Empirical Software Engineering
Manuscript No. (will be inserted by the editor)

An Empirical Study of the Long Duration of
Continuous Integration Builds

Taher Ahmed Ghaleb - Daniel Alencar
da Costa - Ying Zou

Author pre-print copy. The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10664-019-09695-9

Abstract Continuous Integration (CI) is a set of software development practices
that allow software development teams to generate software builds more quickly
and periodically (e.g., daily or even hourly). CI brings many advantages, such as
the early identification of errors when integrating code. When builds are gener-
ated frequently, a long build duration may hold developers from performing other
important tasks. Recent research has shown that a considerable amount of de-
velopment time is invested on optimizing the generation of builds. However, the
reasons behind long build durations are still vague and need an in-depth study. Our
initial investigation shows that many projects have build durations that far exceed
the acceptable build duration (i.e., 10 minutes) as reported by recent studies. In
this paper, we study several characteristics of CI builds that may be associated
with the long duration of CI builds. We perform an empirical study on 104,442
CI builds from 67 GitHub projects. We use mixed-effects logistic models to model
long build durations across projects. Our results reveal that, in addition to com-
mon wisdom factors (e.g., project size, team size, build configuration size, and test
density), there are other highly important factors to explain long build durations.
We observe that rerunning failed commands multiple times is most likely to be
associated with long build durations. We also find that builds may run faster if
they are configured (a) to cache content that does not change often or (b) to fin-
ish as soon as all the required jobs finish. However, we observe that about 40%
of the studied projects do not use or misuse such configurations in their builds.

Taher Ahmed Ghaleb

School of Computing

Queen’s University, Kingston, Canada
E-mail: taher.ghaleb@queensu.ca

Daniel Alencar da Costa
Department of Information Science
University of Otago, New Zealand
E-mail: danielcalencar@otago.ac.nz

Ying Zou

Department of Electrical and Computer Engineering
Queen’s University, Kingston, Canada

E-mail: ying.zou@Qqueensu.ca

http://dx.doi.org/10.1007/s10664-019-09695-9

2 Taher Ahmed Ghaleb et al.

In addition, we observe that triggering builds on weekdays or at daytime is most
likely to have a direct relationship with long build durations. Our results suggest
that developers should use proper CI build configurations to maintain successful
builds and to avoid long build durations. Tool builders should supply development
teams with tools to identify cacheable spots of the project in order to accelerate
the generation of CI builds.

1 Introduction

Building software is the process of automatically transforming software artifacts
(e.g., source code) into deliverables, such as executables and libraries [57]. Build
systems (e.g., make [21] and AN'[EI) allow developers to constantly re-build testable
artifacts after performing code changes. Maintaining build systems requires sub-
stantial effort [35], since these build systems evolve along with software source
code [4]]. For example, modern build systems (e.g., Maven“|) generate more code
churn, which requires a higher maintenance effort [42]. Neglecting build mainte-
nance may lead to a build breakage [55], which is mostly caused by dependency-
related issues [55L68[59]. Thanks to the advent of the Continuous Integration (CI)
practices [23], builds can be generated more frequently (e.g., daily or even hourly),
which allows the earlier identification of errors [62].

CI builds can be broken due to several reasons, such as compilation errors,
dependency errors, configuration errors, or test failures [5IL64]. Xia and Li [66]
and Ni and Li [47] introduced prediction models to predict build failures with
AUC values of over 0.80 and 0.85, respectively. Studies also show that tests are
central to the CI process [7], while process factors, build stability, and historical
committer statistics are among the best indicators of a build failure [471[51].

Nevertheless, When adopting CI, the time invested in building a project should
be as short as possible, since the frequency of generated builds increases in mag-
nitude [II]. In such a context, long build durations generate a negative overhead
to the software development process, since developers would need to wait for a
long time before engaging in other development activities [28/50,52]. In addition,
the energy cost of running CI builds increases as the build duration increases,
which is an emerging concern [29]. Hilton et al. [28] found that developers may
feel disappointed when builds take a long time to be generated. Such challenges en-
couraged researchers to study the approaches for reducing the durations of builds.
For example, Ammons [3] proposed an approach to split builds into a set of in-
cremental mini-builds in order to speed up the build generation process. Recent
user studies suggest that the most acceptable build duration is 10 minutes [I1]
28)]. Bisong et al. [I0] introduced a number of regression models that aim to es-
timate the build duration. The authors were motivated by the study performed
by Laukkanen and Méntyla [36], which has demonstrated the lack of quantitative
analysis on build durations.

Although Bisong et al. [10] studied the build duration, the factors associated
with long build durations were not investigated. In addition, the models presented
by Bisong et al.were not entirely suitable for predictions, since post-build factors
were used in their models (e.g., the number of tests runs, test duration, and CI
latency). Moreover, the models were built to estimate the individual durations of

1 http://ant.apache.org
2 http://maven.apache.org

http://ant.apache.org
http://maven.apache.org

An Empirical Study of the Long Duration of Continuous Integration Builds 3

build jobs instead of the perceived durations of builds. Nevertheless, the reasons
behind long build durations are still vague and need an in-depth study. In addition,
our exploration of 104,442 CI builds of 67 projects reveals that 84% of CI builds
last more than the acceptable 10 minutes duration [111[28].

Therefore, we empirically investigate which factors are associated with long
build durations. This investigation is important to help software engineers to re-
duce the duration of CI builds. We perform our study using 67 GitHub projects
that are linked with Travis CI, a distributed CI build service. To collect our data,
we use TravisTorrent [8], which is a publicly available dataset that contains infor-
mation about CI builds of 1,283 projects. Despite the relatively small sample of
projects in our study, we should note that our dataset contains well-known and
previously studied projects (e.g., rails, jruby, and openproject). Moreover, our
study selects projects with high variations of build durations where the problem
of long build durations may occur. To this end, we select 67 projects that have a
build durations Median Absolute Deviation (MAD) above 10 minutes [T1128]. To
capture the different characteristics of the studied projects in relation with long
build durations, we use mixed-effects logistic models to model long build durations.

Goals and research questions.

