes in the history of a clone.
NumOfBursts The number of change bursts on a clone. A change burst is a sequence of consecutive changes

with a maximum distance of one day between the changes.
SLBurst The number of consecutive changes in the last change burst on a clone.
CFltRate The number of faulty modifications to the clone pair divided by the total number of commits

that modified the clone pair.
Genealogy Metrics

EEvPattern One of the SYNC, DIV, INC, LP, or LPDIV clone evolutionary patterns [3]
EConChg The number of consistent changes experienced by the clone pair.
EIncChg The number of inconsistent changes experienced by the clone pair.
EConStChg The number of consistent change of state within the clone pair genealogy.
EIncStChg The number of inconsistent change of state within the clone pair genealogy.
EFltConStChg The number of re-synchronizing changes (i.e., RESYNC ) that were a fault fix.
EFltIncSChg The number of diverging changes (i.e., DIV ) that were a fault fix.
EChgTimeInt The time interval in days since the previous change to the clone pair.
UUsers The number of unique committers in the clone genealogy.

User Metrics
CommiterExp The experience of committer (i.e., the number of previous commits submitted before a specific

commit.)
NFixPR The number of pull requests submitted by a specific committer.
NRejPR The number of pull requests rejected for a specific committer.
NAccPR The number of pull requests accepted for a specific committer.
Contributor Core, if number of commits by a specific committer is higher than the average commits by

contributors over the past months otherwise Casual.
CCurFile The total number of changes to current file by a specific committer.
OChgRatio The number of commits in the genealogy by a specific committer.

for maintenance. In this research question, we examine the possibility of lever-
aging LtR algorithms to provide developers with a ranked list of code clones
based on the fault-proneness of the code clones. This ranked list can help de-
velopers make informed decisions and better utilize their time and resources
by focusing on the most fault-prone clones. We select LtR algorithms, because
they have been successfully used in previous studies to rank bug reports [57],
web services [49], and pull requests [56].

Approach. We use three different types of datasets to train and test the
LtR models: a) data from the whole lifetime of the projects (Modelall); b)
data from the early phase of the projects (Modelearly); and c) data from the
mature phase of the projects (Modelmature). The definition of the Modelearly
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and Modelmature are the same across all the research questions. Modelearly is
used to model the early phase that is a project tenure during the start of the
project while Modelmature is used to model the mature phase that corresponds
to the latest changes to a project.

To select the data for Modelearly and Modelmature, we proceed as follows.
We subtract the latest commit date from the initial commit date of each
project. The difference in the number of days is then converted to four quan-
tiles. We use code clone data mentioned in Table 2 of the commits from the first
(1st) quantile of each project for Modelearly and code clone data mentioned
in Table 2 of the commits from the fourth (4th) quantile for Modelmature. A
similar approach of time-based slicing of the data has been used in previous
studies to slice Stack Overflow data [48], and Gitter Chatroom data [12].

To assess the effectiveness of LtR algorithms for clone ranking, we train the
LtR models described in Section2.2 on our dataset of clones extracted from 52
projects and assess their effectiveness at ranking the clones. A LtR model is
trained using a set of documents (d1, d2, .... ,dn) for a set of queries (q1,q2,....,
qn). In our case, the documents are the code clone instances at any commit
level, and the query is ranking all the code clones in the commit. A commit
C can contain multiple code clones, including their history, and a single code
clone can be a part of multiple commits as well but at a different time in their
lifetime. The LtR algorithm computes the relevance between the documents
(i.e., code clones) and the query using the features (defined in Section 3.4), and
outputs a ranked list of code clones at each commit level. The most risky code
clones in terms of fault-proneness appear at the top of this ranking. Developers
can therefore prioritize them for maintenance. To assess the performance of the
trained learning-to-rank models, we use binary relevance (MAP) and graded
relevance (NDCG) evaluation metrics. We select these two metrics because
we have binary labels in our models, i.e., 1 for the code clones that are fault-
prone and 0 for the code clones that are not fault-prone. In addition to the
aforementioned metrics, we also calculate the precision of the trained models
through cross-validation.

The data related to the evolution of the software systems is time-sensitive
[33], and this time sensitivity should be considered while evaluating the models
trained on such data. Since code clones go through multiple changes during
the evolution of the system, when building ranking models, we have to ensure
that they are trained only on past code change data. To ensure this, we sorted
our data based on the commit date, and for every project individually, we split
the data into training and testing sets. It is important to note here that a code
clone in the training set can have a commit date that is later than the commit
dates of clones in the test set only if the clone is from a different project. In
other words, we focus on the correct sorting of the clones within a project.
The code clones that belong to the same project always have higher dates in
the test set than in the training set. The time-sensitive nature of the data is
carefully considered while conducting 10-fold cross-validation.

In this paper, we only identify clones within projects and perform the
analysis as each project in our dataset has its own uniqueness. For example,
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they originate from different application domains, have their own development
style, and follow various management policies [25].

Results.

LightGBM and XGBOOST perform better among the learning-
to-rank techniques when ranking code clones based on their fault-
proneness. Table 2 summarizes the results for the five algorithms and the
two frameworks used to perform ranking. The models are evaluated using
three LtR evaluation metrics (i.e., precision, MAP, and NDCG). LightGBM
and XGBOOST outperform the pairwise and listwise algorithms and achieve
a precision of 0.72 (Modelall). Overall, we can conclude that learning-to-rank
algorithms do not perform well on clone ranking tasks, since developers would
have to stiff through a long list of false positives if they were to adopt any of
these models. We attribute this weak performance to the nature of the objects
that are being ranked. In fact, multiple code clones at the commit level can
have the same risk of fault, while LtR models are known to perform well when
documents have clear distinctive ranks[56]. In our models, the dependant vari-
able is a Boolean variable indicating whether or not a clone pair experienced
a fault-inducing change. Our query is to rank all the pairs in a commit. For
example, if there are three different clone pair changes (c1, c2, c3) in a specific
commit T , there can be three possibilities.

– None of the changes is fault-prone, (0,0,0);
– all the changes are fault-prone, (1,1,1);
– there are faulty as well as non-faulty code clones, e.g., (0,1,0).

LtR performs well when the documents in the training data has a clear dis-
tinctive rank, e.g., (0,1,2). Moreover, the performance of the model increases
with the availability of historical data. In the early phase of the projects (i.e.,
Modelearly), the performance of the model is lower. When more clone history
data is available (i.e., Modelmature), the models perform slightly better.

