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Abstract Nowadays, many software organizations rely on automatic prob-
lem reporting tools to collect crash reports directly from users’ environments.
These crash reports are later grouped together into crash types. Usually, devel-
opers prioritize crash types based on the number of crash reports and file bug
reports for the top crash types. Because a bug can trigger a crash in different
usage scenarios, different crash types are sometimes related to the same bug.
Two bugs are correlated when the occurrence of one bug causes the other bug
to occur. We refer to a group of crash types related to identical or correlated
bug reports, as a crash correlation group. In this paper, we propose five rules
to identify correlated crash types automatically. We propose an algorithm to
locate and rank buggy files using crash correlation groups. We also propose a
method to identify duplicate and related bug reports. Through an empirical
study on Firefox and Eclipse, we show that the first three rules can identify
crash correlation groups using stack trace information, with a precision of 91%
and a recall of 87% for Firefox and a precision of 76% and a recall of 61% for
Eclipse. On the top three buggy file candidates, the proposed bug localization
algorithm achieves a recall of 62% and a precision of 42% for Firefox and a
recall of 52% and a precision of 50% for Eclipse. On the top 10 buggy file
candidates, the recall increases to 92% for Firefox and 90% for Eclipse. The
proposed duplicate bug report identification method achieves a recall of 50%
and a precision of 55% on Firefox, and a recall of 47% and a precision of 35%
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on Eclipse. Developers can combine the proposed crash correlation rules with
the new bug localization algorithm to identify and fix correlated crash types
all together. Triagers can use the duplicate bug report identification method
to reduce their workload by filtering duplicate bug reports automatically.

Keywords Crashes · Crash Reports · Stack Traces · Bug Localization · Bug
Duplication

1 Introduction

Nowadays, many big software organizations such as Microsoft1 and Mozilla2

embed automatic problem reporting tools in their software systems. Whenever
the software crashes (i.e., terminates unexpectedly) in a user’s environment,
the automatic problem reporting tool collects information about the crash and
sends a detailed crash report to the software vendor. A crash report usually
contains the stack trace of the failing thread and other runtime information.
A stack trace is an ordered set of frames; each frame referring to a method
signature. Crash reports are used by several stakeholders such as developers
fixing crashes and product managers allocating development resources. Using
crash reports, Microsoft developers were able to fix 29% of the bugs found in
Windows XP SP1, and more than 50% of the Office XP SP2 bugs [1]. The
automatic collection of crash reports helped Mozilla developers to improve the
reliability of Firefox by 40% from November 2009 to March 2010 [2].

Built-in automatic crash reporting tools often collect a large amount of
crash reports. For example, Mozilla Firefox receives 2.5 million crash reports
every day [3]. To reduce the amount of crash reports to handle, similar crash
reports are identified and grouped together based on the similarity of their
stack traces. We refer to a group of similar crash reports as a crash type. The
signature of a crash type is usually the top method signature of the stack
traces. The crash types are sorted based on the number of crash reports and
developers usually file bug reports for the top crash types, i.e., crash types
with high numbers of crash reports. Later, stack traces from the failing threads,
contained in crash reports, are used by developers to diagnose and fix the bugs.

A bug can frequently trigger crashes in different usage scenarios, causing
different crash types to be linked to the same bug. A crash type can be linked to
multiple duplicate or correlated bug reports. A duplicate bug report describes
a problem already filed. Two bug reports are considered to be correlated if the
occurrence of one bug in one bug report causes the bug in the other report to
occur. We refer to a group of crash types related to identical or correlated bug
reports, as a crash correlation group (CCG). A crash type can belong to one
or several crash correlation groups. For example, if a crash type CT1 shares
a bug report with a crash type CT2 and another bug report with a crash

1 http://www.microsoft.com/en-ca/default.aspx
2 http://www.mozilla.org/en-US/
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type CT3. CT1 belongs to two crash correlation groups, i.e., {CT1, CT2} and
{CT1, CT3}.

The identification of crash correlation groups can help developers iden-
tify correlated crash types and fix bugs more efficiently; crash types in a crash
correlation group should be analyzed together when fixing bugs. Crash correla-
tion groups provide a diversity of crashing scenarios that could help developers
identify the root cause of the bugs more efficiently.

Many studies have been performed on the use of stack traces in crash
reports to locate and fix bugs. Schröter et al. [4] examined stack traces in bug
reports and found that bugs are fixed faster when their reports contain at least
one stack trace. Brodie et al. [5] proposed a method based on a comparison
of stack traces to identify similar bugs using historical information on known
bugs. Dhaliwal et al. [6] examined the use of stack traces for bug fixing and
identified some limitations in the crash grouping process of Mozilla Firefox.
They proposed a grouping approach for crash reports, based on a comparison
of failing stack traces using the Levenshtein distance [7], and build sub-groups
of crash reports of a crash type. Their sub-grouping strategy can improve
the existing Mozilla crash reporting system and this improvement can help to
reduce the bug fixing time by more than 5% based on their empirical study.

In our previous work published at the 10th Working Conference on Mining
Software Repositories [8], we propose three rules to identify correlated crash
types automatically, using structural information about the crash types (i.e.,
the crash signatures and stack traces).

In this paper, in addition to using structural information, we investigate
the possibility to identify correlated crash types using temporal and semantic
information. The temporal information is related to the co-occurrence time of
crash types and the semantic information is related to the textual similarity
between user comments provided for the crash types. Moreover, we also explore
the possibility of using crash correlation groups to help development teams fix
bugs and identify duplicate bug reports.

We conduct our study using Firefox crash reports and Eclipse bug reports.
We address the following five research questions:

RQ1. Can we identify correlated crash types using crash type signature and
stack traces?

We strive to propose simple rules for the identification of crash correlation
groups (i.e. correlated crash types) using the structural information of crash
types. First, we examine the signatures of crash types and generate a rule to
automatically identify crash correlation groups. The rule does not require
a detailed analysis of failing stack traces and can identify crash correlation
groups with a precision of 100% and a recall of 68% for Firefox. On Eclipse,
the rule achieves a precision of 69% and a recall of 46%. To improve on the
results, we examine failing stack traces and propose two additional rules
to detect correlated crash types automatically. When executed together,
our three rules identify crash correlation groups in Firefox with an average
precision of 91% and an average recall of 87%. On Eclipse, the three rules
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achieve an average precision of 76% and an average recall of 61%. The
average execution time of the three rules is in the order of 128 seconds.
The scalability is preserved.

RQ2. Can we identify correlated crash types using the occurrence times of
crash events?

A group of crash types reported by the same users frequently, within a
short time period, can be correlated. We examine the co-occurrences of
crash types and propose one additional rule to detect correlated crash types
automatically. This rule can identify crash correlation groups in Firefox
with an average precision of 52% and an average recall of 58%. The highest
recall it can achieve is 84%. This rule is not applicable to Eclipse, since the
time of user comments being posted in Eclipse bugzilla is not the actual
time of the occurrence of exceptions.

RQ3. Can we identify correlated crash types using the textual similarity be-
tween users comments about the crash events?

The user comments describe the crashing scenarios of crash types. Corre-
lated crash types could have similar user comments, therefore we examine
the similarity between text mined from user comments of crash types and
propose one additional rule to detect correlated crash types automatically.
This rule identifies crash correlation groups in Firefox with an average pre-
cision of 54% and an average recall of 46%. On Eclipse, the rule achieves
an average precision of 42% and an average recall of 30%.

RQ4. Can the correlated crash types help identify buggy files?

We propose an algorithm, using our proposed crash correlation group iden-
tification rules, to locate and rank suspicious files using the stack traces
of correlated crash types. When considering only the top three buggy file
candidates, our algorithm achieves a recall of 62% and a precision of 42%
on Firefox; and a recall of 52% and a precision of 50% on Eclipse. The
top ten candidate files reported by our algorithm can recover up to 92% of
buggy files in Firefox and up to 90% of buggy files in Eclipse.

RQ5. Can the correlated crash types help identify duplicate bug reports?

We investigate the possibility of using the correlated crash types to iden-
tify duplicate or related bug reports. Our proposed approach, using the
relations among crash correlation groups for duplicate bug reports identi-
fication, can achieve a precision of 55% and a recall of 50% on Firefox, and
a precision of 38% and a recall of 47% on Eclipse. This confirms that using
correlations between crash types can help identify duplicate bug reports.

This paper is an extended version of our earlier work [8]. The original work:

– proposes one rule based on the comparison of crash type signatures of crash
types and two rules based on stack traces to group correlated crash types;
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– conducts an empirical study of the effectiveness of the three rules on stack
traces from Firefox crash reports and Eclipse bug reports;

– proposes an approach, using the correlations between crash types within a
crash correlation group, to help development teams locate buggy files.

– conducts an empirical study of the effectiveness of our approach for locating
buggy files on Firefox and Eclipse.

We extend the earlier work in the following aspects:

1. We build two more additional rules: One rule is based on the co-occurrence
time of crash types; the other one is based on the textual similarity between
crash types.