In terms of the empirical software engineering research method, we should note
that the goals and research questions (RQs) of our study are exploratory in na-
ture [I7]. In particular, the goal of this study is to empirically conduct an ez-
ploratory research to (a) study the frequency of long build durations; (b) inves-
tigate the most important factors that may have an association with long build
durations; and (c¢) gain insights about CI build configurations and practices that
may help developers to mitigate long build durations. Based on the above goals,
we address the following exploratory RQs:

RQ:: What is the frequency of long build durations?
We observe that 40% of builds in the studied projects have durations of more
than 30 minutes. We discover that build durations do not increase linearly over
time in software projects. In addition, durations of passed builds are not always
longer than the durations of errored and failed builds.

RQq: What are the most important factors to model long build durations?

We classify build durations to be either short or long based on the lower and
upper quantiles of the perceived build duration. Then, we use mixed-effects
models to study the association of various factors on long build durations,
taking into consideration the fixed and random effects. Our top-performing
model obtains a good discrimination power (i.e., AUC value of 0.87). The model
shows that long build durations can be explained using less obvious factors
(e.g., caching, rerunning failed commands, and the day or time of triggering
CI builds).

RQs: What is the relationship between long build durations and the most important

factors?
We observe that triggering builds on weekdays or at daytime is most likely to
have a direct relationship on long build durations. We also find that builds may
have shorter durations if they are configured (a) to cache content that does not
change often or (b) to finish as soon as all the required jobs finish. However,
we observe that about 40% of the studied projects do not use or misuse such
configurations in their builds.

4 Taher Ahmed Ghaleb et al.

Observations and implications.

Our results reveal that configuring CI builds to avoid build breakages may have a
strong association with long build durations. For example, increasing the number
of times to rerun failing commands will most likely be associated with long build
durations. However, rerunning failing commands reduced the ratio of build failures
by a median of 3% only. Our results suggest that developers should use proper CI
build configurations to maintain successful builds with short build durations. Tool
builders should supply development teams with tools to identify cacheable spots of
the project in order to accelerate the generation of CI builds. Knowing the current
workload of servers at the time of triggering a CI build may help developers to
expect delays in running their builds.

Paper organization.

The rest of this paper is organized as follows. Section [2] presents background mate-
rial about CI builds. Section [3|introduces the experimental setup of our empirical
study. Section [discusses the results and findings of our studied RQs. Section [f]
discusses the implications of our findings for developers, researchers, tool builders,
and CI services. Section [6] describes threats to the validity of our results. Section [7]
presents the related literature on CI builds. Finally, Section [§] concludes the paper
and outline avenues for future work.

2 Background

In this section, we introduce an overview of continuous integration in general, and
how it is implemented in Travis CI.

Continuous integration (CI) is a set of development practices that automate
the builds of software projects every time a team member submits changes to a
central code repository [23]. CI increases the frequency of code integration, testing,
and packaging. For example, software builds can be generated daily or even hourly.
Smaller and more frequent commits can help developers to reduce the debugging
effort and keep track of the development progress. Hence, CI encourages developers
to break down development tasks into smaller activities to improve software quality
and to reduce any potential risks [16].

CI emerged in the eXtreme Programming (XP) community [6], the most widely
used agile methodology. Nowadays, CI is broadly adopted in the GitHub pull-based
development model. As reported by Bernardo et al. [9] and Vasilescu et al. [63],
CI enables development teams to address more pull requests than before. CI auto-
mates the build process, including unit and regression tests, under a unified infras-
tructure (i.e., Web frameworks and build tools), which frees developers from the
burden of maintaining their own local integration environments. Unified structure
prevents the “it works on my machine” syndrome before projects are deployed [44].
Travis CIE| AppVeyorE| and CircleC]ﬂ are examples of GitHub-compatible, cloud-
based CI tools.

CI has a well-defined life-cycle when generating builds. Fig. [I] depicts the main
phases of the CI build life-cycle. A CI build is normally triggered once a developer
pushes a commit or submits a pull request to a remote repository in a version

3 https://travis-ci.org
4 https://appveyor.com
5 https://circleci.com

https://travis-ci.org
https://appveyor.com
https://circleci.com

An Empirical Study of the Long Duration of Continuous Integration Builds 5

Version Control Continuous Integration Server
Iaietateininiateteiuinintr S veteteiuinieteieiieisieiuininieieieininiaieiininiuieteininiatuiuinistatateiuiuteteiuininiuteteininieteleiuinintetoinininteleinintetetuiuintel !
' N
T ' Commit |, Clone Install Build Run Deploy Report i
—>| X > = > > . | '
1" |code changes| . 1 | repository dependencies| | source code tests build results |t
I !
' [

Fig. 1: The CI build life-cycle

control system. A CI build can also be (re)started manually. The CI building
process starts by cloning the remote repository into the CI server. After installing
all the required dependencies, the production code is built, followed by running
the unit and integration tests. Finally, if all the previous phases are successful,
the build is deployed and the development team is notified with the results. If
any of the phases fails, the building process stops and a feedback is sent to the
development team.

Travis CI is an open source, distributed, CI tool that supports more than 25
programming languages. Every GitHub repository can be configured to use Travis
CI to automatically generate CI builds. Travis CI provides a free service for open
source projects and a paid service for private projects. Travis CI offers different
subscription plans based on customer needs.

Travis CI maintains a customizable build life-cycle. In Travis CI, every pro-
gramming language has a default configuration, which normally consists of all the
CI build phases but combined into two main build phases (install and script) and
an optional deploy phase [7]. In the install phase, the remote repository is cloned
and all the dependencies are installed. In the script phase, the software is built
and tests are run. In the deploy phase, the software is packaged and deployed
to a continuous deployment provider. Travis CI employs a configuration file, i.e.,
.travis.yml, in the root directory of the Git repository to allow development teams
to customize the build phases. For example, developers can define the preferred
build environment(s), test commands, and dependencies. In addition, Travis CI
allows to write custom instructions and options that are run before, after, or in-
between the install, script, and deploy phases. The building process in Travis CI
may be interrupted at any point due to an error, a failure, or a manual cancellation.
A build is considered successful if it passes all CI build phases.