Summary of RQ1

Among the studied learning-to-rank (LtR) algorithms/frameworks
LightGBM and XGBoost achieve better results. Overall, learning-to-
rank (LtR) algorithms/frameworks perform moderately due to the na-
ture of the code clone representation at a commit level. The perfor-
mance of the models increases with the level of maturity of the projects,
possibly due to the availability of more information about the history
of the code clones.
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Table 2 Results of evaluation metrics for LtR algorithms for Java and C projects

Type Algorithms Java Projects C Projects
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Modelall

Pairwise
RankBoost 0.56 0.05 0.17 0.55 0.06 0.15
RankNet 0.58 0.07 0.20 0.60 0.05 0.17

Listwise
LambdaRank 0.61 0.09 0.22 0.63 0.09 0.20
LambdaMart 0.60 0.11 0.23 0.61 0.12 0.21
Random Forest 0.67 0.13 0.26 0.66 0.15 0.24

Framework
XGBOOST 0.71 0.13 0.27 0.67 0.17 0.26
LightGBM 0.72 0.14 0.27 0.69 0.14 0.26

Modelearly

Pairwise
RankBoost 0.52 0.03 0.15 0.52 0.03 0.12
RankNet 0.54 0.04 0.17 0.57 0.04 0.15

Listwise
LambdaRank 0.59 0.08 0.21 0.61 0.08 0.18
LambdaMart 0.57 0.09 0.20 0.57 0.10 0.19
Random Forest 0.64 0.11 0.22 0.63 0.14 0.21

Framework
XGBOOST 0.68 0.11 0.25 0.66 0.16 0.24
LightGBM 0.69 0.13 0.26 0.67 0.11 0.24

Modelmature

Pairwise
RankBoost 0.57 0.05 0.18 0.56 0.07 0.15
RankNet 0.57 0.08 0.20 0.61 0.04 0.19

Listwise
LambdaRank 0.62 0.08 0.21 0.64 0.07 0.19
LambdaMart 0.62 0.11 0.24 0.63 0.14 0.22
Random Forest 0.68 0.14 0.24 0.67 0.13 0.23

Framework
XGBOOST 0.72 0.14 0.28 0.69 0.18 0.27
LightGBM 0.73 0.19 0.29 0.71 0.17 0.28

4.2 RQ2: How well can classification algorithms rank fault-prone
clones?

Motivation. In RQ1, we used the learning-to-rank (LtR) machine learning
algorithms to rank the clone pairs based on their fault-proneness. However,
these algorithms only achieved moderate performance (i.e., the precision of
0.72 at best). Hence, in this research question, we examine the possibility
of using classification algorithms to achieve better results. Using historical
information about the clone pairs, we use classification algorithms to classify
them as buggy or not buggy. The probability that a clone pair belongs to
the faulty class is used for ranking. These ranks can be used by developers to
prioritize clones for maintenance.

Approach. Similar to RQ1, we use three different types of the datasets to
train and test the classification models: a) data from the whole lifetime of the
projects (Modelall); b) data from the early phase of the projects (Modelearly);
and c) data from the mature phase of the projects (Modelmature). We use
the 28 features (related to code clones) described in Section 3.4 to train the
models. We train and evaluate the models as follows.
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Step 1: Training Phase
a) Data for Training and Testing. The data for the three different models

are selected in different ways. Data for Modelall contains the data from the
whole lifetime of the projects. There are 1,789,457 data points from the Java
projects and 1,154,673 data points from the C projects. To select the data
for Modelearly and Modelmature, we proceed as follows. We subtract the latest
commit date from the initial commit date of each project. The difference in the
number of days is then converted to four quantiles. We used code clone data
of the commits from the first (1st) quantile of each project for Modelearly and
code clone data of the commits from the fourth (4th) quantile for Modelmature.
A similar approach of time-based slicing of the data has been used in previous
studies to slice Stack Overflow data [48], and Gitter Chatroom data [12]. For
Modelearly, we obtained 395,256 rows of data for the Java projects and 156,781
rows of data for the C projects. For Modelmature, we obtained 725,158 rows
of data for the Java projects and 475,317 rows of data for the C projects.

b) Problem Formulation. The dependent variable of our model takes the
value 0 when a clone pair is not buggy and 1 when the clone pair is buggy.
We use Naive Bayes, Logistic Regression, Random Forest algorithms to clas-
sify the clone pairs. We select these algorithms because they are commonly
used in classification problems. In addition, we also use the LightGBM and
XGBOOST’s classifier functions to classify the code clones pairs.
Step 2: Evaluation Phase

We used 10-fold cross-validation to evaluate the performance of the models.
We created time-consistent folds as described in Section 2.6. We sorted commit
data using commit dates and ensured that folds on which models are tested
always contain data that is posterior to the data on which the models were
trained. Within each fold, we ensure that validation sets always contain data
that is posterior to the data on which the models were trained. This time
consistency ensures that we are not predicting past data using future data.
We assessed the performance of the models using the metrics described in
Section 2.
Results

Random Forest achieves the highest AUC Score when classifying
clone pairs based on their fault-proneness. Table 3 presents the results
for three classification algorithms and two machine learning frameworks. For
all the evaluation metrics, Random Forest achieves the highest scores for both
Java and C projects. The reported values are the mean values obtained over the
10-fold cross-validation. The performance of Logistic Regression, LightGBM,
XGBOOST, and Random Forest are superior to the maximum performance
values obtained in RQ1 when using LtR algorithms. In terms of the execution
time, LightGBM is 5x faster than the Random Forest.

Random Forest also achieves the best performance when models
are trained using only data from the early phase, or only data from
the mature phase. The results of Modelearly and Modelmature presented
in Table 3 show that models trained exclusively with data collected during
the early phase of the projects (i.e., Modelearly) achieve lower performance
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Table 3 10-fold cross-validation results of three classification algorithms and two frame-
works, evaluation metrics precision, recall, accuracy, AUC, and F1-score. Java and C projects
results presented separately.
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Modelall
Logistic Regression 0.80 0.58 0.80 0.75 0.67 0.78 0.62 0.79 0.74 0.66
Naive Bayes 0.49 0.79 0.64 0.67 0.60 0.52 0.78 0.64 0.66 0.63
LightGBM 0.91 0.78 0.90 0.87 0.84 0.90 0.75 0.89 0.87 0.85
XGBOOST 0.91 0.78 0.89 0.87 0.84 0.89 0.77 0.90 0.88 0.86
Random Forest 0.98 0.96 0.98 0.97 0.97 0.97 0.96 0.94 0.96 0.96

Modelearly
Logistic Regression 0.70 0.37 0.76 0.65 0.49 0.71 0.37 0.77 0.64 0.52
Naive Bayes 0.56 0.33 0.71 0.61 0.41 0.55 0.33 0.75 0.60 0.43
LightGBM 0.92 0.76 0.91 0.86 0.83 0.90 0.77 0.90 0.85 0.84
XGBOOST 0.91 0.78 0.91 0.87 0.84 0.88 0.77 0.88 0.86 0.82
Random Forest 0.96 0.90 0.96 0.94 0.93 0.95 0.89 0.94 0.94 0.92

Modelmature

Logistic Regression 0.64 0.16 0.89 0.57 0.26 0.63 0.18 0.90 0.58 0.29
Naive Bayes 0.20 0.84 0.58 0.69 0.32 0.25 0.85 0.60 0.70 0.35
LightGBM 0.98 0.79 0.97 0.90 0.88 0.98 0.77 0.96 0.89 0.89
XGBOOST 0.99 0.83 0.98 0.92 0.90 0.97 0.82 0.96 0.90 0.91
Random Forest 0.99 0.95 0.99 0.97 0.97 0.98 0.94 0.97 0.96 0.97

than the models trained using data from all the evolutionary history of the
projects (i.e., Modelall). However, models trained using only data from the
mature phase of the project (i.e., Modelmature) achieve higher performance
than Modelall. This result suggests that models are able to more precisely
capture the risk of faults of code clones when more information about the
evolutionary history the project is available. However, the recency of the in-
formation is important (as shown by the high performance of Modelmature).
During maintenance activities, development teams looking to prioritize clones
should pay attention to give the models as much recent information about the
clones as possible.