2. We conduct an empirical study on Firefox and Eclipse to verify the effec-
tiveness of the two rules identifying correlated crash types.

3. We propose an approach using the relations between crash correlation
groups to identify duplicate and related bugs.

4. We conduct an empirical study of the effectiveness of our approach for
identifying duplicate and related bug reports on Firefox and Eclipse.

The rest of this paper is organized as follows. Section 2 explains the pro-
cess of crash reporting and introduces stack traces and crash types. Section 3
introduces the experimental setup. Section 4 presents the research questions
of our study; for each research question, we present the motivation, introduce
the analysis approach and discuss the results of our study. Section 5 discusses
threats to the validity. Section 6 summarizes the related literature. Finally,
Section 7 concludes the paper and outlines some avenues for future work.

2 Background

2.1 Crash Reporting

Many software organizations use a bug tracking system (e.g., Eclipse’s Bugzilla)
to store and track bugs. When a crash occurs on a user’s machine, the software
generates a failing stack trace that developers can use to fix bugs related to the
crash. Users usually file bug reports in bug tracking systems to report crashes
and include failing stack traces in comments made on the crashes. The other
users can also share their failing stack traces by making comments on the filed
bug reports including the crashes. The failing stack traces in the comments of
bug reports as well as other information in the bug reports can help developers
to reproduce and fix the bugs.

However, not all users file bug reports or report failing stack traces. To en-
sure that developers get the necessary information to fix bugs, more software
organizations now ship their product to users with an embedded problem re-
porting tool that can collect failing stack traces automatically (e.g., the Mozilla
Crash Reporter embedded in the Firefox browser). When a crash occurs, the
failing stack trace is automatically collected by the problem reporting tool and
a crash report containing information related to the crash is sent to a crash
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Fig. 1: Mozilla Crash Report System

report repository (e.g., the Mozilla Socorro crash report server as illustrated
in Fig. 1) maintained by the software organization. A crash report usually
contains a signature, the stack trace of the failing thread, some runtime infor-
mation such as the crash time, and information about the user environment,
e.g., the operating system, the version, and the install time. Some crash re-
ports contain comments discussing the crashes in the reports from users. Crash
reports are grouped into crash types and ranked based on their frequency of
occurrence. We discuss the grouping of crash reports in Section 2.2. For the
top crash types, bug reports are created in a bug tracking system and linked
to their corresponding crash types. Multiple bug reports can be filed for a
single crash type and multiple crash types can be associated with the same
bug report. A bug report contains detailed semantic information about a bug,
such as the bug open date and the bug status. Moreover, users can make com-
ments on a bug in the filed bug reports and some comments also contain stack
traces (e.g., Eclipse’s bug reports). Bug reports are triaged and assigned to
developers for fixing.

Fig. 2: Example of Stack Trace from Firefox
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2.2 Stack Traces, Crash Reports and Crash Types

A stack trace is an ordered set of frames 〈 F1, F2, . . . , Fn 〉. Each frame Fi is
composed of a method signature which we denote by methSign and a fully qual-
ified file name which we denote by qfileName. Fi = methSigni|qfileNamei,
where i ∈ {1 . . . n} is the position of the frame Fi in the stack trace, and n
is the total number of frames in the stack trace. F1 is the top frame of the
stack trace. Figure 2 presents an example of stack trace extracted from a crash
report of Firefox.

Each crash report contains a failing crash stack trace. On the Mozilla So-
corro server, crash reports are grouped into crash types based on the similarity
of the top frames (i.e., F1) of their stack traces [6]. The crash time of a crash
type is the time of its first crash report received by Socorro server. Usually,
the top frames of all the stack traces in a crash type are identical. The method
signature (i.e., methSign) from the common top frame is used as the crash
type signature of the crash type, for example in Figure 2, the method signa-
ture OnWriteSegmentt of frame F1 is used as a crash type signature. In the
following, we refer to the top frame common to all the stack traces of a crash
type as the top frame of the crash type. However, the subsequent frames in a
stack trace might be different for different crash reports in a crash type.

A crash type signature S can be represented in the following structure: S =
P1|P2|. . .|Pn, where each element Pi is composed of 〈File〉〈Op〉〈Method〉〈Para
meter〉〈Memory Location〉. File, Op, Method, and Parameter are respec-
tively the name of a file or class name, an operator or a separator, a method,
and a parameter.

Fig. 3: Example Crash Type Signature from the Mozilla Socorro server

Fig. 4: Example of a Stack Trace from Eclipse
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In a crash type signature, at least one Pi should be 6= NULL. In a Pi, the
attributes File, Op, Method, and Parameter can be NULL. However, a Pi

cannot be formed using only the name of an operator (i.e., Op). The value of
Op depends on the programming language and the approach of composing a
signature, e.g., the Firefox Browser written in C++, Op is generally either the
scope operator “::” or a separator “ ”. Figure 3 shows an example crash type
signature from the Mozilla Socorro server. This signature is composed of two
elements. The first element P1 contains File and MemoryLocation. The Op,
Method, and Parameter are NULL. In the second element P2, the memory
location is NULL.

Fig. 5: Structure of a Frame used in an Eclipse Stack Trace

The format used in Eclipse’s stack traces is different from the format used in
Firefox’s stack traces. Figure 4 presents an example of a stack trace extracted
from Eclipse’s bug reports and Figure 5 shows the structure of a Frame in
Eclipse stack traces.

In Figure 5, Exception is the name of a Java exception (e.g., org.eclipse.core
.commands.ExecutionException as shown in the Frame 1 in Figure 4), Mes-
sage is the description of the exception (e.g., While undoing the operation, an
exception occurred), qfilePath is the path in the file directory structure, of the
Method in which the exception was raised (e.g., org.eclipse.jface.text.projection
.internalAdd as shown in Figure 4), File is the name of the file that caused
the exception (e.g., ProjectionDocument.java), and Line is the exact loca-
tion in File where the exception was triggered. A stack trace from Eclipse
is mapped to the format of Firefox’s stack traces as follows: methSign =
〈Exception|Message|Method〉 and qfileName = 〈qfilePath|File〉.
If Exception = NULL, then methSign = Method.

We regroup Eclipse stack traces with similar top frames into crash types
using the concatenation 〈File|Method〉 from their common top frame. This
approach is similar to the grouping of Firefox’s crash reports in the Mozilla
Socorro server.

3 Experimental Setup

This section discusses our data collection and processing.

3.1 Data Collection

We conduct our study on two software systems: Firefox (written mainly in
C/C++) and Eclipse (written in Java). Firefox is an open-source Web browser
developed by the Mozilla Corporation. It is currently the third most widely
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used browser, with approximately 24% usage share worldwide [9]. Eclipse is an
open-source integrated development environment. It is a platform used both
in the open-source community and the industry.

Table 1: Descriptive Statistics of Our Data Set on Firefox.

Version 4.0b1 4.0b2 4.0b3 4.0b4 4.0b5 4.0b6 4.0b7

# of Crash 237,923 74,650 128,899 231,403 199,946 299,994 149,570
Reports

Total Number of Crash Reports studied: l,322,385

We analyze 7 beta versions of Firefox, i.e., Firefox-4.0b1 to Firefox-4.0b7.
For each beta version, we download the summaries of all related crash types
stored in Socorro server. We select the crash types for which at least one bug
report is filed. For each selected crash type, we download the Firefox crash
reports, based on their crashing time from latest to earliest, from Socorro
server. Table 1 reports the descriptive statistics of our dataset. In total, we
obtained 1,256 crash types. For all the bug reports filed for our selected crash
types, we retrieve the bug reports from Bugzilla. We download the Firefox
change logs to extract a list of files changed to fix a bug.

Crash 
Repository

Bug 
Reports

Mapping: Crash 
Type to List of 

Stack traces and 
List of Bug IDs

Change 
logs/CVS 

Identify 
Bug Fixes 
Locations

Mapping: Bug ID 
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&Processing 
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Fig. 6: Overview of our approach to study correlations between crash types.
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To the best of our knowledge, only the Mozilla Foundation has opened
the crash reports of its products to the public. To verify the replicability of
our study on other systems, we downloaded the MSR Mining Challenge 20083

data set containing 213,000 Eclipse bug reports filed between October 2001
and December 2007.

3.2 Data Processing

Figure 6 shows an overview of our data processing approach. First, we pro-
cess Firefox crash reports to extract failing stack traces, user comments, user
environment information, e.g., crash time and operating system, and IDs of
bugs filed for the crashes. Second, we parse Eclipse bug reports to extract
failing stack traces and their descriptions from user comments, and the IDs of
bugs filed for the crashes. Third, we identify crash correlation groups (CCGs)
defined by developers for the validation of our approach. Fourth, we use user
environment information to identify users who report crashes. Then, we con-
duct word normalization on the user comments of crashes. Next, we parse
Firefox and Eclipse change logs to identify bug fixes locations and, we map
these bug fixes locations to the stack traces.

The remainder of this section elaborates on each of these steps.