A build on Travis CI may consist of multiple jobs. Each job is responsible for
achieving a certain task, such as running the build on a specific runtime envi-
ronment. Multiple build jobs may target multiple integration environments. Build
jobs are run independently of each other. A CI build (and each build job) may have
one of the following statuses: passed, errored, failed, or canceled. A CI build (or a
build job) is marked as passed if it is successful in running all the build phases.
The build fails if any of the build phases or build jobs fail. The errored status in-
dicates that there is a problem with installing build dependencies, while the failed
status reveals that the project encountered a failure when compiling or testing the
software. The canceled status indicates that the build was manually stopped from
running. Developers can mark some of the build jobs as allow_failures, which
means that their failure does not impact the overall status of the build.

6 Taher Ahmed Ghaleb et al.

TravisTorrent
(1,283 projects)

Apply the project
selection criterion

RQ1: The frequency of long build
durations

Classify build
durations into
short and long

Dependent II
variable

RQ2: The important factors to ‘ |

Fit mixed-effects model long build durations

logistic models

A dataset of 67
project with
104,442 builds

RQ3: The relationship between build
durations and the important factors

Compute more Cl
and code metrics

Fig. 2: Overview of our study

3 Experimental Setup

This section presents the experimental setup of our empirical study. We explain
how we collect and prepare the data for our studied RQs.

3.1 Data Collection

Fig. [2| gives an overview of our study. Our study is based on data collected from
TravisTorrent []]. TravisTorrent, in its 11.1.2017 release, stores CI build data of
1,283 projects. These projects are written in three programming languages: Ruby,
Java, and JavaScript. Each entry in TravisTorrent represents a build job. For
example, if a build is triggered using = jobs, TravisTorrent records x data entries
for that build. All the x entries are recorded using the same build id and a different
job id. Nevertheless, the values of the selected factors, including build duration
values, are the same in all the job entries for a given build. Considering that our
study focuses on long durations of builds, we keep a single entry for each build
id and discard the rest of the entries of a build. We keep the information about
how many jobs in each build. Each job has its own duration reported by Travis
CI. However, given the fact that build jobs can run in parallel on Travis CI, using
the sum of durations of all build jobs could be misleading (i.e., the perceived
build duration is likely smaller than the sum of durations of all jobs). Therefore,
we collect the perceived build duration represented by the difference between the
time when the build started and the time when the build finished.

We identify a criterion to select the subject projects in our study based on
the high variations of build durations. Given that we are interested in studying
the factors that are associated with long CI build durations, we need to study the
projects that have higher variation in their build durations. For example, if the
variation of build durations of a given project is relatively small (e.g, one or two
minutes), developers may disregard that variation, since it could simply be caused
by the load on CI servers. Therefore, we select projects that have a variation of
build durations above 10 minutes [IT,28]. We use the Median Absolute Deviation
(MAD) [31] to measure the absolute deviation from the median of a given dis-
tribution of build durations. The higher the MAD, the greater the variation of
the build durations in each of the subject projects. We obtain the start and finish
timestamps for each build of these projects from Travis CI in order to compute the
perceived build duration. We compute the MADs of the perceived build durations
for each project. We filter out the projects for which the build duration MADs are
less than 10 minutes. 67 projects survive this criterion.

Table [I] provides an overview of the 67 projects that satisfy the selection cri-
terion. The studied projects form a variety of domains, including, but not limited
to, programming languages, tools, applications, and services. In addition, these

An Empirical Study of the Long Duration of Continuous Integration Builds 7

Table 1: An overview of the studied projects

Team # of MAD

Project name Lang. Domain Lifetime SLOC size builds (mins)
activerecord-jdbc-adapter Ruby Database drivers 2011-2016 8,995 11 604 28.52
ark Ruby Software archiving 2013-2015 596 5 88 14.76
balanced-ruby Ruby Online payment systems 2012-2015 1,707 10 383 13.17
blacklight Ruby Search Engines 2012-2016 6,233 13 1,998 13.22
blueflood Java Database systems 2013-2016 16,567 26 1,361 12.50
buck Java Build tools 2013-2016 192,058 47 1,568 14.68
cancancan Ruby Authorization services 2014-2016 1049 6 258 13.32
canvas-lms Ruby Learning management systems 2014-2014 141,681 41 311 11.44
cape Ruby Task automation 2011-2015 382 2 129 21.94
capybara Ruby ‘Web applications 2011-2016 6,660 12 1,015 19.69
capybara-webkit Ruby ‘Web development 2012-2016 935 10 269 10.60
cew Java Programming languages 2013-2016 10,555 4 405 12.92
celluloid Ruby Build tools 2012-2016 2,909 13 1,411 10.55
celluloid-io Ruby Build tools 2012-2016 821 10 355 14.23
chef Ruby Configuration management 2013-2015 48,494 33 2,175 12.38
closure_tree Ruby Hierarchical data modeling 2012-2016 662 4 576 10.76
dcell Ruby Build tools 2014-2016 1,387 4 31 15.49
devise_cas_authenticatable Ruby Authentication services 2011-2016 516 4 167 11.66
diaspora Ruby Social networks 2011-2016 17,626 36 4,607 17.64
druid Java Distributed data storage 2016-2016 136,735 23 377 15.86
factory_girl rails Ruby Build tools 2012-2016 213 7 88 18.41
flink Java Streaming 2016-2016 189,567 39 79 27.72
fluentd Ruby Logging systems 2013-2016 9,740 13 1,151 10.23
geoserver Java Data management 2013-2016 306,250 52 2,994 13.59
hapi-fhir Java Data management 2015-2016 533,980 5 683
jackrabbit-oak Java Content repository 2012-2016 109,827 8 8,183
java-design-patterns Java Development paradigms 2014-2016 8,657 9 1,049
Javaee7-samples Java Programming languages 2014-2016 19,162 3 94
jobsworth Ruby Project management 2011-2016 15,153 5 861

jruby Ruby Programming languages 2012-2016 155,721 39 12,056
js-routes Ruby Data exchange 2011-2016 185 5 243
kaminari Ruby Web development 2011-2016 873 10 435