Summary of RQ2

Random Forest achieves the best AUC when classifying the clone pairs
based on the fault-proneness of the code clones. Random Forest also
achieves high scores of evaluation metrics in early and mature phase
data, while the mature phase model performs better than the early and
all phase models.
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4.3 RQ3: Can we use regression algorithms to predict the
proportion of faulty changes in code clones and effectively rank
fault-prone clones?

Motivation. In this research question, we explore the possibility of using re-
gression algorithms to rank code clones. Specifically, we use regression models
to predict the ratio of future faulty changes for each clone pairs and use this in-
formation to rank the clone pairs. Clone pairs that are predicted to experience
the highest ratio of faulty changes are ranked at the top, i.e., they are consid-
ered to be more risky than clone pairs predicted to experience a lower ratio
of faulty changes. Similarly to RQ2, we predict the ratio of faulty changes at
different stages of the development process (i.e., early and mature).

Approach. Similar to RQ2, we use three different types of the dataset to
train the regression models: a) data from the whole lifetime of the projects
(Modelall); b) data from the early phase of the projects (Modelearly);, and c)
data from the mature phase of the projects (Modelmature).

To train the models, we computed the values of 28 features that belong
to four categories of clone-related metrics: process, product, genealogy, and
user. Table 1 provides a description of the features. One common problem in
regression analysis is multicollinearity, which occurs when two or more inde-
pendent variables are highly correlated. Although multicollinearity may not
affect the accuracy of the model much, it causes imprecise estimates of the co-
efficient values of the model, which prevents distinguishing precisely between
the individual effects of the different independent variables on the dependent
variable. Variance Inflation Factor (VIF) is used to determine the level of mul-
ticollinearity for the regression problems [8][50]. As we have used the regression
analysis in RQ3 and RQ4, the VIF approach is used to identify the level of
multicollinearity among the features from the dataset. The varclus is used to
extract the correlated features from the dataset for RQ1 and RQ2. Following
standard guidelines [8] [50], we retained in our models only features for which
the VIF is under 5. The following paragraphs provide more information about
the training and evaluation phase of our models.

Step 1: Training Phase
a) Data for Each Model. As explained in the previous research question,

there are 395,256 data points for the Java projects and 156,781 data points for
the C projects in Modelearly. For Modelmature, there are 725,158 data points
for the Java projects and 475,317 data points for the C projects. Modelall
includes all the data points collected by using our data selection criteria de-
scribed in Section 3.

b) Problem Formulation. The independent variables (X) of our models are
the features described in Table 1. The dependent variable (Y) is the ratio
of faulty changes for a clone pair. In our case, the ratio of faulty changes is
expressed as the ratio of faulty commits in which a code clone experienced a
change. We calculate the ratio of fault-prone changes using the SZZ approach
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as explained in Section 3. The ratio of faulty changes is calculated using the
equation 9.

RatioofFaultyChanges =
Number of fault-prone changes

Total number of changes
(9)

It is important to note here that we omit the CFltRate(fault-prone modifi-
cations) feature in this research question because it is related to our dependant
variable. Once we predict the ratio of faulty changes for each clone pair at the
commit level, we rank the code clones from high to low based on their esti-
mated ratio of future faulty changes. A ratio of faulty changes of 0 means that
the clone pair is not expected to experience a fault-fixing change in the future,
while a ratio of 1 means that all future changes on the clone pair are predicted
to be faulty.

We use a mixed-effect model [42], to take into account the context of
the project in our analysis of fault-prone code clones. A mixed-effect model
presents the significant features while keeping in view the context during the
model training. The mixed-effect model consists of two types of features, ex-
planatory features, and context features. The explanatory features (i.e., pro-
cess, product, genealogy, and user) are used to explain the data, while context
features (i.e., project) are used to determine the effect of explanatory features.
The mixed-effect model is able to show the relationship between the outcome
(i.e., the ratio of faulty changes) and the explanatory features while taking
into consideration the context features (i.e., project).

We use a linear regression (mixed-effect) as our baseline model (as used in
prior studies [12] [20] for software engineering problems) to determine the ratio
of faulty changes for a clone pair. We also use ridge regression and lasso regres-
sion algorithms; which are commonly used to train regression models. Finally,
we use Random Forest, regressor function of XGBOOST, and regressor func-
tion of LightGBM. Overall, we experimented with four regression algorithms
and two frameworks. We use the implementation of scikit-learn [35] for the
four algorithms and for two frameworks (i.e., XGBOOST5 and LightGBM6),
we use their open source implementation available on GitHub.

Step 2: Evaluation Phase

Similarly to RQ2, we used a 10-fold cross-validation approach to evaluate
the models, constructing time-consistent folds as described in Section 2.6. We
sorted commit data using commit dates and ensured that folds on which mod-
els are tested always contained data that are posterior to the data on which
the models were trained. We also ensured that validation sets always contained
data that are posterior to the data on which the models were trained. These
time-consistent folds help ensure that we are not predicting past data using
future data.

5 https://github.com/dmlc/xgboost
6 https://github.com/microsoft/LightGBM

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
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From the results of the cross-validation approach, we can interpret whether
the model is over-fitting. If the training RMSE/MAE and test RMSE/MAE
has significant differences, it indicates that the model is over-fitting.

Results

LightGBM outperforms the other algorithms/frameworks in rank-
ing code clones based on their estimated ratio of future faulty changes.
Table 4 presents the results of the cross-validation for the four algorithms and
two frameworks. The models are trained separately for Java and C software
projects. The LightGBM algorithm is able to achieve an R-Squared score rang-
ing from 0.87 (for C projects) to 0.89 (for Java projects) for Modelall, which is
much better than the baseline Logistic Regression (0.70 for C and 0.71 for Java
projects). The test and train RMSE and MAE are also better for LightGBM
than the other studied algorithms. The performance metrics of XGBOOST
and Random Forest show that they outperform the baseline and achieve a
performance close to that of the top performer LightGBM. It is important to
note here that the train and test RMSE and MAE scores are uniform, which is
one of the indicators that the model is not overfitting. The regression results
are significantly better than the learning-to-rank(LtR) results while classifi-
cation models seem to be more effective. However, the classification approach
is a more simplistic approach which only provides developer with the infor-
mation on whether a clone pair would have a fault. The regression approach
provides the ratio of faulty changes in a clone pair and achieve good results.
Developers can use the approach based on their specific need and improve the
maintenance of the code clones.