3.2.1 Data Extraction from Firefox and Eclipse

We now discuss in details the data extraction for Firefox and Eclipse.
Firefox. For each crash type selected in our study, we extract the list of

crash reports of the crash type and the failing stack traces contained in the
crash reports by parsing HTML pages. We extract the possible user comments
in the crash reports of each selected crash type and maintain a mapping be-
tween a crash type and its user comments used as the textual description
of the crash type. We further extract user environment information such as
operating system and crash time and maintain a mapping between user envi-
ronment information and each crash report. We also extract the IDs of all the
bugs filed for the crash types. We obtain a mapping linking each crash type
to the list of its crash reports and the list of bug IDs filed against the crash
type. Furthermore, we download the bug reports using the extracted IDs of
the bugs filed for the crash types, and mine groups of duplicate and related
bug reports.

Eclipse. We parse the 213,000 bug reports contained in the 2008 MSR
Mining Challenge data set and extract all of the comments posted by users
(e.g., developers) for each bug. Unlike Firefox, the Eclipse stack traces are
embedded in the comments of Eclipse bug reports. We process the comments
using regular expressions to extract the failing stack traces of the bug reports in
a similar way as Betttenburg et al. [11]. We obtain 22,379 bug reports having

3 http://msr.uwaterloo.ca/msr2008/challenge/
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comments which contain at least one stack trace. We obtain 29,874 stack
traces that we link to their corresponding bug report IDs. A bug report ID
is linked with a set of stack traces. We cleanse and verify all of the extracted
stack traces manually to ensure that there is no chaos (e.g., English words
describing the crash scenario) in the extracted stack traces. In addition, we
mine duplicate bug report relations between the bug reports. After the stack
traces extracted from the comments of a bug report, we keep the remaining
words in the comments as textual description for the stack traces. We group
the extracted stack traces into crash types using the approach in Section 2.2
and maintain a mapping between a crash type (i.e., a set of stack traces) and
its textual description.

3.2.2 Identification of Developers-defined Crash Correlation Groups

To validate our proposed rules for identifying correlated crash types, we build
a gold standard by mining Developer-defined Crash Correlation Groups from
our dataset. More specifically, we identify Developer-defined Crash Correlation
Groups (CCGs) by grouping together crash types that are linked to the same
bugs. We create groups containing at least two crash types. The links between
crash types and bugs are established by developers during the triaging and de-
bugging of crash types. These links are updated during the bug fixing process,
therefore we are confident that the crash types collectively linked together to
a bug are correlated.

Overall we obtain 144 Developer-defined CCGs containing a total of 792
crash types from the Firefox dataset and 1306 Developer-defined CCGs con-
taining 2837 crash types from the Eclipse dataset. In this study, we use
Developer-defined CCGs as our gold standard to evaluate the performance
of our crash type correlation identification rules. For each Developer-defined
CCG, we maintain the list of bugs filed for the group.

3.2.3 Identification of Users

The Firefox crash reports do not contain personal information to identify
unique users reporting the crashes due to privacy concerns. To identify users
reporting crashes, we have to use heuristics and adopt the approach in [10].
When we process the Firefox crash reports, we extract the following available
information on the crash events:

– the install age (in seconds) since the installation or the last update of the
user’s system;

– the date at which the crash was processed on the server;
– the crash time on the user’s operating system when the crash occurred

(this time can shift around with clock resets);
– the uptime (in seconds) since the user’s operating system was launched;
– the last crash of the user;
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– the other user’s environment information: operating system name, oper-
ating system version, architecture (e.g., x86) and CPU family model and
stepping.

For each crash report, we use crash time to subtract the “install age” to
obtain the installation time when the user, who reports the crash, installed
Firefox. We use the installation time, other user’s environment information and
the last crash times to build a vector of unique profiles; each profile represents
a user. We associate each unique profile with the list of crash types for which
crash reports contain information corresponding to the profile. In this way, we
obtain a mapping between each user and his corresponding crash reports. We
sort the crash types from each user based on their crash times from newest to
oldest. In total, we identify 1,048,576 users (i.e., groups of crash types) from
1,322,385 crash reports.

3.2.4 Identification of Bug Fix Locations

We parse Firefox and Eclipse change logs and apply the heuristics by Sliwersky
et al. [12] to identify bug fix locations. Precisely, we parse commit log messages
using a Perl script and extract bug IDs and specific keywords, such as “fixed” or
“bug” to identify bug fixing commits. For each bug fixing commit, we extract
the list of files that were changed to fix the bug. In the following, we use
the two lists of files obtained for Firefox and Eclipse as our gold standard to
evaluate the performance of our bug localization algorithm and refer to them
as Bug Fixing Location Mapping.

4 Research Questions

This section presents and discusses each research question. For each research
question, we present the motivation behind the question, the analysis approach
and a discussion of our findings.

RQ1. Can we identify correlated crash types using crash type sig-
nature and stack traces?

Motivation. Schröter et al. [4] observed that when multiple failing stack
traces are available, developers fix the bugs quickly. Therefore, the identifica-
tion of crash correlation groups (i.e. correlated crash types) early in the debug-
ging process will not only help developers fix groups of correlated crash types
all together, but it will also help them fix the bugs faster. The identification
of crash correlation groups can also help development teams to better man-
age their resources, for example, by assigning correlated bugs to experienced
developers and increasing their priority. Crashes are reported continuously by
users until they are fixed. Therefore, by fixing groups of correlated crash types
early, development teams can reduce the amount of incoming crash reports.
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In this research question, we aim to provide developers with simple rules
that can be used to identify crash correlation groups automatically. First, we
strive for building a rule requiring only an analysis of crash type signatures.
In this way, development teams would be able to process large amounts of
crash types efficiently since no deep analysis of the content of crash reports
will be required. Second, we investigate if a detailed analysis of stack traces
can improve the identification of crash correlation groups.

A higher recall will enable the discovery of more crash correlation groups,
resulting in further improvement of the bug fixing process and the manage-
ment of resources.

Analysis Approach. To answer RQ1, we introduce the following three rules
for the identification of crash correlation groups.

These rules were derived from a manual analysis of 40 of Firefox crash
types selected randomly.

We define a contains relation between crash type signature elements as
follows. Given a crash type signature S = P1|P2|. . .|Pn, for two elements
Pi = 〈filei〉〈opi〉〈methi〉〈parami〉〈memloci〉 and
Pj = 〈filej〉〈opj〉〈methj〉〈paramj〉〈memlocj〉 of S,
if (filei = filej)∧ {opi,methi, parami} ⊆ {opj ,methj , paramj} then Pj con-
tains Pi.

We define a binary relation ⊂ on the set of all crash type signatures S.

Let SA and SB be two crash type signatures where, SA = PA
1 |PA

2 |. . .|PA
n

and SB = PB
1 |PB

2 |. . .|PB
m , with PA

i = 〈fileAi 〉〈opAi 〉〈methA
i 〉〈paramA

i 〉〈memlocAi 〉,
PB
j = 〈fileBj 〉〈opBj 〉〈methB

j 〉〈paramB
j 〉〈memlocBj 〉,

i ∈ {1 . . . n}, j ∈ {1 . . .m}, and m ≥ n.

Table 2: Example of the Comparison of Crash Type Signatures

nsContentUtils::CanCallerAccess
⊂ nsContentUtils::CanCallerAccess(nsPIDOMWindow*)
nsStyleContext::Release()
⊂ nsStyleContext:: nsStyleContext
nvumdshim.dll@0x1845c
⊂ nvumdshim.dll@0x1b115
nsDiskCacheStreamIO::FlushBufferToFile()
⊂ strstr |nsDiskCacheStreamIO::FlushBufferToFile()

SA ⊂ SB if ∀ PA
i , i ∈ {1 . . . n}, ∃ j ∈ {1 . . .m} | PB

j contains PA
i . Table 2

presents some examples of comparison of crash type signatures using ⊂.�
�

�
�

Rule 1: Crash type signature comparison
Given two crash types CTA and CTB with signatures SA and SB respec-
tively, CTA and CTB are correlated if SA ⊂ SB or SB ⊂ SA.
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Rule 1 identifies similarities between the signatures of correlated crash types.
More specifically, it compares the strings of the signatures of two crash types
and uses the contains relation to decide if they are correlated.

To investigate if a detailed analysis of stack traces can improve the iden-
tification of crash correlation groups, we manually analyzed 400 stack traces
extracted from 400 of Firefox crash reports. The crash reports were selected
randomly from our 40 randomly selected crash types. From this analysis, we
derived the following two additional rules for the identification of crash corre-
lation groups.�

�

�



Rule 2: Top frame comparison
Given two crash types CTA and CTB with top frames FA

1 =
methSignA

1 |qfileNameA1 and
FB
1 = methSignB

1 |qfileNameB1 , respectively. CTA and CTB are corre-
lated if qfileNameA1 = qfileNameB1 . We remove file extensions when
comparing fully qualified file names qfileNameA1 and qfileNameB1 .