killbill Java Business applications 2012-2016 61,986 4 2,756
librarian-puppet Ruby Repository management 2013-2016 1,268 8 369
LicenseFinder Ruby Search engines 2012-2016 4,334 14 708

lograge Ruby Logging systems 2012-2016 352 6 259

moped Ruby Database drivers 2012-2015 2,494 10 918
open-build-service Ruby Build tools 2012-2016 29,072 20 4,642
openproject Ruby Project management 2013-2015 53,422 47 7,088
opentsdb Java Database systems 2014-2016 29,085 4 440

oryx Java Business applications 2014-2016 10,209 4 910
paperclip Ruby File management 2011-2016 3,347 26 857

presto Java Query engines 2013-2015 149,663 20 2,153
promiscuous Ruby Database systems 2012-2016 3,054 2 453

rails Ruby Web applications 2011-2016 53,514 221 19,342

ransack Ruby Search engines 2011-2016 2,314 13 689
redmine_git_hosting Ruby Repository management 2014-2016 8,870 6 675
rollbar-gem Ruby Error management 2013-2016 1,939 10 1,204
rspec-rails Ruby Testing frameworks 2011-2016 1,899 19 1,308

ruboto Ruby Mobile App development 2013-2016 3,277 5 978
search_cop Ruby Search engines 2014-2016 739 1 126

shuttle Ruby Data exchange 2014-2015 10,493 6 183
Singularity Java Application containers 2016-2016 36,584 12 3,871
skylight-ruby Ruby App management 2013-2016 8,904 5 243

slim Ruby Syntax management 2013-2016 1,552 6 469

structr Java ‘Web and mobile development 2012-2015 46,770 9 2,098
thinking-sphinx Ruby Search engines 2012-2016 4,026 5 425

titan Java Database systems 2012-2014 21,754 7 420
torquebox Ruby Programming languages 2014-2016 2,137 4 324
transpec Ruby Syntax management 2013-2016 4,115 2 603
twitter-cldr-rb Ruby Data exchange 2012-2016 7,421 6 810

uaa Java Authentication services 2013-2015 15,604 18 1,208

vanity Ruby Testing framework 2011-2016 2,369 6 380

wicked Ruby App management, 2012-2016 267 2 159
xtreemfs Java Distributed data storage 2014-2016 157,655 13 831

yaks Ruby Data exchange 2013-2016 1,705 8 426
zanata-server Java Web applications 2013-2015 66,169 12 113

projects are of different sizes in terms of lines of code and development teams.
The number of builds of the subject projects is 104, 442. We clone the Git reposi-
tory of each studied project to compute CI build metrics. For example, we compute
the experience of the developers who triggered the builds in terms of (a) the num-
ber of commits and (b) the number of days of development. We also analyze the

8 Taher Ahmed Ghaleb et al.

Travis CI configuration file (i.e., .travis.yml) of each build to compute metrics
related to the build configuration that we use in the models.

3.2 Data Processing

In this section, we explain how we process the data of the selected 67 projects.
First, we show how we create the dependent variable based on build durations of
the subject projects. Next, we discuss the selected independent variables.

3.2.1 Classification of Build Durations

We aim to study the factors that are associated with long build durations. There-
fore, we classify build durations into short and long. To do so, we analyze the
quantiles of build durations. Build durations that are above the third quantile
(i.e., the upper 25% of the build durations) are classified as long and build dura-
tions that are below the first quantile (i.e., the lower 25% of the build durations)
are classified as short. The resulting data column is our dependent variable. In
summary, the dependent variable we use in the models is a binary factor that
consists of two values (i.e., short and long) to represent the build duration.

3.2.2 Selection of Independent Variables

This step is concerned with the selection of the factors that are used as independent
variables in the models.

Factors obtained from TravisTorrent: There are 61 data columns in Travis-
Torrent [8], in its 11.1.2017 release, that represent the characteristics of CI builds.
In our analyses, we only consider the build starting timestamp and exclude the
other timestamps (e.g., the creation date of the first commit and the creation date
of the PR). In addition, we exclude the data columns in TravisTorrent that:

e do not represent factors, such as build ids, pull request numbers, commit hashes,
and test names.

e contain values produced after the build is run, such as the number of tests
ran, build status, and setup time. These factors are not suitable for modeling
long build durations, since we cannot obtain their values before starting the
build [10].

e have high percentages of zero or NA values (e.g., the number of comments on
a commit), since they can impact the results of the regression models.

After applying the exclusion criteria described above, only 20 factors survived
from our TravisTorrent data. The data of such factors is collected from different
sources, such as Git, GHTorrent, and Travis CI. After identifying the builds that
belong to a specific project, the information of each build is collected from Travis
CI. Then, all commits of the pushes that contain build-triggering commits are
aggregated to obtain a precise representation of the changes that led to a specific
build. Finally, Git and GitHub are used to collect commit information, such as
developers, changed files, changed lines, and affected tests.

Factors computed in this study: In addition to the 20 factors obtained from
TravisTorrent, we compute the following factors:

An Empirical Study of the Long Duration of Continuous Integration Builds 9

e SLOC delta: We compute this factor by calculating the difference between
the number of source lines of code of each build and its preceding build in the
same branch.

e Day of week & Day or night: We compute these two factors by deriving the
day and the hour when the builds were started. Build starting timestamps are
in the UTC time zone that is used by Travis CI.

e Lines of .travis.yml: We compute this factor by counting the number of
instruction lines in the Travis CI build configuration file (i.e., .travis.yml) of
each build. We exclude the blank and comment lines.

e Configuration files changed: We compute this factor by counting the num-
ber of project configuration files that have been changed by all the build com-
mits. We consider a file as a project configuration file if it has one of the follow-
ing extensions: .yml, .xml, .conf, .rake, .rspec, .ruby-version, Gemfile,
Gemfile.lock, Rakefile, and .sh. To get the number of configuration files
changed, we perform a diff at each build commit and count the number of
unique files that end with the specified extensions.