XGBOOST and LightGBM can be used in the early and mature
phases of software projects to determine the rank of the code clones.
Table 4 shows the evaluation metrics results for Modelearly and Modelmature.
XGBOOST achieved an R-squared value ranging from 0.83 (for C projects)
to 0.84 (for java projects) for the Modelearly. The evaluation metrics results
for the early phase is lower than that of the Modelall which is understandable
because the history of the code clone is not developed in the early phase. How-
ever, it is encouraging to see that Modelmature is able to outperform Modelall.
This is similar to the results obtained with classification algorithms. A pos-
sible explanation for this phenomenon is the recency of information used in
Modelmature. The occurrence of faults in matured clone pairs is likely to be
more predictable than the occurrence of faults in newly created clone pairs,
and recent information about the clone pairs are better predictors of fault
occurrences than older information. During maintenance activities, developers
can select the appropriate model (by taking into account the level of maturity
of the project) to predict the risk of faults in code clones contained in their
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Table 4 10-fold cross-validation results of four regression algorithms and two frameworks,
evaluation metrics R-squared, RMSE, MAE. Java and C projects results presented sepa-
rately.

Java projects C projects

Evaluation
Metrics

R
-s

q
u

a
r
e
d

T
r
a
in

R
M

S
E

T
e
st

R
M

S
E

T
r
a
in

M
A

E

T
e
st

M
A

E

R
-s

q
u

a
r
e
d

T
r
a
in

R
M

S
E

T
e
st

R
M

S
E

T
r
a
in

M
A

E

T
e
st

M
A

E

Modelall

Linear
regression

(mixed-effect)

0.78 23.4 24.5 42 44.2 0.68 23.5 25.8 43.8 45.7

Ridge
regression

0.79 21.2 22.6 37.2 38.9 0.77 22.5 23.7 38.6 39.9

Lasso
Regression

0.78 18.6 19.5 35.6 36.8 0.77 19.2 21.5 37.2 39.2

Random
Forest

0.86 9.5 10.3 18.6 20.3 0.85 10.6 12.2 18.3 19.7

XGBOOST 0.86 5.2 5.8 13.8 15.1 0.86 5.4 6.3 14.2 15.7
LightGBM 0.87 4.7 4.95 11.1 12.3 0.86 4.9 5.6 11.4 12.8

Modelearly

Linear
regression

(mixed-effect)

0.77 24 25.7 44 46.7 0.65 24.3 26.5 44.5 47.2

Ridge
regression

0.76 22.4 23.9 38.6 39.5 0.75 24.8 26.7 39.5 42.1

Lasso
Regression

0.76 19.5 21.3 36.1 38.6 0.74 23.5 24.9 38.4 40

Random
Forest

0.82 10.5 11.7 19.3 21.8 0.82 11.6 13.1 19.5 21.6

XGBOOST 0.84 5.9 7.1 14.8 16.4 0.83 6.2 7.6 15.3 16.9
LightGBM 0.84 5.8 7.3 14.5 16.5 0.82 6.1 7.9 16.5 17.7

Modelmature

Linear
regression

(mixed-effect)

0.80 22.7 23.9 41.6 44 0.0.71 22.7 25.3 43 45.2

Ridge
regression

0.79 20.9 21.7 37.1 39.2 0.78 21.9 23.4 38.1 39.5

Lasso
Regression

0.80 19.3 21 36.3 37.5 0.79 20.2 21.8 37.5 39.8

Random
Forest

0.87 8.8 10.1 17.5 19.3 0.86 9.7 11.3 17.9 19.2

XGBOOST 0.89 4.9 5.4 12.3 13.4 0.88 5.1 5.8 13.5 14.6
LightGBM 0.90 4.1 4.6 9.7 10.9 0.89 4.3 5 10.3 11.8
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system. The top ranked code clones can be fixed first, to prevent future clone
related faults.

Summary of RQ3

LightGBM outperforms the studied algorithms/frameworks when
trained for ranking code clones based on the ratio of faulty changes.
However, LightGBM ad XGBOOST both can be used in the early and
mature phases of the project as they perform well. The mature phase
performance from the previous two research questions also holds in this
context.

4.4 RQ4: Which metrics are significantly correlated to the risk of
faults in code clones?

Motivation. In RQ2 and RQ3, we trained machine learning models to rank
code clones at the commit level, using 28 features from four different cate-
gories. The detection of code clones, the identification of clone genealogies,
and the computation of the features of the models can be costly. In this re-
search question, we examine the importance of each feature used in our models
to identify the subset of features that are the most important for predicting
fault occurrence in clone pairs. It is important to note here that we only iden-
tify significant features for our regression approach (RQ3),since it provides
the ratio of faulty changes and achieves good performance. Developers can use
similar steps to identify significant features in the learning-to-rank (LtR) and
classification approaches. The identified features can provide quick guidance
(before using machine learning models trained in previous research questions)
to developers, helping them to prevent fault-occurrence in code clones.

Approach. In this section, we describe the approach followed to identify the
significant features in predicting the rank of the code clones, based on their
fault-proneness. We computed features following the steps described in Sec-
tion 3.4. The data for all the three models (i.e., Modelall, Modelearly, and
Modelmature) are collected using the approach described in RQ2. We also
identify the level of multicollinearity using VIF as mentioned in RQ3.

Building and Analyzing the Mixed-Effect Model. Because the studied
software projects belong to different domains and different programming lan-
guages, the behavior of code clones in these projects is likely to be different.
To take into account the context of the project in our analysis of fault-prone
code clones, we use a mixed-effect model [42] as already explained in RQ3.

It is important to note that we build three different mixed-effect models
(i.e., Modelall, Modelearly, and Modelmature) for each of our three datasets.
We use the glmer function of the R package lmer[5] to construct mixed-effect
models. The discriminative power of the model measures the ability of the
model to distinguish values 0 and 1 of the dependant variable (i.e., predicting
the number of faulty changes of the code clones). We use the Area Under
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Curve (AUC) [19] to determine the discriminative power of the model. We use
Receiver Operator Curve (ROC) to plot the true positives against the false
positive for different thresholds. The value of AUC ranges from 0 to 1, 0 being
the worst performance, 0.5 being the random guessing performance, and 1
being the best performance. [19]

To understand the impact of explanatory features, we use Wald statistic
[28] to estimate the relative contribution (X2). A higher value of (X2) shows
the high impact of the feature on the performance of the model [20]. We use the
R package Car [15] which provides the implementation of anova to calcualte
wald X2.

Results

The increased involvement of developers in the clone genealogy
can have an effect on the fault proneness of the clone pair. Table 5
presents the significance between the clone-related features and the number of
faulty changes of the clone pairs. Due to the space constraint, Table 5 shows
only the top five significant features for all three studied models. The AUC
is measured to be 0.79 for the Modelall. However, detailed results of Modelall
(Table 7) , Modelmature(Table 8), and Modelearly(Table 9) are available in
the Appendix of this paper. The feature unique users accounts for the highest
χ2 in the mixed-effect model of Modelall, suggesting that the fewer is the
number of developers changing a clone pair, the lower is the risk of faults.
This result is understandable because if more developers make changes to a
clone pair, they might not know about the other copies of the clone. Therefore,
the clone copies can become inconsistent, and the probability of introducing
a fault becomes higher than that of preserving the consistency of clones. In
addition, age commits is the second most significant feature. This essentially
means that as more changes are made on a clone genealogy, the risk for fault
increases.