Rule 2 can be applied on the following example from Firefox 4.0b1. The
top frames of the crash types js GetGCThingTraceKind and js IsAboutTo-
BeFinalized are respectively js GetGCThingTraceKind|js/src/jsgc.h and
js IsAboutToBeFinalized|js/src/jsgc.cpp. These two crash types are corre-
lated and linked to the bug 514819. As illustrated by the above example, Rule
2 compares the fully qualified file names of the top frames of two crash types
to verify if the crash types are correlated. When two crash types have the same
fully qualified file name in their top frame, the two crash types are correlated.

We also analyze the other subsequent frames in the stack traces of a crash
type to further improve the identification of crash types correlations. We in-
troduce the concept of closed ordered sub-sets of frames for crash types.

Lets ST be a set of stack traces {T1, T2, . . . , Tp}, where p is the number of
stack traces in the set, Ti = 〈 Fi

1, Fi
2, . . ., Fi

ni
〉, Fi

j = methSigni
j |qfileNameij ,

j ∈ {1, . . . , ni}, ni is the number of frames in Ti, and i ∈ {1, . . . , p}.
Figure 2 shows an example of stack trace. Each frame in the stack trace

has a method signature (e.g., OnWriteSegment for F1) and a fully qualified file
name (e.g., http/nsHttpConnection.cpp for F1).

Given an ordered set of frames SubF = 〈 G1,. . ., Gm 〉, For each Ti, i ∈
{1, . . . , p}, if ∃k, l, with 1 < k ≤ l ≤ ni | (G1=qfileNameik) ∧ . . .∧(Gm=
qfileNameil), then SubF is an ordered sub-set of frames of Ti. The value of
each frame in SubF is a Fully Qualified File Name.

Whenever ∃i ∈ {1, . . . , p} | SubF is an ordered sub-set of frames of Ti, we
denote SubF as an ordered sub-set of frames of ST . SubF is a closed ordered
sub-set of frames of ST if there is no other ordered sub-set of frames of ST
containing SubF .

The absolute support of SubF is the number of i ∈ {1, . . . , p} | SubF
is an ordered sub-set of frames of Ti. The relative support of SubF is the
absolute support/p. This relative support is the frequency of SubF in ST . We
consider an ordered sub-set of frames as frequent if its relative support > 0.5.
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We mine all the stack traces of each crash type and extract frequent closed
ordered sub-sets of frames (FCSF), using the BI-Directional Extension based
frequent closed sequence mining (BIDE) pattern mining algorithm proposed
by Wang and Han [13]. We chose the BIDE algorithm because it scales very
well in the number of frequent closed patterns. In fact, BIDE does not require
the maintenance of a set of candidate closed patterns. BIDE performs a strict
depth first search and can output frequent closed patterns on the fly.�

�

�



Rule 3: Frequent closed ordered sub-Set comparison
Given two crash types CTA and CTB with stack traces STA =
{TA

1 , TA
2 , . . . , TA

p } and STB = {TB
1 , TB

2 , . . . , TB
q }, respectively. If SSub

A

(respectively SSub
B ) is the set of frequent closed ordered sub-sets of frames

of STA (respectively STB),
SSub
A

⋂
SSub
B 6= ∅ ⇒ CTA and CTB are correlated.

Table 3: A Frequent Closed Ordered Sub-Sets of Frames Common to RtlInte-
gerToUnicodeString and SEH prolog

gfx/src/thebes/nsThebesDeviceContext.cpp
gfx/src/thebes/nsThebesGfxFactory.cpp
obj-firefox/xpcom/build/GenericFactory.cpp
xpcom/components/nsComponentManager.cpp
obj-firefox/xpcom/build/nsComponentManagerUtils.cpp

Rule 3 examines the FCSFs of two crash types. If two crash types have a
common FCSF, they are correlated. For example, there are two crash types
from Firefox 4.0b7: RtlIntegerToUnicodeString and SEH prolog. The Rule 3
mines the stack traces of both crash types to identify whether these two crash
types share common closed ordered sub-sets of frames. The closed ordered sub-
set of frames is identified as illustrated in Table 3. The frequency of this sub-set
of frames is 0.96 in RtlIntegerToUnicodeString and 0.90 in SEH prolog. Both
RtlIntegerToUnicodeString and SEH prolog are correlated and linked to the
bug report whose id is 591599.

To assess the performance of Rule1, Rule 2 and Rule 3, we proceed as
follows: First, we filter out from our data set, all the 40 crash types that
were used to discover the rules. Second, we rank the remaining Eclipse and
Firefox crash types based on their creation date to mimic the current practice.
The creation date of a crash type from Firefox is the date on which the first
crash report was received. For Eclipse crash types it is the date on which the
oldest stack trace in the crash type was reported in a bug report. Next, we
apply successively Rule 1, Rule 2 and Rule 3 to the crash types one by one to
identify crash correlation groups. Older crash types are processed first. Every
crash type is tested against all the other crash types to verify its membership
of crash correlation groups. When three rules are combined together, two crash
types are in a crash correlation group as long as they satisfy one of three rules.



16 Shaohua Wang et al.

We compare the obtained crash correlation groups to Developer-defined
CCGs and compute the precision and the recall of the rule using respectively
Equation (1) and Equation (2). The precision value measures the fraction
of retrieved crash correlation groups that are correct, while the recall value
measures the fraction of correct crash correlation groups that are retrieved.

precision =
|{correct CCGs}

⋂
{retrieved CCGs}|

|{retrieved CCGs}|
(1)

recall =
|{correct CCGs}

⋂
{retrieved CCGs}|

|{correct CCGs}|
(2)

Rule 3 is dependent on the threshold 0.5 that is used during the identifi-
cation of frequent closed ordered sub-sets of frames. Therefore we perform a
sensitivity analysis to measure the impact of threshold selection on the results.
Precisely, we repeat the evaluation of Rule 3 using thresholds 0.1 to 1 by step
0.1 and 30 first crash reports in each crash type. Rule 3 is also dependent on
the number of stack traces that are processed for each crash type. We repeat
the evaluation of Rule 3 using 10, 20, 30, 40, 50, and 100 first crash reports in
each crash type and the threshold 0.5.

Table 4: Precision and Recall of using Rule 1, Rule 2 and Rule 3 together for
Different Thresholds.

Threshold
Rule 1 + Rule 2 + Rule 3

Firefox Eclipse
Precision(%) Recall(%) precision(%) Recall(%)

0.1 78 84 70 58
0.2 83 84 70 58
0.3 85 85 75 63
0.4 92 87 79 65
0.5 94 90 79 65
0.6 90 85 79 65
0.7 88 84 77 62
0.8 84 83 77 62
0.9 75 83 75 58
1 70 83 75 58

Findings. We obtain a precision of 100% and a recall of 68% for Firefox us-
ing Rule 1. All the crash correlation groups of Firefox retrieved using Rule 1
are correct. For Eclipse, Rule 1 achieved a precision of 69% and a recall of
46%. We attribute the low recall observed for Eclipse to missing information
in crash type signatures; indeed Eclipse crash type signatures contain neither
parameters nor memory location information. However, achieving a 69% pre-
cision with a simple rule like Rule 1 is already a good result. Moreover, Rule
1 identifies crash type correlation groups very efficiently. We were able to pro-
cess 752 Firefox crash types in 4.53 seconds and 2797 Eclipse crash types in
22.32 seconds on a Lenovo Thinkpad laptop with an Intel Core i7-2620M CPU
2.7GHz processor and 8GB RAM.
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We obtain a precision of 45% and a recall of 48% for Firefox using Rule 2,
and a precision of 40% and a recall of 52% for Eclipse. When we apply Rule
1 and Rule 2 together, we obtain a precision of 89% and a recall of 83% on
Firefox, and a precision of 75% and a recall of 58% on Eclipse. The results
indicate that Rule 2 increase the recall obtained with Rule 1 by 15% on Firefox
and 12% on Eclipse.

Table 5: Precision and Recall of using Rule 1, Rule 2 and Rule 3 together
for Different Number of Crash Reports. NCR stands for Number of Crash
Reports.

NCR
Rule 1 + Rule 2 + Rule 3

Firefox Eclipse
Precision(%) Recall(%) Precision(%) Recall(%)

10 89 85 75 58
20 91 88 77 62
30 94 90 79 65
40 94 90 77 62
50 90 87 74 59
100 88 83 72 55

Table 4 shows that when the threshold of relative support used to identify
frequent closed ordered sub-sets of frames is ≥ 0.5, Rule 2 and Rule 3 increase
the recall obtained with Rule 1 without decreasing the precision. For both
Firefox and Eclipse, the best precision and recall are obtained with a threshold
value of 0.5.

Table 5 shows that our three rules do not require the analysis of a large
number of crash reports. High precision and recall (i.e., ≥ 0.65) are achieved
with as little as 10 stack traces per crash types on both Firefox and Eclipse
stack traces. This result is particularly important since software organizations
receive millions of incoming crash reports every day. Using our rules, they
can identify crash correlation groups efficiently by analyzing only the first 10
incoming crash reports of every crash types.