e Configuration lines added/deleted: We compute these two factors by count-
ing the number of lines added or removed to/from all project configuration files.
We perform a diff at each build commit on all the configuration files changed
to get the total number of lines added/removed.

e Caching: We compute this factor by analyzing the .travis.yml file to check
whether it contains the cache: instruction.

e Fast finish: We compute this factor by analyzing the .travis.yml file to check
whether it contains the fast_finish: instruction.

e Travis wait: We compute this factor by analyzing the .travis.yml file to check
whether it implements travis_wait: in any of the build instructions.

o Retries for failed commands: We compute this factor by analyzing the
.travis.yml file to search for the maximum number of times to rerun failed
commands using either a --retry command option or the travis retry in-
struction.

e Author experience: We compute two metrics as proxies for the experience of
the developers who triggered the builds. We first get the name of the developer
who authored the commit that triggered the build. Then, we search through
all the commits that precede the build-triggering commit. We obtain the list
of commits that were authored by the same developer who triggered the build.
After that, we count the number of commits that each developer has and
the number of days between the commit that triggered the build and the first
commit of the developer in the repository. If a build was triggered by a commit
that was authored by multiple developers, we obtain the experience factors for
the author with the largest number of commits and days.

In Table[2] we categorize the final set of factors into five dimensions: CI factors
(8), code & density factors (7), commit factors (8), file factors (7), and developer
factors (4). We use these factors as independent variables in the models. We present
a detailed description of each factor in the last column of Table

3.2.8 Correlation and Redundancy Analysis

Regression models can adversely be affected by the existence of highly correlated
and redundant independent variables [13]. Therefore, we perform correlation and

Taher Ahmed Ghaleb et al.

10

d-effects

ions of factors used as independent variables in our mixe

Dimens
logistic models

Table 2

SITWUWIOD JO IOQUINU JO SWLIDY UT JTwod Sule8811) pling ayj paioyjne oym 1odooasp a1) Jjo sousttodxe oy T, ponduwo)) oLIPWN N SITWWOD JO # :90usliodxo I0yny
9oueLIedxd JO sARp JO JOQUINU JO SULID) Ul WO JulIe3811) pling oY) paroyine oym 10dopadp oy} Jo sousaladxo oy, pammdwo)) OLIWNN sAep Jo # :9ousrradxe 10Ny
wrea) Juowdo[oAdp 9 JO IOQUISW 9100 © Aq paIoyjne sem jruuwod SureSsLIy piing ay) IOYPPYA\ JUSIIQT SIARI], 109081 IoqUIOW UIea) 9109 Ag s1090] 10do[eAd(]
urea) o) Ul s10do[eAdp JO IoquuNu dYJ, JUSIIOT SIARIT, BIRELTNg o71s weqT,
SIIod prmq (e Aq paSueyd s9[y (UOTIRINSYUOD I0 ‘WOIIRIUSTUNIOP ‘9IINOS J0U) I9YJ0 JO IDqUNN JUSIIOTSIARI], BISElINg pagueyd sa[y 18I0
SjTurmIod prmq oYy [[e £q payrpowt so[y (ys- pue ‘Tuk* ‘Tux’ 39) woreIN3yuod jo Ioquuiny ponduo)) OLIWN N podueyd o[y uoryeINSyuo,)
SHWod prmq e Aq paSuerd so[y UOIJejUSWNIOP JO IDQUINN JUSIIQT SIARI], PIRELINg paSueyd sa[y 20(]
PIINQ JUSIIND Y} UT SHWUWOD oY) A PaSULYD SI[YJ 92INOS JO IDQUINN JUSIIQT SIARIT, RIRELTNg paSueypd sa[y 921nog $1090%]J A1
SHIUIUWIod plIng o) [[e Aq paSueyd Sa[y JO IoqUINN JUSIIQT SIARI], BIRELGING pagueyd sal]
SHUIWOd pmng ay) [[e £q paje[ap Sy Jo IdquIny JUSIIQT SIARIT, BIRELTNG Ppaje[ep sofl g
SHIIUWod pling oY) [[e Aq pappe so[y JO quinyN JUSLIOT,SIARI], BIREINTN peppe so[l g
$159) PIJATAP JO IDQWUINU dYJ, JUSIIOT SIARIT, PIREI TN Po1oIep S1S9T,
$)S0) POpPR JO IoqUINU dYJ, JUSIIOT STARIT, RIRELTNg poppe s1saT,
SOl UOIRINSYUOD WOJ SOUI[PAYA[AP JO Iaquinu o J, pognduro)) BIRELING Paje[ap saul| uoryeIn3yuoy)
S9[J UOIeINSYUODd 0) SAUI| PIPPR JO Iaquinu oY J, pejnduo)) BIRELTNG pappe soul| uolyeInsyuo))
S0 p[ing oy} [[e Aq paSueyd apood 199 JO Soul] JUSLIOT,SIARI], oLIBWIN N winyp 1897, S1090®] JTUIWO))
PIINQ JUBLIND 8} Ul SHWUWOD 8y} Aq PaBueyd 9p0Od JO SIUI| 9OINOS YONW MOH JUSIIOT SIARI], BISEITNg wInyo 92Inog
oo 3uleSSLIy-pling ayy surejuod jeys) ysnd o) Ul SHWWOD JO IoqUINN JUSIIOT SIARIT, BISEITNg ysnd ur sjrurwo))
3senbai [[nd e jo jrumod © Aq pa1a83LI) sem p[ing JUSLIND 9Y) ISYIOYA\ JUSIIOT SIARIT, 10900 ysenbar nd sy
Apsuap 1599 Surjuesaadar HOIS 000 ‘T 1od sased 1599 Jo Ioquuny JUSLIOT SIARIT, BIRELING DOT3I/s9se0 1897,
Aysuap syresse Jurjuesardar HOIS OO0 ‘T 12d SuollIesse Jo pqunyN JUSLIOT,SIARI], BIREITNg DOT3I/s1esse 159,
Aysuap 9599 Surpuesaadar HDOTS 00OT 1od saseO 159} UL SAUI[JO IoqUUNN JUSIIOT SIARI], BISEITNg DOT>I/seur| 9sa],
PIIN(JU81IND 9y} pala8311) Jey) SHUWWOD aY) Aq PayodNo) Say 8} UO SHWWOd anbrun jo Jaquny JUSIIOT SIARL], oLIeWIN N S9[J Payono} U0 SHWWO)) SI0j0] A}ISUsp 2y apoy)
Pl snotasid sy} pue jualImd ayj jo HOTS Y3 Ueemia(q 20UILPI pandwo)) OLIeWIN N ©yeP DOIS
309f01d a3} Jo 9pod JO SAUI] 90INOS UOIPNPOId S[(RINISXS JO IOQUWINU [RJ0], JUSIIOT SIARI], OLIeWIN N (DOTS) 2poD Jo seur] 92Inog
(ATeoroqeyde) [0A9] 90ULISJAI © st panl Yym ‘T=Lqnz 23 o=eae(:p[mq oy} jo a8enSue| SurmrmresSord jueUTIOP 9], JUSIIOTSIARI], 10300 o3engue| Surrurei3org
(Aqreoryeqeydye) [aas] @ouslejal & sk fivp Yjm ‘T=3y3Tu 23 0=Aep :pai1eS8L1y St p[ing oY) YIIyM ul Aep oY) JO SWIl} S, panduwo)) 1090%] St 10 Leq
(Aqreoryeqeydre) [9as] 9ouaIejal © sB ADPLLT YIM (9 — () San[eA) pa1eSSLay ST plIng oY) YOIYM Ul aem Jo Aep oy, panduwo)) 10900 oam jo Ae(q
UnI 03 193UO0[9ye} Je(} SPUBMINIOD I0J dINYed) DM -§1a04] 91} A POsn awl} o], panduwo)) BISElINg jrem sIAeIy, S1090®J [D
PIINg Y3 Ul pa[qeus ST ysiulf1snf IDYIDYAN pandwo)) ROUBLE ysmrg 1seq
SPURTIUIOD PO[IR] 10 POMO[[R SOLIJAI JO IoquInN ponduwo)) oW N SPURTIWOD POYIR] JO SOLI19Y
Jwifi's200.47° UT 10U 10 paqeud ST SUIYDRD IOYPOYA\ panduo)) 109081 Suryoe))
PIINq JULIIND Y} Ul UNI aIe Jey) sqol jo requny pojnduro)) RIREITNG sqol jo Toquun
Juifitsran.y” Ul soul] (JUSWWIOD pue Yue[q SUIPN[OXS) UOIIONISUL JO IdUINN pognduro)) BIRELING Juifi-s1av43° JO sauI
uorjdrroseq adanog adAj eyeq 10900 uorsuawI (]