In mature projects, the age of code clones (in terms of the num-
ber of commits) is correlated with the risk of faults. Table 5 shows
that age commits is the most significant feature for Modelmature. The AUC is
measured to be 0.85 for the Modelmature, suggesting that, similarly to RQ2 and
RQ3, the models achieve better performance when more historical information
about the clones is available. Some code clones are changed a lot, while other
experience significantly fewer changes. If a software project has an extensive
code clone history, it is better to use Modelmature to obtain better results.
The UnqUsers (unique committers to a clone pair) is identified as the second
most important feature in Modelmature. Hence, similarly to Modelall, the risk
of fault introduction increases when multiple developers change a clone pair.
Developers can focus on these two features (i.e., age commits and UnqUsers)
to reduce the risk of fault introduction in clone pairs.

The changes to code clones in the early phase of the software
project should be performed by a fewer number of developers. As
shown in Table 5 for Modelearly, UnqUsers is the most significant feature in
determining the rank of clone pairs based on fault-proneness. The AUC is
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Table 5 Results of the mixed-effect model for Modelall, Modelmature, and Modelearly .
Sorted by χ2 in decreasing order

. Top 5 features only

Factor Coef. χ2 Percentage Pr(< χ2) Sign.+ Relationship
Modelall

(Intercept) -4.653e+00 1238 <2.2e−16 *** ↘
UnqUsers 1.617e−01 300315 64.53 <2.2e−16 *** ↗
age commits 4.907e−01 117350 25.22 <2.2e−16 *** ↗
FCngFreq -2.470e−03 20924 4.50 <2.2e−16 *** ↘
UChgRto 2.668e−03 5917 1.27 <2.2e−16 *** ↗
age days 2.823e−04 4352 0.94 <2.2e−16 *** ↗

Modelmature

(Intercept) -6.772e+00 324 <2.2e−16 *** ↘
age commits 5.230e−01 11639 52.24 <2.2e−16 *** ↗
UnqUsers 1.228e−01 2152 9.66 <2.2e−16 *** ↗
UFileChg -1.668e−03 1318 5.92 <2.2e−16 *** ↘
FCngFreq -1.185e−03 1248 5.60 <2.2e−16 *** ↘
age days 5.290e−04 1119 5.02 <2.2e−16 *** ↗

Modelearly
(Intercept) -4.400e+00 103 <2.2e−16 *** ↘
UnqUsers 1.638e−01 40938 52.42 <2.2e−16 *** ↗
age commits 4.420e−01 26567 34.02 <2.2e−16 *** ↗
CPathDepth 1.082e−01 3762 4.82 <2.2e−16 *** ↗
cloc 5.170e−03 3736 4.78 <2.2e−16 *** ↗
SLBurst -1.163e−01 430 0.55 <2.2e−16 *** ↘

+Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

measured to be 0.77 for Modelearly. If a clone pair is changed by multiple de-
velopers in the early phase of a project, the risk of fault introduction increases.
To prevent the introduction of faults, developers can strive to keep the number
of developers involved in changing cloned code to a minimum level. We suggest
that any code clone changed by more than two developers should be carefully
monitored. As observed in Modelearly results, age commits is also the second
most important predictor of future faults in clone pairs during the early phase
of a project. A clone pair experiencing a higher number of changes at the start
of the project should be monitored carefully. The feature age commits has a
higher importance in Modelearly in comparison to Modelall; which emphasizes
that a higher number of changes to a clone pair at the start of the project is
not recommended.

Summary of RQ4

When there are more developers changing a clone pair, the likelihood of
the clone pair having fault in future increases significantly. As a project
becomes mature, the age of code clones also show an association with
the introduction of faults in the clone pair. At the start of the project
developers should make sure that code clones are changed mostly by
the authors of the clone pairs.
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5 Implications

In this section, we discuss the implications of our results for the developers of
open-source software projects. First, we will discuss the results of the machine
learning approaches used to rank the code clones based on fault proneness.
Then, we will specify specific guidelines for the stakeholders. The learning-to-
rank(LtR) algorithms (RQ1) show moderate results due to the unavailability
of the labeled ranked dataset. However, the classification algorithm (Random
Forest) achieves better performance among the studied algorithms (RQ2). The
developers can find this approach very effective in cases where they try to
identify whether a clone would be fault-prone. In addition, if developers want
to achieve a more accurate ranking by identifying the code clones that can
have more fault-prone changes, they can use our regression approach (RQ3)
that achieves higher evaluation scores using LightGBM. Based on the results
from our research questions, we suggest the following guidelines to developers.

Developer can use the learning-to-rank (LtR) approach to rank code clones
at a commit level. Our results suggest that LtR algorithms can be useful but
have a lower accuracy than classification and regression algorithms. Developers
who can label code clones with different ranks based on the associated faults
can obtain better results. The developers can use different rankings based
on their project needs. For example, developers can give a higher rank to
functional bugs, a middle rank to non-functional bugs, and a lowest rank
to non-faulty clones. It can be useful to rank the code clones on a different
scale rather than just 0 and 1. A recent study [56] on pull requests uses a
distinctive rank (0,1,2) on pull requests based on their priority and shows
promising results. Developers can extract clone genealogies and calculate the
features provided in Section 3.4 to train the LtR model using XGBOOST and
LightGBM.

Developers can use classification models to rank code clones. Classification
algorithms, Random Forest in particular achieves high efficiency in determin-
ing the probability of a code clone having a bug. The rank of the code clones
using these probability values can help identify the most risky code clones at
a commit level.

Developers can predict the number of faulty changes of the code clones
using regression techniques. We use multiple regression techniques to estimate
the risk of future faults in clone pairs. Our results show that LightGBM and
XGBOOST achieve the best results. We ranked the code clones based on the
number of faulty changes of the code clones, which developers can use to focus
on top risky clones instead of going through all the code clones. Developers can
choose the number of clones to refactor based on their resources and eventually,
it would prevent future faults.

We provided specialized models for the early and mature lifetime of open-
source software projects. In order to assist the new and old software projects
efficiently, we trained two different models by explicitly choosing the data
from these two stages of the software projects from our dataset. The special-
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ized models can help developers in making an informed decision related to
maintaining code clones at different stages of the development process.

We have identified significant features for developers to look out for when
maintaining code clones. If the developers want to get a quick knowledge about
the specific features related to code clones that they can focus on (if they are
short on time). Developers must be cautious of too many changes by their
peers to a particular code clone as it affects the number of faulty changes of
the code clones. Moreover, it is essential to keep an eye on the code clones that
experience many changes as they tend to be faulty in the future. We suggest
that any code clone that is above the average age of code clones in the project
should be monitored carefully. We also identify significant features (e.g., code
clones in terms of the number of commit and unique committers in code clone
history) for the new and old projects as well, that can aid the developers for
their specific software projects.

6 Related Work

In this section, we summarize the existing literature related to the code clones.
Specifically, we review research work related to code clone detection, fault-
proneness of code clones, and analysis of the clone genealogies.