Table 6: Summarized Results of Using Rule 1, Rule 2 and Rule 3. The value in
parentheses shows the percent difference in results caused by using one more
rule on correlation group identification.

Rules
Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)
Rule 1 100 68 69 46
Rule 1+ Rule 2 89 (-11) 83 (+15) 75 (+6) 58 (+12)
Rule 1+ Rule 2+ Rule 3 94 (+5) 90 (+7) 79 (+4) 65 (+7)

Table 6 summarizes the results obtained by using different sets of rules.
Rule 2 improves the recall of Rule 1 on Firefox and Eclipse. However Rule 2
decreases the precision of Rule 1 on Firefox by 11% and increases the precision
of Rule 1 on Eclipse by 6%. Based on the results in Table 4 and Table 5, when
the threshold values of relative support and number of crash reports are set to
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be 0.5 and 30 respectively for Rule 3, Rule 3 improves the precision and recall
obtained by using Rule 1 and Rule 2 together.

RQ2. Can we identify correlated crash types using the occurrence
times of crash events?

Motivation. Two crash types that co-occur frequently within a short time
period and from the same user’s machine are likely to be correlated. Besides
studying the structural information (i.e., crash signatures and stack traces) of
crash types in RQ1, in this research question, we investigate the possibility of
using the occurrence time of crash events (i.e., temporal information of crash
types) to identify crash correlation groups. Specifically, we search for any set
of crash types that frequently co-occur together within a time period (e.g., one
day, three days, one week and two weeks) and that originate from the same
users’ machines. The shorter the time period is, the sooner the crash types
can be linked and processed together for bug fixing.

Analysis Approach. To achieve the goal set in this research question, we
introduce a rule to identify crash correlation groups using frequent patterns
of co-occurrences of crash types on users’ machines.

Let U be a set of users {U1, U2, . . . , Un}, where n is the number of users
who reported a crash. For each user Ui, the group of crash types reported by
Ui is 〈 Ci

1, Ci
2, . . ., Ci

ni
〉, where ni is the number of crash types reported by

the user Ui, Ci
j is the jth crash type reported by the user Ui, j ∈ {1, . . . , ni},

i ∈ {1, . . . , n}.
Given a set of crash types SubC = 〈 C1,. . ., Cm 〉, where m ≥ 2, for each

user Ui, i ∈ {1, . . . , n}, if ∃k, l, with 1 < k ≤ l ≤ ni | (C1=Ci
k)∧ . . .∧(Cm=Ci

l ),
then SubC is a sub-set of crash types of Ui.

The absolute support of SubC is the number of i ∈ {1, . . . , n} | SubC is a
sub-set of crash types of Ui. We mine all the groups of crash types of users and
extract frequent sub-sets of crash types, using AprioriTID [14], an algorithm
for discovering frequent item-sets (groups of crash types appearing frequently)
among users. To be able to capture more sub-sets of crash types, we set the
absolute support threshold value of the algorithm to 2, i.e., as long as a sub-
set appears twice among users and it contains at least two crash types, we
consider it as frequent.

Once the sets of frequent sub-sets of crash types are identified, we use the
crash times of crash types to validate these frequent sub-sets. Given a time
window (e.g., one day or one week), if all crash types of a sub-set occur within
the time window, we keep this sub-set as valid.�




�

	
Rule 4. Time-based co-occurrence of crash types comparison

Given two crash types CTA and CTB, if they are in a frequent sub-set
of crash types SubC and co-occurred within a given time window, they
are correlated.
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To assess the performance of Rule 4, similar to RQ1, we rank the Firefox
crash types based on their creation date and apply Rule 4 to the crash types
one by one to mimic the current practice. Older crash types are processed
first. We test a crash type against all the other crash types to identify its
crash correlation group. The obtained crash correlation groups are compared to
Developer-defined CCGs and precision and recall are computed using Equation
(1) and Equation (2). Since Eclipse’s stack traces are mined from comments
contained in bug reports and because the occurrence time of these stack traces
(i.e., the crash events) is not the same as the time at which the stack traces
were posted on bug reports, we cannot apply Rule 4 on Eclipse data. Rule 4
requires the exact occurrence time of crash events. We also apply successively
Rule 1, Rule 2, Rule 3 and Rule 4 on crash types one by one to identify
crash correlation groups. Based on the results in RQ1, the threshold values
of relative support and the number of crash reports are set to be 0.5 and 30
respectively for Rule 3. When four rules are combined together, two crash
types are in a crash correlation group as long as they satisfy one of four rules.

Also, Rule 4 is dependent on the threshold value of the time window used
during the validation of frequent sub-sets of crash types. To measure the im-
pact of threshold selection on our results, we perform a sensitivity analysis.
Precisely, we repeat the evaluation of Rule 4 using time windows of one day,
three days, one week and two weeks.

Table 7: Precision and Recall of Rule 4 for Different Length of Time Windows
on Firefox.

Length of Time Window Precision (%) Recall (%)

One Day 52 58
Three Days 45 62
One week 42 80
Two weeks 40 84

Table 8: Precision and Recall of using Rule 1, Rule 2, Rule 3 and Rule 4
together for Different Length of Time Windows on Firefox.

Length of Time Window
Rule 1 + Rule 2 + Rule 3+ Rule 4
Precision(%) Recall(%)

one day 88 87
Three Days 84 87
One Week 82 87
Two weeks 79 92

Findings. Table 7 shows that the length of the time window affects the preci-
sion and recall of Rule 4. With the decrease of the length of the time window,
the precision increases. However, the recall decreases as more false positives
are also introduced. This result was expected since a wider time window re-
tains more frequent sub-sets of crash reports. Although the result indicates
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that the precision improves as the time window gets smaller, we could not test
Rule 4 with a time window smaller than 1 day, such as 1 hour or 10 hours, due
to the size of our dataset. When the time window is set to be smaller than 1
day, very few sub-sets of crash reports are returned. Table 8 shows that the
Rule 4 improves the recall obtained with Rule 1, Rule 2 and Rule 3, but it
decreases the precision as more false positives are introduced.

RQ3. Can we identify correlated crash types using the textual sim-
ilarity between users comments about the crash events?

Motivation. Comments posted for a crash report or a bug report from users
provide valuable information about the description of crashes and the varied
scenarios in which they occurred. In this research question, we investigate the
possibility of using textual similarity between user comments of crash types
to identify crash correlation groups.

Analysis Approach. To answer this research question, we introduce a rule
to identify crash correlation groups using the textual similarity between com-
ments provided by users about the crash types.

Each crash type has its textual description which is a set of user comments.
We merge the set of user comments into a single document. Each document
has a set of terms {TM i

1, TM
i
2, . . . , TM

i
m}; m is the total number of terms in

the textual description. We have a mapping between a crash type and a set of
terms.

We use vector space model [15], a widely used technique in traditional
information retrieval, to calculate the textual similarity between crash types.
In the vector space model, each document (i.e., a crash type in our case) is
represented as an N-dimensional vector, where N is the number of unique
terms appearing in all the documents and Wi, where 1 < i ≤ N , is the weight
of the ith term in the vector 〈 W1, . . ., WN 〉 and defined by Equation 3.

Wi = TFi × IDFi (3)

In Equation 3, TF is the Term Frequency value and IDF is the Inverse
Document Frequency value. The Term Frequency is the frequency of a term
appearing in a document. The Inverse Document Frequency diminishes the
weight of terms that occur very frequently in the whole corpus and increases
the weight of terms that occur rarely. We calculate the TFi as shown in Equa-
tion (4) and the IDFi as shown in Equation (5) for each term.

TFi =
|{occurrences of ith term in the document}|

|{total terms in the document}|
(4)

IDFi = log (
|{total documents in the corpus}|
|{documents having the ith term}|

) (5)

After the vectors are created for each document (i.e., a crash type in our
case), we can calculate the similarity of a pair of documents through a formula
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defining the similarity of two vectors. Typically, for two vectors V1 = 〈 W11,
W12 . . ., W1N 〉 and V2 = 〈 W21, W22 . . ., W2N 〉, the similarity of V1 and
V2 equals the value of the Cosine similarity [16], defined in Equation 6, of V1

and V2.

Sim =

n∑
i=1

W1i×W2i√
n∑

i=1
(W1i)2 ×

√
n∑

i=1
(W2i)2

(6)

�




�

	
Rule 5. Textual similarity of crash types comparison

Given two crash types CTA and CTB, if the similarity value of their
textual description is greater than a threshold value ( e.g., 0.75), they
are correlated.

To assess the performance of Rule 5, we process all the Firefox crash reports
and Eclipse bug reports for each crash type and rule out any crash types
without user comments. Second, we construct a user comment document CM
of a crash type by merging user comments from each crash report. Third, we
turn user comment documents into vectors and compute the similarity value
for every pair of crash types.