An Empirical Study of the Long Duration of Continuous Integration Builds 11

o _
o
o
o
<
o
© |
o
o _|
a o
c
g o |
g ~—
OS5 O N D D NE N OES NTTTTTL N © jegef=gore
S 088 2L 690 ST BE A LS B B o0 dnos E 3000500
Q OF mEcD;OOOm_OmC>~.G)E__<:Lo75;.:-o@:s;‘:q>3.._..o~5-03:@
2 BBt oveY onE LS 08 5 S5e8Rs p053Re808]
cSo? = ESS+=0080eTT o)
O E-SSgagnRenraas S8B50E g E0u8,C0aEs
=~ .= -
%Igglgas?d—"885—'.Qm8*‘-5~‘(§§o'owmmcm:%_lﬁ’%gg.:Bmm
Q Fcon FEgoelSseEln pOEL=0Eon GEOTWL-000
O POC CpAcs VO9@Y™ ETECFEET T DT=
o _loc P TLOE CO0OG=000 3
VoD oFae Sc25 BL=2® o
2 sxa & @ SE £R=8%0e 0 5
O QX = ® o—3 ()C)L_E:j o 2
£ O 0 < J S5 =E 3
S e o 20z J¢
— ==
[} 13‘:§2 o = CE0 ERQ
o 5% o 830 50
S o o =
o @<
w

Fig. 3: The hierarchical clustering of independent variables in the studied projects

redundancy analyses for the independent variables used in our models. We follow
the guidelines that are provided by Harrell [27] to train regression models.

Correlation Analysis: In this step, we employ the Spearman rank p clustering
analysis [54] to remove highly correlated variables in each of the subject projects.
To this end, we use the varclus function from the rmsﬁ R package. For each pair
of independent variables within all clusters that have a correlation of |p| > 0.7, we
remove one variable and keep the other in the models. If two variables are highly
correlated, we keep one variable in our models and remove the other variable.
According to the principle of parsimony in regression modeling, simple explanatory
variables should be preferred over complex variables [61]. Considering that our
explanatory variables are equally simple (e.g., in terms of computation), we keep
the variables that are more informative about the building process. For example,
the Lines of .travis.yml is highly correlated with the Number of jobs. Therefore, we
keep the Lines of .travis.yml, since it conveys more information about the build.
Similarly, the Test lines/KLOC' is highly correlated with the Test cases/KLOC.
Therefore, we keep the Test cases/KLOC, since it has more specific details than
the Test lines/KLOC.

In Fig.|3] we show the dendrogram of the hierarchical clustering of independent
variables for the subject projects. In this dendrogram, we observe five clusters of
highly correlated variables (|p| > 0.7). In Table[3] we present the highly correlated

6 https://cran.r-project.org/web/packages/rms/rms .pdf

https://cran.r-project.org/web/packages/rms/rms.pdf

12 Taher Ahmed Ghaleb et al.

Table 3: Selected variables of the highly correlated variables in the projects

No. Cluster of highly correlated variables Selected variable

Author experience: # of days
Author experience: # of commits

Test cases/KLOC
2 Test lines/KLOC Test cases/KLOC
Test asserts/KLOC

1 Author experience: # of days

Lines of .travis.yml

Number of jobs Lines of .travis.yml

Configuration files changed
4 Configuration lines added Configuration files changed
Configuration lines deleted

Files changed

Source files changed Source files changed

Source files changed

Source churn
Source churn

variables and the selected variable within each cluster. We observe that there is
an additional cluster (i.e., cluster 6) presented in Table [3] Such a cluster is formed
after performing the variable selection in cluster 5.