6.1 Code Clone Detection

Prior studies propose state-of-the-art clone detection tools that are able to
identify code clones from large codebases. Göde et al. [17] propose an incre-
mental clone detection tool (iClones) which detects clones based on the anal-
ysis of the previous revisions. iClones creates a mapping between the multiple
revisions of code clones. iClones effectively provides the add/delete information
of the code clones. Incremental detection of clones is helpful in evolutionary
clone analysis and is fast as compared to other similar clone detection tools.
Kamiya et al. [24] propose transformation rules and a token-based comparison
clone detection technique that is optimized to achieve better performance. The
technique converts the source code into tokens and, based on the pre-defined
rules, performs the comparison. The clone detection technique is evaluated on
four large-scale projects, and the results show that the tool is able to iden-
tify clones. Cordy et al. [9] propose a clone detection technique that uses
a language-sensitive parsing and language-independent similarity analysis to
identify near-miss clones. The approach is available as a simple command-line
tool, and code directories are used as input while the output is available in a
HTML and XML format. The approach is able to achieve high precision and
high recall and is scalable to extensive systems.

Schwarz et al. [39] propose a set of lightweight techniques that can detect
the code clone from the large codebase as well as across projects. The approach
used a bad hashing concept to index the code clones. Squeaksource, a dataset
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of multiple projects with the project history, is used to evaluate the proposed
lightweight techniques. The analysis shows that 22% of all type-3 clones could
be missed if the analysis is performed on only the latest versions. Saha et al. [37]
focus on the extraction and classification of near-miss code clone genealogies.
Clone genealogy extraction starts by accepting multiple versions of a program,
maps clone classes between the consecutive versions, and extracts how the
cloned fragments are changed throughout the period. Finally, the approach
identifies change patterns (i.e., added, deleted, modified) using a three-pass
algorithm. Yang et al.[54] use machine learning models to classify the true
clones based on the code clones detected by the clone detection tools. A web-
based tool (FICA) is provided as a proof of concept to identify true clones.
A user study is performed on interviewing 32 participants to evaluate the
usefulness of the tool. The authors report 70% accuracy for the classification
tool. Roy et al. [36] focus on identifying near-miss clones (i.e., where small
to large changes have been made to the copied fragments of code). A hybrid
approach is presented to detect clones, followed by the metamodel of the clone
types. An empirical study of cloning in more than 20 open-source systems is
performed for current clone detection techniques and tools.

The summary of the clone detection tool shows that iClones perform better
in identifying code clones when there are multiple revisions (i.e., commits) of
the projects. Therefore, we use iClones to identify the clones from our studied
projects.

6.2 Fault-Proneness of Code Clones

Inconsistent changes of code clones can lead to the introduction of bugs in the
project. It is vital to effectively make changes to the copies of clones to avoid
the risk of bugs. The following studies focus on the impact of bug propagation
and the fault-proneness of different types of clones.

Mondal et al. [31] present an empirical study to understand the intensity of
bug-propagation through code cloning. The empirical analysis shows that up
to 33% of the code clones can be related to bug prediction, provided that code
clones experience bug fix changes. Near-miss clones (i.e., Type 2 and Type 3
clones) have a higher chance of being involved in the bug-propagation than the
identical clones (i.e., Type 1). Xie et al. [52] present a study of fault-proneness
of Type-3 code clones in the evolving software. The study analyzes three long-
lived software systems APACHE-ANT, ARGOUML, and JBOSS, written in
JAVA. The clone genealogies are build using the NICAD clone detection tool
to examine two evolutionary processes: 1) how clone types are mutated in a
system; and 2) how code clones are migrated in a project. Li et al.[30] propose
a keyword based approach to identify the buggy code clones. The bug reports
are evaluated and are linked with the code clones using the keyword approach
to identify the buggy code clones. The bugs related to code clones comprise of
4% of overall bugs in the studied systems. The approach is available as a tool
that can be used to identify buggy code clones. Saha et al. [38] perform an



Ranking Code Clones to Support Maintenance Activities 31

exploratory study about the evolution of Type-1, Type-2, and Type-3 clones in
six open source projects written in two different languages. Results show that a
considerable number of type-1 and type-2 clones change to type-3 clones during
evolution. Although the life span of type-3 clones is similar to type-1 and type-
2 clones, it is essential to manage the type-3 clones to limit their negative
impact. Barbour et al. [4] examine the characteristics of late propagation of
code clones in two software systems. Late propagation introduces the concept
of making changes to one clone, and the other is changed afterward in the next
revisions; this evolutionary pattern can introduce faults. The study defined
eight different types of late propagation and compared them with other forms
of clone evolution.

In general, the studies related to the fault-proneness of code clones includes
late propagation, code clones types analysis related to bug prediction, and bug
prediction for code clones provided that code clones experience faulty changes.
To the best of our knowledge, the fault-proneness of the code clones has not
been used to rank the code clones in order to improve the maintenance of such
code clones. We use fault-proneness information to rank code clones at the
commit level, so that fault-prone code clones can be fixed first.

6.3 Analysis of Clone Genealogies

The clone genealogies need to be built first using the history of code clones be-
fore the analysis of code clones. Barbour et al. [3] investigate six different evo-
lutionary patterns using the clone genealogies extracted from four open-source
Java systems. The analysis uses the clone genealogy information to identify
the fault-prone nature of clone pairs based on the evolutionary patterns of the
clone pairs. The results show that including the clone genealogy information
can increase the identification power of fault prediction models. Zhang et al.
[55] use clone genealogy information to predict the consistency-maintenance
of code clones. The study identifies the code clones with consistency issues
earlier in the lifetime in order to improve the maintenance of such code clones.
The approach can predict the consistency-maintenance of the code clones.
Thongtanunam et al. [46] investigate the life of code clones using the clone
genealogy information from the code clones. The approach used multiple fea-
tures to train a Random Forest classifier to determine whether a code clone
would be short-lived. Garg et al. [16] propose a clone ranking approach for
better clone management. The paper prioritizes the results of clone detection
tools by finding out the maintenance overhead using the size of code clone,
MCC complexity and frequency of clone results. Different weights are provided
to the three selected features. The CCFinder tool [24] is used to detect clone
fragments and a score is given to each clone fragments based on the pre-defined
weights. The approach is able to achieve high AUC and emphasize that the
code churn, complexity, and the size of the newly-introduced code are highly
influential in determining the life of the code clones.
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To summarize, code clone genealogy information is used in a different con-
text (e.g., consistency-maintenance, evolutionary patterns, the life of a code
pair) in the software project to improve multiple aspects of clone maintenance.
We use clone genealogy information to train different machine learning models
(learning-to-rank, classification, and regression) that are able to rank the code
clones at a commit level.

7 Threats to Validity

In this section, we discuss the threats to the validity of our approach.
Threats to conclusion validity concern the relation between the treat-

ment and the outcome. In our case, threats to conclusion validity concern
the errors that occurred when processing the code clones. The accuracy of the
clone detection is dependant on the clone detection tool used. To achieve a high
accuracy, we use iClones recommended by Savalajeko et al. [43] who compare
multiple code clone detection tools. We use the same setting as recommended
by the results of the comparison.

SZZ is the de facto standard in identifying the fault-inducing commits and
used by existing studies [6]. The identification of fault-prone commits and
fault-prone clone pairs is performed using the SZZ approach. The approach
considers that the fault is introduced before the creation of a bug report, and
no commit between the bug report creation and the bug fixing commit is
considered. The limitations of the SZZ approach are applicable to our data
[21].