To reduce the effect of word inflection on the textual similarity calculation
of user comments of crash types, we conduct word normalization on the user
comments from Firefox crash reports and Eclipse bug reports. More specifi-
cally, we conduct word tokenization to parse user comments into word tokens
by splitting them using delimiters like space, punctuation mark, etc. Second,
we remove non-English words using Wordnet4, a large lexical database for En-
glish. Finally, we remove stop words and use the Morpha Stemmer5 to stem
the words to their root form.

Finally, we test each crash type against all the other crash types to identify
crash correlation groups. We also apply successively Rule 1, Rule 2, Rule 3,
Rule 4 and Rule 5 on Firefox crash types, and Rule 1, Rule 2, Rule 3 and Rule 5
on Eclipse crash types, one by one to identify crash correlation groups. When
the rules are combined together, two crash types are in a crash correlation
group as long as they satisfy one of the rules. We compare the obtained crash
correlation groups to Developer-defined CCGs and compute the precision and
the recall of the rule using respectively Equation (1) and Equation (2).

Similar to Rule 3 and Rule 4, Rule 5 is dependent on a threshold value.
Therefore we perform a sensitivity analysis to measure the impact of threshold
selection on the results. Precisely, we repeat the evaluation of Rule 5 using
similarity threshold values of: 0.7, 0.75, 0.8, 0.85, 0.9, 0.95.

Rule 5 is also dependent on the number of crash reports of each crash
type that are processed to extract users comments. A higher number of crash

4 http://wordnet.princeton.edu/
5 http://mvnrepository.com/artifact/edu.washington.cs.knowitall/morpha-stemmer
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reports is likely to produce more users comments, which in turn will proba-
bly produce more meaningful terms. Therefore, we perform another sensitivity
analysis to measure the impact of the number of processed crash reports on
the results of Rule 5. Precisely, we repeat the evaluation of Rule 5 using 30,
50, 100 and all crash reports respectively.

Table 9: Precision and Recall of Rule 5 for Different similarity values when all
the crash reports of a crash type are processed (to extract user comments).
SV stands for similarity value.

SV
Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)
0.7 42 57 38 34
0.75 52 55 40 32
0.8 54 48 40 32
0.85 55 45 45 28
0.9 60 40 45 28
0.95 62 32 46 26

Table 10: Precision and Recall of Rule 5 for Different Number of Crash Re-
ports when the similarity threshold is 0.75. NCR stands for Number of Crash
Reports. All means all the crash reports of a crash type in our corpus.

NCR
Firefox Eclipse

Precision(%) Recall(%) Precision(%) Recall(%)
30 32 38 24 18
50 36 42 30 22
100 46 50 36 30
All 52 55 40 32

Table 11: Precision and Recall of using Rule 1, Rule 2, Rule 3, Rule 4 and
Rule 5 together for Different similarity values when all the crash reports of a
crash type are processed (to extract user comments). SV stands for similarity
value.

SV
First Three Rules+Rule 4+Rule 5 Firefox First Three Rules+Rule 5 Eclipse
Precision(%) Recall(%) Precision(%) Recall(%)

0.7 65 92 57 65
0.75 67 92 60 65
0.8 70 92 60 65
0.85 72 92 62 65
0.9 75 92 62 65
0.95 77 92 64 65

Findings. Table 9 shows that precision increases and recall decreases when the
threshold similarity value is increased. This is an expected result frequently
observed in Information Retrieval (IR) studies. A high similarity threshold
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value generally reduces the rate of false positives but increases the number of
false negative.

Table 10 shows that the number of crash reports, that are processed to
extract users comments, affects the performance of Rule 5. The more a crash
type is commented, the higher will be the number of terms in the user comment
document of this crash type, which in turn increases the odds of identifying a
similar crash type using Rule 5.

Table 11 shows that using Rule 5 cannot improve the results obtained by
using others rules, because all the correct Crash Correlation Groups identified
by Rule 5 can also be identified by using other rules together (i.e., Rule 1 +
Rule 2 + Rule 3 on Eclipse). However, when we combine Rule 1 and Rule 5
together, we obtain a precision of 80% and a recall of 74% on Firefox, and a
precision of 79% and a recall of 68% on Eclipse, when the similarity value is
0.95 and 50 crash reports of each crash type used for mining user comments.
Rule 5 can improve the results obtained with Rule 1.

Based on the results in RQ1, RQ2 and RQ3, the combination of Rule 1,
Rule 2 and Rule 3 is the best combination. When the threshold values of Rule
3 are set to be 0.5 for relative support and 30 for the number of crash reports,
the combination achieves a precision of 94% and a recall of 90%.

RQ4. Can the correlated crash types help identify buggy files?

Motivation. With the growing complexity of software systems, the demand
for efficient techniques to identify suspicious source code fragments that may
contain bugs has increased. However, locating bugs in software systems is not
an easily automatable process. Although many bug localization techniques
have been proposed in the literature, there is no particular technique that is
suitable for every software system [18]. Moreover, most techniques require both
failing and successful test cases to be effective. Consequently, when only failing
stack traces are available, developers usually apply only intuitive techniques,
such as the inspection of the top 10 frames of failing stack traces. Previous
work [4] has shown that buggy files are often in the top 10 frames of failing
stack traces.

In this research question, we explore the possibility of using correlated
crash types for localizing buggy files. We aim to propose a technique to auto-
matically locate buggy files that need to be corrected to fix bugs. We intend to
build a technique that can rank suspicious buggy files effectively, reducing the
effort required to examine the files. The proposed technique should also lever-
age knowledge of crash correlation groups in order to help debugging teams
fix correlated crash types all together.

Analysis Approach. To answer this question, we randomly sampled 40 Fire-
fox crash types with a resolved fix. For each Firefox crash type we randomly
selected 10 crash reports and extracted the contained stack traces. In to-
tal, we obtained 400 stack traces. We manually examined these stack traces
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Fig. 7: Overview of the steps of BFFinder; CCG stands for Crash Correlation Group

and derived the bug localization method Buggy Files Finder (BFFinder) pre-
sented below. BFFinder analyzes correlations between crash types and builds
a Bayesian Belief Network (BBN) [22] to compute the probability that a file
appearing in a failing stack trace is buggy. We apply BFFinder on Firefox and
Eclipse separately. Figure 7 depicts the steps of BFFinder. In the following,
we elaborate more on these steps.

Step 1. Extraction of frequent closed ordered sub-sets of frames.
The BIDE pattern mining algorithm is applied on each crash type to extract
its set of frequent closed ordered sub-sets of frames.

Step 2. Identification of crash correlation groups. In this paper,
we propose five rules to identify crash correlation groups. More specifically,
Rule 1, Rule 2, and Rule 3 are applied on the signatures of the crash types
and their stack traces to identify crash correlation groups, Rule 4 is applied on
the co-occurrences of crash types and Rule 5 is applied on the user comments
of crash types. In this step, we apply Rule 1, Rule 2 and Rule 3 together to
identify crash correlation groups, due to the promising results of using them
together.

Step 3. Extraction of frequently failing files. For each crash corre-
lation group, the list of files appearing in all the failing stack traces of the
crash correlation group is created. In case of crash types not involved in any
correlation group, the list of files appearing in all the failing stack traces of
the crash type is created instead. We refer to this list as the list of frequently
failing files.

Step 4. Construction of vectors of characteristics for files. Each
file appearing in a failing stack trace is mapped into a feature vector of four
dimensions.

– The first dimension captures the event of the file appearing in a frequent
closed ordered sub-sets of frames, i.e., it counts the number of times that
the file appeared in a FCSF.

– The second dimension captures the event of the file appearing in a closed
ordered sub-sets of frames common to all the stack traces of crash types in
a crash correlation group, i.e., it counts the number of times that the file
appeared in a FCSF common to all the stack traces in a crash correlation
group. If a file is not involved in a crash correlation group, this dimension
captures the appearance of the file in a FCSF that is common to all the
stack traces of its crash type.
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– The third dimension captures the failure frequency of the file, i.e., the
number of appearance of the file in a list of frequently failing files.

– The fourth dimension captures the number of times that the file appeared
in the top ten frames of a stack trace.

Step 5. Creation of a corpus to train the BBN. The vectors of
characteristics of Firefox files extracted from the 400 Firefox stack traces ex-
amined manually are used to calibrate the BBN; we have knowledge of buggy
files for these stack traces. Given the vector of characteristics of any other file,
the trained BBN is executed to compute the probability that the file is buggy.

Step 6. Construction of a Bayesian Belief Network to rank files.
The vector of characteristics obtained in Step 4 are used to structure a BBN.
The input nodes of this BBN correspond to the four dimensions of a vector of
characteristics, while the output node is the probability of a file being buggy.
This probability is used to rank the files.

Step 7. Ranking of file Based on the probability of containing a
bug. For each crash correlation group, the files extracted from all the stack
traces are ranked based on the probability that they contain a bug. High
rankings are assigned to files with high probabilities. Files appearing on the
stack traces of crash types that are not involved in any crash correlation group
are ranked using the same criteria.