Redundancy Analysis: In this step, we perform a redundancy analysis on the
remaining 26 independent variables (i.e., those that survive the correlation analysis
step). Redundant variables can distort the relationship between the other indepen-
dent variables and the dependent variable (i.e., short or long build duration) [27].
To this end, we use the redun function from the rms R package, which models each
independent variable using the remaining independent variables. If an independent
variable can be estimated by other independent variables with an R? > 0.9, we
discard such a variable [27]. By performing the redundancy analysis, we observe
that our dataset has no redundant variables.

4 Experimental Results

In this section, we discuss the motivation, the approach, and the findings of our
research questions.

RQi: What is the frequency of long build durations?

Motivation. Studying the frequency and proportion of long build durations is
important because it shows how critical is the situation. One could argue that the
build duration is simply correlated with the lifetime of a project; i.e., long build
durations are the most recent build duration of a project. Moreover, one could
argue that long durations are associated with passed builds. To better understand
long build durations, we study in this RQ the frequency and the characteristics
of long build durations in CI. Studying whether the build duration increases over
time is important because it helps to understand how the evolution of a project is
associated with long build duration. It can also suggest that long build durations
might be associated with other important factors than the evolution of a project.
Studying the relationship between long build durations and the build status is
important because it helps to understand whether long build durations are associ-

An Empirical Study of the Long Duration of Continuous Integration Builds 13

ated with only passed builds. It can also suggest that long build durations might
be associated with other important factors even if the build is errored or failed.

Approach. In our analysis, the build duration represents the perceived build
processing time of a build on Travis CI instead of the sum of the durations of
build jobs provided by TravisTorrent. For example, if a build has 5 jobs and each of
which takes 3 minutes to run, then the total duration of that build is 15 minutes.
However, due to the fact that build jobs can run in parallel on Travis CI, this
build may be generated in only 4 minutes. Therefore, we use the perceived build
duration as it is more realistic. According to the subject projects, the perceived
build duration is not correlated with the sum of the durations of build jobs (i.e.,
the Pearson’s r value is 0.02).

To analyze the distributions of build durations in each of the subject projects,
we perform the following:

e We use the Kruskal-Wallis test [34] to investigate whether a long duration
is associated with the passed, errored, failed, or canceled build statuses. The
Kruskal-Wallis test is the non-parametric equivalent of the ANOVA test [22]
to check whether there are statistically significant differences between three or
more distributions of build durations. Considering that the Kruskal-Wallis test
does not indicate which build status has significantly different build durations
with respect to others, we use the Dunn test [15] to perform individual com-
parisons. For example, the Dunn test indicates whether the build durations
that belong to the passed builds are statistically different when compared to
the build durations that belong to the failed builds. To counteract the problem
of multiple comparisons [14], we use the Bonferroni-Holm correction [30] along
with our Dunn tests to adjust our obtained p-values.

e We use Cliff’s delta effect-size measures [12] to verify how significant is the
difference in magnitude between the values of two distributions. The higher the
value of the Cliff’s delta, the greater the magnitude of the difference between
distributions of build durations. For instance, a significant p — value but a
small Cliff’s delta means that, although two distributions do not come from
the same population, their difference is not significantly large. We use the
thresholds provided by Romano et al. [53] to perform our comparisons: delta
< 0.147 (negligible), delta < 0.33 (small), delta < 0.474 (medium), and delta
> 0.474 (large).

e We use beanplots [33] to compare the distributions of build durations of the
different projects. The vertical curves of beanplots summarize and compare the
distributions of different datasets. The higher the frequency of data within a
particular value, the thicker the bean is plotted at that particular value on the
y axis.

Findings. We observe that over 40% of the builds in our dataset took over
30 minutes to run. We also observe that only 16% of the builds in our dataset
have durations under 10 minutes. Fig.] summarizes the distributions of build
durations of the 67 studied projects. In particular, Fig. [] shows the distributions
of the minimum, lower quantile, median, upper quantile, and mazimum build du-
rations of all the 67 projects. We observe that the median build duration varies
in the studied projects, ranging from 8 minutes to 90 minutes (the overall median
build duration is 20 minutes). We also observe that the 10-minute build duration
is expressed by the median build duration of the lower quantile distribution. In

14 Taher Ahmed Ghaleb et al.

1000 10000

Build duration in minutes
1 10 100
| | |

0.1

0.01
I

T T T T T
Min. 1st Qu. Median 3rd Qu. Max.

Fig. 4: The distributions of build durations of the studied projects

addition, the distributions of the max and min build durations are highly right-
skewed (skewness values of 6.3 and 4.7, respectively). The median build duration
of the maz duration distribution is 2.77 hours. The overlap between the differ-
ent distributions of build durations suggests that we should consider (a) modeling
the build duration differences between the studied projects and (b) varying the
threshold of classifying build durations as short or long.

In Table we show statistics about the build durations of the top four projects
in terms of their number of builds. We observe in Table @ that the median build
durations of the projects range between 24 and 36 minutes. We also observe that
the majority of build durations in rails (i.e., 90%) and jruby (i.e., 70%) are in
the range of 1—10 hours, with lower quantiles of around 2 and 0.7 hours and upper
quantiles of 6 and 5 hours, respectively. Moreover, jackrabbit-oak has lower and
upper quantiles of about 0.3 and 0.7 hours, respectively. Both jackrabbit-oak
and openproject do not experience extremely long build durations as opposed to
rails and jruby.

The build duration does not always increase over time. In Fig. | we show
how build durations evolve over time for the top four projects. We show the dura-
tions of passed builds of such projects. We observe that build durations fluctuate
as opposed to an increasing or decreasing trend of build durations over time. The
fluctuation of build durations over time indicates that there are other possible fac-
tors that may have an association with the increase or decrease of build durations.
We aim to investigate these factors in our following RQs.