Threats to external validity concern the selection of projects and the
analysis methods. To mitigate the issue of our results being biased towards
a particular set of projects, we use well-defined selection criteria beforehand
to include large-scale open-source software projects. The projects are selected
from different domains of software development. The clone detection is varied
(i.e., the number of clones identified for each project is different) among the
selected projects. We aim to show the diversity of the selected projects to
ensure that our results are not biased towards a specific language. We include
projects from two different languages.

We analyze all revisions of the projects from their creation date until
September 2020. The code clones detected, issue reports, and features cal-
culated are valid for this period. A selection of projects from a different time
period can result in a different number of clones detected, different clone ge-
nealogies, and different values for the features identified.

Prior studies [27] [51] indicate that it is essential to identify different aliases
used by developers in an open-source project. We fix the problem of disam-
biguation of identity (due to multiple aliases) as follows. Instead of the previous
approaches that are valid for mailing lists and other similar datasets, we use
the GitHub API to retrieve the GitHub account information of the commit-
ters. Each commit has an associated email for the committer; we are able to
verify that every committer has a different GitHub account. Our approach is
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similar to the prior studies solving the disambiguation problem [2]. However,
similar to existing approaches, we are unable to identify whether a developer
has multiple GitHub accounts.

Threats to internal validity concern the possibility of generalizing our
results. We select GitHub because it is the most popular platform for open-
source projects, and in addition, commits, pull requests, and issue reports are
readily available. We use iClones as it can achieve higher accuracy in detecting
the code clones. The projects from Java and C programming languages are
popular in open-source. Our study can be extended to software projects from
other programming languages hosted on different platforms, and other clone
detection tools can be used to detect the clones in the projects.

8 Conclusion

Previous studies report that code clones should be adequately maintained to
reduce maintenance costs and prevent future faults. The occurrence of similar
code fragments in the software project can be harmful, leading to the intro-
duction of bugs in the software projects. In this paper, we examine the possi-
bility of ranking clone fragments based on the risk of future fault occurrences.
Specifically, we identify code clones from 534,672 commits from 34 Java and
18 C open-source software projects from GitHub. We identify 469,239 clone
genealogies from the studied projects and examined the bug association to the
clone genealogies. We then calculate 28 different features related to process,
product, genealogy, and users for the clone pairs identified. We experiment
with different learning-to-rank (LtR), classification, and regression machine
learning models. Our findings can be described as follows.

– We train LtR models to identify the effectiveness of LtR algorithms on our
dataset. Our results show that LightGBM achieves a precision of 0.72 to
rank the code clones for fault-proneness.

– We use classification approaches to predict the probability of a code clone
having fault or not. Random Forest achieves the highest AUC (0.96) among
the studied classification approaches.

– We use regression approaches to predict the number of faulty changes of
the code clones. Our 10-fold cross-validation on six different regression
approaches shows promising results and indicates that LightGBM (0.87
R-squared) is useful in predicting the number of faulty changes of a code
clone.

– We provide specialized models using early and mature phase data of the
projects. Our analysis shows that as projects become mature, information
about the history of the code clones can improve the performance of pre-
diction models of future fault-proneness. Our specialized models can be
used by developers for new projects as well as projects that are mature.

– We build a mixed-effect model to identify the significant features for pre-
dicting the proportion of faulty changes of the code clones. Our analysis
identifies that UnqUsers (i.e., the number of unique developers making
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changes to a clone pair) and age commits (i.e., the number of commits
that a clone pair has changed) has a significant effect on the prediction.
Developers can focus on the top significant features for a quick suggestion
to prevent faults in the future.

Data Availability Statement
The datasets generated during and/or analysed during the current study

are available in the Zenodo repository7.

9 Appendix

7 https://zenodo.org/record/7229977

https://zenodo.org/record/7229977
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Table 6 Details of the selected projects

Project Name Commits Issues SLOC % of files Genealogies

Java projects

Anki-Android 10,647 18,079 402.2k 91.70 3,303
che 8,733 10,474 475.5k 73.80 1,056
checkstyle 9,454 12,108 457.4k 97.80 7,705
druid 10,496 8,878 1.2m 94.50 61,718
elasticsearch 53,815 69,010 3.2m 99.80 4,544
framework 18,969 6,879 867.9k 95.50 11,961
gatk 4,173 7,364 2.2m 93.70 22,651
graylog2-server 16,934 7,498 720.3k 73.90 5,782
grpc-java 4,327 17,698 283.1k 98.30 69,248
jabref 15,271 6,991 1.3m 92.70 4,394
k 15,997 1,704 243.3k 83.50 6,026
k-9 9,579 7,130 177.6k 75.80 2,560
mage 31,307 5,007 1.9m 99.90 15,520
minecraftForge 7,451 5,967 136.1k 99.30 659
molgenis 23,001 6,918 359.8k 86.70 14,891
muikku 16,970 5,156 318.4k 50.20 23,836
nd4j 7,021 10,636 467.0k 99.80 45,413
neo4j 68,916 12,676 837.6k 77.50 60,857
netty 9,910 1,587 476.2k 98.60 13,750
openhab 9,687 9,271 968.5k 99.50 2,678
osmand 64,012 10,091 939.3k 95.70 7,688
pinpoint 11,290 6,451 635.4k 89.30 49,191
presto 17,837 4,987 1.4m 98.80 189
product-apim 7,383 6,451 445.6k 91.60 12,871
realm-java 8,318 6,918 199.9k 83.80 13,540
reddeer 1,550 4,171 136.4k 93.60 20
rxjava 5,762 8,374 474.9k 99.90 8,866
smarthome 5,162 7,099 514.0k 93.80 1,348
spring-boot 27,850 25,295 625.5k 98.80 7,841
terasology 10,405 3,043 321.2k 97.80 56,837
wildfly-camel 1,662 6,216 141.3k 99.20 741
xchange 10,434 2,094 655.6k 100.00 3,545
xp 22,615 3,750 423.0k 95.10 68
zaproxy 7,450 9,271 516.4k 72.00 330

C projects
betaflight 16,458 6,467 3.2m 94.50 4,658
cleanflight 16,589 4,554 3m 94.50 2,587
collectd 11,650 6,832 251k 79.50 1,586
fontForge 19,314 3,834 2.8m 97.90 33,848
freeRDP 14,657 8,444 561k 83.00 11,398
inav 10,339 15,916 2.8m 95.60 4,826
johnTheRipper 15,785 11,411 1.1m 75.90 13,874
libgit2 13,602 3,630 413k 98.20 2,657
lxc 9,748 8,464 138k 86.30 9,356
micropython 11,902 4,587 594k 87.00 3,274
mpv 48,889 5,761 235k 88.30 1,952
netdata 11,823 17,907 603k 73.80 23,874
ompi 31,167 10,463 857k 79.90 6,874
radare2 25,047 10,566 1.3m 93.30 8,947
redis 9,867 6,754 303k 82.60 814
riot 33,594 18,392 2.5m 88.30 567
systemd 48,352 3,116 1.5m 88.30 40,785
zfs 6,459 8,375 808k 75.90 328
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Table 7 Results of the mixed-effect model for Modelall, Sorted by χ2 descendingly