The construction of BFFinder is guided by the following observations made
during the manual examination of the Firefox sample of 40 crash types with
400 stack traces:

– Observation 1. 75% of Firefox files changed to fix bugs related to a crash
type (respectively a crash correlation group) appear in all the stack traces
of the crash type (respectively the crash correlation group), i.e., they are
frequently failing files.

– Observation 2. Whenever there are FCSFs for a crash type, 80% of files
changed to fix bugs related to this crash type appear among the frames of
a FCSF.

– Observation 3. As reported by previous studies (e.g., on Eclipse stack
traces [4]) , we found that approximately 65% of bugs in our Firefox sample
were located in the files from the top 10 frames of the failing stack traces.

To assess the performance of BFFinder, we proceed as follows: First, we
filter out from our data set, all the 40 Firefox crash types that were used to
derive BFFinder. We also remove crash types that are associated with unfixed
bugs. Then, we randomly selected 40 Eclipse crash types to train BFFinder
for Eclipse stack traces. Next, we execute Step [1–4] of BFFinder to build
the vector of characteristics of all the files that appeared in a stack trace of
the remaining crash types; In Step 2, we apply Rule 1, Rule 2 and Rule 3
together to identify crash correlation groups, due to the promising results of
using them together. For each obtained vector, we run the BBN of BFFinder
to compute the probability that the corresponding file is buggy. We apply
Step 7 to rank Eclipse and Firefox files in our data set. Using the two lists of
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(a) Precision on Firefox (b) Recall on Firefox

Fig. 8: Precision and Recall of Top 3, Top 4, Top 5 and Top10 Frames Candi-
date Reported by BFFinder for Different Training Corpora on Firefox.

(a) Precision on Eclipse (b) Recall on Eclipse

Fig. 9: Precision and Recall of Top 3, Top 4, Top 5 and Top10 Frames Candi-
date Reported by BFFinder for Different Training Corpora on Eclipse.

buggy files (from Eclipse and Firefox) extracted from change logs as our gold
standard (i.e., see Section 3.2.4), we compute the k-precision and the k-recall
of BFFinder following Equation (7) and Equation (8).

k − precision =
# of buggy files in top k results

k
(7)

k − recall =
# of buggy files in top k results

|{buggy files}|
(8)

Because the performance of machine learners, such as BBNs, is generally
impacted by the quality of the training corpus, we perform a further evaluation
to measure the impact of the size of our training corpus on the performance
of BFFinder. Precisely, for each system (i.e., Eclipse and Firefox), we create
different training corpus containing respectively 50%, 60%, 70% and 80% of all
crash types from the systems and compute different k-precisions and k-recalls.
We use our Bug Fixing Location Mapping (see Section 3.2.4) to identify buggy
files in the different training corpus and to evaluate the results of BFFinder.
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Findings. On average, BFFinder achieves a recall of 72% for Firefox and
84% for Eclipse on the top 10 files reported as buggy. These high recall values
suggest that BFFinder can be used efficiently with a short history of past bug
locations, since the BBN was trained using only 40 Firefox crash types for
Firefox and 40 Eclipse crash types for Eclipse. When the training corpus is
increased to 80% of all crash types for each system, BFFinder achieves a recall
of 92% for Firefox and a recall of 90% for Eclipse on average, on the top 10
files reported as buggy. These top 10 files represent only 5.5% of Firefox files
and 3.8% of Eclipse files contained in the failing stack traces. Therefore, using
BFFinder, debugging teams can recover respectively 92% and 90% of Firefox
and Eclipse buggy files by examining only 5.5% of potential buggy candidates
in Firefox and 3.8% of potential buggy candidates in Eclipse.

Fig. 8 and Fig. 9 shows results of precision and recall for top 3, top 4,
top 5 and top 10 frames respectively, using different training corpora. These
results show that precision and recall increases with the size of the training
corpus, meaning that when more information about the location of past bugs is
available, the precision and recall of BFFinder can be improved. When looking
at precision and recall on the top 3 files, we observe that BFFinder can achieve
a recall of 62% for Firefox and 52% for Eclipse. Hence, by only looking at 3
files reported by BFFinder as buggy, debugging teams can recover 62% of
Firefox bugs and 52% of Eclipse bugs. Moreover, BFFinder allows them to fix
correlated bugs all together.

RQ5. Can the correlated crash types help identify duplicate bug
reports?

Motivation. Due to the large number of existing bug reports, it is challeng-
ing for triaging teams to examine all of the existing bug reports to detect
duplications of bug reports or related bug reports (i.e., bug reports having
“blocks” or “depend on” relationships6 among them). An efficient approach
of detecting duplicate or related bug reports can reduce both the workload of
triagers and the possibility of passing duplicate bug reports onto bug fixers.
In this research question, we explore the possibility of using the correlations
between crash types (i.e., crash correlation groups) to help identify duplicate
bug reports.

Analysis Approach. To answer this question, we introduce the following two
relations on crash correlation groups.

Same group relation. If a set of bug reports is assigned to a crash cor-
relation group, we consider these bug reports are duplicate or related.

Contain relation. Given two crash correlation groups
CCG1= {CT 1

1 , CT 1
2 , . . . , CT 1

m} and CCG2={CT 2
1 , CT 2

2 , . . . , CT 2
n}, where m

is the number of crash types in CCG1 and n is the number of crash types

6 http://eigen.tuxfamily.org/index.php?title=Bugzilla
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in CCG2, if ∃k, l, with 1 < k ≤ n, 1 < l ≤ m, and (CT 1
1 =CT 2

k or CT 1
1

⊂ CT 2
k or CT 2

k ⊂ CT 1
1 )∧ . . .∧(CT 1

m=CT 2
l or CT 1

m ⊂ CT 2
l or CT 2

l ⊂ CT 1
m),

we consider CCG2 contains CCG1 and the bug reports associated with them
are duplicated or related, where ⊂ (i.e. contains relation between crash type
signatures) is defined in Rule 1 .

For example, we have two crash correlation groups:
CCG1= { nsQueryInterface::operator(), nsContentUtils::CanCallerAccess,
nsContentUtils::CanCallerAccess(nsPIDOMWindow*) }, and its bug report id
612383.
CCG2= {nsQueryInterface::operator(), nsContentUtils::CanCallerAccess, ns-
DOMConstructor::Create(unsigned short const* nsDOMClassInfoData const*
nsGlobalNameStruct const* nsPIDOMWindow* nsDOMConstructor**) }, and
its bug report id 606421.

Since nsContentUtils::CanCallerAccess (from CCG2) ⊂ nsContentUtils::
CanCallerAccess(nsPIDOMWindow*)( from CCG1), so the above two groups
have a Contain Relation (i.e. CCG2 contains CCG1), and their assigned
bug reports are duplicated.

To assess the performance of using these two relations to identify duplicate
bug reports and related bug reports, we perform two experienments:

Experienment 1: We identify these two relations from Developer-defined
Crash Correlation Groups (CCGs) and use these relations to predict pairs of
duplicate bug reports and pairs of related bug reports.

Experienment 2: We use Rule 1, Rule 2 and Rule 3 together to identify
crash correlation groups, because the combination of Rule 1, Rule 2 and Rule
3 can identify more correct crash correlation groups than other combinations
of rules do. Based on the results in RQ1, the combination of three rules can
identify 90% of Developer-defined Crash Correlation Groups. We then identify
the two relations between crash correlation groups to predict pairs of duplicate
bug reports and pairs of related bug reports.

The obtained pairs of duplicate bug reports and related bug reports are
compared with the ones mined from Firefox crash reports and Eclipse bug
reports separately. The precision and recall are computed using Equation (9)
and Equation (10).

precision =
|{correct pairs}

⋂
{retrieved pairs}|

|{retrieved pairs}|
(9)

recall =
|{correct pairs}

⋂
{retrieved pairs}|

|{correct pairs}|
(10)

Findings. Table 12 shows the results of identifying bug report duplication
and related bug reports using Developer-defined crash groups (i.e. our gold
standard for validation our approach). It confirms that using crash correlation
groups can help identify bug report duplication and related bug reports. Our
method for bug report duplication identification has a better precision and
recall on Firefox than Eclipse.
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Table 12: Precision and Recall of duplicate bugs and related bugs identification
using Developer-defined crash correlation groups.

Firefox Eclipse
Precision(%) Recall(%) Precision(%) Recall(%)

Duplicate bugs identification 55 50 38 47
Related bugs identification 32 55 52 48

Table 13: Precision and Recall of duplicate and related bug report identifica-
tion using crash correlation groups generated by our rules: Rule 1+ Rule 2 +
Rule 3.

Firefox Eclipse
Precision(%) Recall(%) Precision(%) Recall(%)

Duplicate bugs identification 51 45 30 34
Related bugs identification 26 50 45 37

Table 13 presents the results of identifying bug duplication and related
bugs using the crash correlation groups generated by our proposed rules Rule
1, Rule 2 and Rule 3 together. The results are lower than ones in Table 12,
because the identified crash correlation groups using Rule 1, Rule 2 and Rule
3 together contain false groups compared with Developer-defined crash groups,
which confirms that the number of crash correlation groups affect the results
of our approach for identifying duplicate and related bugs.

5 Threats to Validity

This section discusses the threats to validity of our study following the guide-
lines for case study research [23].

Construct validity threats concern the relation between theory and obser-
vation. In this work, the construct validity threats are mainly due to mea-
surement errors. We extract stack traces by parsing the HTML Firefox crash
reports and analyzing the comments section of Eclipse bug reports. To iden-
tify bug fix locations, we mine Mercurial logs and CVS logs, and apply the
heuristics by Sliwersky et al. [12]. We map bug fix locations to stack traces
using string matching. Although this technique may not be a hundred percent
accurate, it has been used satisfactorily in many previous studies, e.g., [4,6,
12]. We use a heuristic [10] based on “install age”, “crash times”, configuration
and architecture of crashing systems to identify the unique users of our studied
versions of Firefox. The rule 4 of our study critically relies on the identification
of users reporting the crash types. In [10], the heuristic has been validated,
but more validations are needed to strengthen the findings.

Threats to internal validity concern our selection of subject systems, tools,
and analysis method. We use the stack traces posted by users in Eclipse bug
reports and form Eclipse crash signatures following the same approach as
the Mozilla Firefox team. The stack traces may not be complete and the
relationship between Eclipse crash types may not be complete.
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Reliability validity threats concern the possibility of replicating this study.
We attempt to provide all the necessary details to replicate our study. The
Mercurial repository of Firefox is publicly available to obtain commit logs.
The Socorro crash server is also available publicly [24], to obtain the same
data for the same releases. Eclipse bug reports from the 2008 MSR Mining
Challenge are also publicly available.

6 Related Work

In this section, we summarize the related work on field crash reports, bug
correlation and duplication, and analysis of stack traces.

6.1 Analysis of Field Crash Reports

Many techniques have been proposed to prioritize groups of similar crash re-
ports during debugging activities. Podgurski et al. [25] introduced a failure
clustering approach to group similar crash reports together in order to fix the
larger groups. Kim et al. [26] introduced a machine learning technique to pre-
dict crash reports that will become top crashers and which they claim should
be fixed in priority. Khomh et al [10] analyzed the entropy of field crashes and
proposed an entropy based approach for the triaging of field crash reports.
The approach assigns high priorities to crashes with high entropies and high
frequencies, i.e., crashes affecting a large number of users frequently. All of
the above approaches focus on grouping field crash reports and prioritize the
groups of crash reports for bug fixing. However, our approach of this paper is
to identify relations among crash types (i.e., a group of simialr crash reports
is considered as a crash type) for bug fixing and bug report duplication iden-
tification. Furthermore, the bug localization method presented in this paper
(i.e., BFFinder) can be combined with the aforementioned techniques to help
development teams to correct high priority bugs efficiently.

6.2 Bug Correlation, Duplication and Localization

Bug correlation and bug localization have been researched extensively. Lee and
Soffa [27] proposed a bug correlation algorithm to identify causal relationships
among bugs in a software system. Liblit et al. [28] studied predicate patterns
in correct and incorrect execution traces and proposed an algorithm to identify
the predictors of a bug. They claim that their proposed algorithm can be used
to detect a variety of both anticipated and unanticipated causes of failures.
Ball et al. [29] developed a localization technique for error traces from a model
checker. This technique identifies transitions that only appear in failing traces
(but not in correct traces). Jones et al. [30,31] proposed a visualization based
technique named Tarantula to aid developers to locate errors and bugs in
software systems by diagnosing the execution traces of successful and failing
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test cases. Nessa et al [32] developed a fault localization algorithm based on N-
gram analysis, to rank the executable statements of a software system by their
level of suspicion. The above techniques emphasize the importance of crashing
threads for bug localization. However, these techniques rely highly on source
code instrumentation, predicates, and coverage reports, or successful traces,
which limits their applicability of only analyzing crashing threads from crash
reports for bug localization. In this paper, our apporach only analyzes crashing
threads and do not require source code analysis.

Bug report duplication has been researched extensively. Wang et al. [19]
used both information retrieval techniques and execution traces to detect du-
plicate reports. however due to the difficulty of obtaining execution traces
for existing reports, C. Sun et. al [20] proposed to use a discriminative ap-
proach comparing textual similarity descriptions of the bug reports. C. Sun
et. [21] used not only text but also other features that are available in BugZilla,
e.g., version of the product or the priority of the report, to identify duplicate
bug reports, and they extended one of the latest textual similarity measures
in information retrieval for retrieving structured documents namely BM25F.
Similar to our study, they all applied text mining techniques to measure text
similarities, however, in our study, we explore the possibility of using correla-
tions between crash types to help identify duplicate bug reports and related
bug reports.

6.3 Analysis of Stack Traces

The use of stack traces by developers during bug fixing activities has been in-
vestigated to a great extent. Schröter et al. [4] examined bug fixing activities
in Eclipse and observed that when failing stack traces are available, devel-
opers fix the bugs faster. Moreover, the bugs are fixed in files from the top
10 frames of the failing stack traces. Dhaliwal et al. [6] analyzed the use of
stack traces by Firefox developers and outline some limitations in the crash
grouping process of Mozilla. They proposed a crash report grouping approach
based on failing stack traces comparisons using the Levenshtein distance [7]
within a crash type. Brodie et al. [5] proposed an approach to identify simi-
lar bugs using stack trace comparisons and historical data of previous bugs.
Glerum et. al. [33] introduced the Windows Error Reporting (WER) system
which groups detailed crash reports using a bucketing algorithm. The bucket-
ing algorithm uses multiple heuristics specific to the application supported by
WER and updated by developers manually. Dang et al. [34] propose ReBucket
which is a method for clustering crash reports based on call stack similarities
to improve the accuracy of bucketing. Some visualization techniques have also
been proposed by Chan et al. [35] and Kim et al. [36] to assist development
teams in the identification of relations between crashes. Although many of
these approaches have investigated similarities between stack traces, none has
attempted to identify crash correlation groups for crash types. In this paper
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we propose five rules to identify crash groups using an analysis of failing stack
traces.

7 Conclusion and Future Work

The analysis of crash reports for bug fixing is a very challenging task that
requires a large amount of manual work from developers. In this study, we
investigate three crash type properties: stack traces, time and text to derive
rules to identify correlated crash types automatically. We propose five rules:
Crash Type Signature Comparison (i.e., Rule 1), Top Frame Comparison (i.e.,
Rule 2), Frequent Closed Ordered Sub-Set Comparison (i.e., Rule 3), Time-
based Co-occurrence of Crash Types Comparison (i.e., Rule 4) and Textual
Similarity of Crash Types Comparison (i.e., Rule 5).

We also propose a bug localization method called Buggy Files Finder
(BFFinder) to locate and rank buggy files from the stack traces in crash
reports. BFFinder uses our rules to identify correlated crash types. Using a
Bayesian Belief Network, BFFinder computes and ranks files from stack traces
based on their probability to be buggy. Furthermore, we apply the relations
between crash correlation groups to identify duplicate bugs and related bugs.

We conducted a case study using Firefox and Eclipse to verify our proposed
rules and methods for localizing bugs and identifying duplicate bugs. We found
that when applied together, the first three rules achieve a precision of 91%
and a recall of 87% for Firefox, and a precision of 76% and a recall of 61% for
Eclipse. The first three rules do not require the analysis of a large number of
crash reports. High precision and recall is achieved with as little as 10 crash
reports per crash type. The fourth rule, identifying frequent sub-sets of crash
types reported by users, can achieve a high recall (i.e., 84%) when the crash
times of these crash types are within a two week time window. The fifth rule
investigates the possibility of using textual similarity of crash types to group
them. The highest precision it can obtain is 62% when the threshold value of
the clustering algorithm is set to 0.95.

Our case study also shows that with a training corpus containing only 40
Firefox crash types, BFFinder achieves a recall of 72% on the top 10 files re-
ported as buggy. When trained on 80% of the corpus, the recall of BFFinder
are 92% for Firefox and 90% for Eclipse, on the top 10 files reported as buggy.
These results suggest that BFFinder can be used efficiently with little informa-
tion about the location of past bugs. When more information on the location
of past bugs is available, the precision and recall of BFFinder is improved.
Using BFFinder, debugging teams can recover 92% of buggy files by examin-
ing only 5.5% of all the files contained in Firefox’s stack traces and 90% of
buggy files by examining only 3.8% of all the files contained in Eclipse’s stack
traces. BFFinder allows debugging teams to locate and fix correlated bugs all
together. Moreover, our method for identifying duplicate bugs can achieve a
precision of 55% and a recall of 50% on Firefox and a precision of 35% and a
recall of 47% on Eclipse.
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In future work, we plan to implement our proposed rules and our bug
localization method BFFinder into a tool to assist development teams during
the triaging of crash reports and the fixing of bugs.
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