Factor Coef. χ2 Percentage Pr(< χ2) Sign.+ Relationship

(Intercept) -4.653e+00 1238 0.27 <2.2e−16 *** ↘
UnqUsers 1.617e−01 300315 64.53 <2.2e−16 *** ↗
age commits 4.907e−01 117350 25.22 <2.2e−16 *** ↗
FCngFreq -2.470e−03 20924 4.50 <2.2e−16 *** ↘
UChgRto 2.668e−03 5917 1.27 <2.2e−16 *** ↗
age days 2.823e−04 4352 0.94 <2.2e−16 *** ↗
LvstDis -7.189e−03 3481 0.75 <2.2e−16 *** ↘
CCore 6.768e−02 2295 0.49 <2.2e−16 *** ↗
Avg CT -8.360e−04 2096 0.45 <2.2e−16 *** ↘
sib cnt -1.076e−02 1553 0.33 <2.2e−16 *** ↘
EFltDens -5.211e−01 1316 0.28 <2.2e−16 *** ↘
SLBurst 5.835e−02 1059 0.23 <2.2e−16 *** ↗
experience 3.002e−05 820 0.18 <2.2e−16 *** ↗
accepted 2.345e−04 709 0.15 <2.2e−16 *** ↗
EConChg 1.594e−01 291 0.06 <2.2e−16 *** ↗
rejected -5.577e−04 273 0.06 <2.2e−16 *** ↘
TChurn 6.956e−05 250 0.05 <2.2e−16 *** ↗
EIncStChg 9.339e−02 244 0.05 <2.2e−16 *** ↗
TPC -8.662e−02 210 0.05 <2.2e−16 *** ↘
EConStChg -6.570e−02 203 0.04 <2.2e−16 *** ↘
CCurSt 5.299e−02 119 0.03 <2.2e−16 *** ↗
cloc 9.776e−05 105 0.02 <2.2e−16 *** ↗
UFileChg 2.491e−04 88 0.02 <2.2e−16 *** ↗
CPathDepth -4.163e−03 66 0.01 3.734e−16 *** ↘
EEvPattern 1.088e−02 45 0.01 1.937e−11 *** ↗
NumOfBursts 6.726e−03 33 0.01 8.970e−09 *** ↗
EChgTimeInt -1.025e−05 7 0.00 0.006643 ** ↘

+Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 8 Results of the mixed-effect model for Modelmature, Sorted by χ2 descendingly

Factor Coef. χ2 Percentage Pr(< χ2) Sign.+ Relationship

(Intercept) -6.772e+00 324 <2.2e−16 *** ↘
age commits 5.230e−01 11639 52.24 <2.2e−16 *** ↗
UnqUsers 1.228e−01 2152 9.66 <2.2e−16 *** ↗
UFileChg -1.668e−03 1318 5.92 <2.2e−16 *** ↘
FCngFreq -1.185e−03 1248 5.60 <2.2e−16 *** ↘
age days 5.290e−04 1119 5.02 <2.2e−16 *** ↗
CPathDepth 4.664e−02 987 4.43 <2.2e−16 *** ↗
LvstDis 1.182e−02 969 4.35 <2.2e−16 *** ↗
CCore 1.679e−01 718 3.22 <2.2e−16 *** ↗
EFltDens -9.565e−01 345 1.55 <2.2e−16 *** ↘
NumOfBursts -8.230e−02 331 1.49 <2.2e−16 *** ↘
SLBurst 1.091e−01 324 1.45 <2.2e−16 *** ↗
TChurn -1.598e−03 155 0.70 <2.2e−16 *** ↘
EIncStChg 2.624e−01 128 0.57 <2.2e−16 *** ↗
cloc -7.454e−04 117 0.53 <2.2e−16 *** ↘
TPC -2.227e−01 92 0.41 <2.2e−16 *** ↘
EConChg 2.528e−01 48 0.22 2.564e−12 *** ↗
UChgRto 7.602e−04 42 0.19 7.937e−11 *** ↗
sib cnt -4.957e−03 41 0.18 1.279e−10 *** ↘
experience 1.944e−05 33 0.15 7.821e−09 *** ↗
EEvPattern -3.791e−02 32 0.14 9.858e−09 *** ↘
CCurSt 1.097e−01 31 0.14 2.399e−08 *** ↗
rejected 3.149e−04 24 0.11 5.928e−07 *** ↗
accepted 7.361e−05 21 0.09 4.022e−06 *** ↗
Avg CT 2.603e−04 17 0.08 2.806e−05 *** ↗
EConStChg 7.308e−02 15 0.07 6.575e−05 *** ↗
EChgTimeInt -4.249e−05 9 0.04 0.001636 ** ↘

+Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 9 Results of the mixed-effect model for Modelearly , Sorted by χ2 descendingly

Factor Coef. χ2 Percentage Pr(< χ2) Sign.+ Relationship

(Intercept) -4.400e+00 103 0.13 <2.2e−16 *** ↘
UnqUsers 1.638e−01 40938 52.42 <2.2e−16 *** ↗
age commits 4.420e−01 26567 34.02 <2.2e−16 *** ↗
CPathDepth 1.082e−01 3762 4.82 <2.2e−16 *** ↗
cloc 5.170e−03 3736 4.78 <2.2e−16 *** ↗
SLBurst -1.163e−01 430 0.55 <2.2e−16 *** ↘
UChgRto 1.463e−03 404 0.52 <2.2e−16 *** ↗
experience 1.075e−04 290 0.37 <2.2e−16 *** ↗
LvstDis 6.167e−03 282 0.36 <2.2e−16 *** ↗
NumOfBursts -8.708e−02 262 0.34 <2.2e−16 *** ↘
Avg CT -5.338e−04 198 0.25 <2.2e−16 *** ↘
CCore 6.091e−02 186 0.24 <2.2e−16 *** ↗
FCngFreq -1.450e−03 138 0.18 <2.2e−16 *** ↘
EConStChg 2.030e−01 129 0.17 <2.2e−16 *** ↗
EFltDens 4.681e−01 127 0.16 <2.2e−16 *** ↗
EChgTimeInt 4.041e−04 125 0.16 <2.2e−16 *** ↗
age days 9.855e−05 123 0.16 <2.2e−16 *** ↗
sib cnt 5.250e−03 81 0.10 <2.2e−16 *** ↗
EConChg -3.142e−01 77 0.10 <2.2e−16 *** ↘
TChurn -2.313e−04 64 0.08 8.367e−16 *** ↘
TPC 1.335e−01 38 0.05 7.029e−10 *** ↗
CCurSt -7.345e−02 13 0.02 0.000211 *** ↘
EIncStChg -7.046e−02 10 0.01 0.001138 ** ↘
rejected -1.914e−03 7 0.01 0.005693 ** ↘
EEvPattern 1.643e−02 6 0.01 0.013103 * ↗
accepted 1.771e−04 2 0.00 0.088527 . ↗
UFileChg -5.907e−04 0 - 0.562663 ↘

+Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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