Durations of passed builds are not always longer than the durations of
errored and failed builds. Table 5] shows the number and percentage of projects
in which the build durations are significantly different between build statuses. By
intuition, since passed builds complete all the build phases, they are expected to
be longer than builds with any other statuses. Nevertheless, we observe in Table
that durations of passed builds are not always the longest durations amongst build
statuses. Hilton et al. [29] performed a similar analysis on a different dataset of

An Empirical Study of the Long Duration of Continuous Integration Builds

15

Table 4: Statistics of build durations of the top four projects (statistics of build
durations of the full set of projects is available in our online appendix [I])

Build duration (in minutes)

Project 15t Quantile Median 37¢ Quantile
rails 18.18 27.18 36.75
jruby 13.17 24.09 40.05
jackrabbit-oak 20.32 29.45 42.48
openproject 28.80 36.50 46.28

100 1000 1000!

Build duration in minutes

T T T T
4000 6000 8000 10000

Build Ids over time

T
0 2000

(a) rails

100 1000

10

o

Build duration in minutes

T T T
1000 2000 3000

Build Ids over time

o

(c) jackrabbit-oak

Build duration in minutes

Build duration in minutes

100

10

1

0.1

100 1000

10

T T T
0 1000 2000 3000

Build Ids over time
(b) jruby

T T T T
1000 1500 2000 2500

Build Ids over time

T
0 500

(d) openproject

Fig. 5: Build durations over time for the top four projects (line plots for the full
set of projects is available in an online appendix [I])

Table 5: The number and percentages of projects where build durations are sig-
nificantly different from one build status to another.

Status-pair build durations

of projects

% of projects

Passed longer than Failed
Passed longer than Errored
Failed longer than Passed
Failed longer than Errored
Errored longer than Passed
Errored longer than Failed

29 43%
30 45%
9 13%
8 12%
13 19%
18 27%

34,544 projects. They also found that passed builds run faster than errored and

failed builds. Their speculation of the results suggests that many of the passed

builds that run faster may not have generated meaningful results.

Our project-wise analysis of the results reveals that durations of passed builds
are not significantly longer than durations of failed and errored builds in more
than 50% of the projects. In addition, passed builds run faster than failed and/or

errored builds in 17 (i.e., 25%) projects (shown in Table @ In 5 projects, passed

16 Taher Ahmed Ghaleb et al.

Table 6: List of projects where passed run faster than failed and/or errored builds

Project name ‘ Passed faster than Failed Passed faster than Errored

ark v
canvas-1lms
capybara
celluloid
celluloid-io
chef

diaspora

druid
jackrabbit-oak
moped
openproject
promiscuous
ruboto
skylight-ruby
twitter-cldr-rb
wicked

xtreemfs

ENENEN

N N N N N NENEN

AN NN

SNEN

builds run faster than both failed and errored builds. In 4 projects, passed builds
run faster than failed builds only, whereas passed builds run faster than errored
builds only in 8 projects. On the other hand, our results show that there is no
significant difference between the build durations of failed and errored builds in
60% of the projects. Moreover, we observe that durations of errored builds are
significantly longer than failed builds in 27% of the projects.

Gallaba et al. [24] found that the build status data may have noise. In partic-
ular, the status of a build may not always reflect the statuses of all the build jobs.
For example, a passed build may contain broken (i.e., failed and errored) jobs that
are ignored by developers (e.g., marked as allow_failures). In addition, a broken
build may contain jobs that are passed. Therefore, we check if our results are sen-
sitive to these types of noise in the build status data. Specifically, we consider that
a build is (a) really passed if all jobs are passed and (b) really broken if all jobs
are broken. Our cleaned dataset contains 64% of the total builds of our original
data. We find that our observations hold for the majority of the studied projects.
In particular, we observe that (1) the durations of failed builds are longer than
the durations of passed in 6 projects, (2) the durations of errored builds are longer
than the durations of passed in 8 projects, and (3) the durations of errored builds
are longer than the durations of failed builds in 9 projects. Therefore, the noise
in build statuses does not have a significant impact on our results. Moreover, the
main focus of our study is to analyze long build durations. Therefore, the noise
observed by Gallaba et al.does not impact our main observations.

We analyze a sample of the builds of the studied projects to investigate the
reasons why the durations of broken builds could be longer than the durations
of passed builds. In particular, we analyze builds of the diasporaﬂ project. We
find that the median duration of passed builds is 5.6 minutes, whereas the median
durations of failed and errored builds are 12.6 and 13.2 minutes, respectively.
We manually analyze the build logs of the broken build jobs of the diaspora

7 https://github.com/diaspora/diaspora

https://github.com/diaspora/diaspora

An Empirical Study of the Long Duration of Continuous Integration Builds 17

project to investigate the reasons behind such results. We find that 43% of build
failures in such jobs were due to commands that took longer than a certain limit
of time to execute and were terminated by Travis CI. For example, running the
‘./script/ci/build.sh’ script in build #2671@ of diaspora took longer than 25
minutes and was terminated by Travis CI. As a result, job #3 failed and took 5-
13 minutes longer than the other passed jobs of the build. In addition, connection
and test timeouts were the reasons behind the failures of 12% and 2% of the build
jobs, respectively. Moreover, we observe that, in 13% of the build job failures,
Travis CI retried the failing commands two to three times with no success. For
example, build #4037E| of diaspora reran the command ‘bundle install ...’
twice. However, job #4 failed while taking 8-24 minutes longer than the other
passed jobs of the build.

Such observations indicate that certain build configurations (e.g., Travis wait-
ing time and the number of times to rerun failing commands) may have an associ-
ation with long build durations. Therefore, in our mixed-effects logistic models, we
use independent variables that are related to several build configuration factors,
such as Fast Finish, Travis wait, and Retries of failed commands.

RQ2: What are the most important factors to model long build durations?

Motivation. RQ1 shows that CI build durations may behave differently across
projects. The fluctuating trend of build durations over time suggests that there
are factors that may have an association with the increase or decrease of build
durations. In this RQ, we aim to understand the different factors that may have
an association with long build durations. We take into consideration both common
wisdom factors (e.g., project size, build configuration size, team size, and test
density) and other factors that may have an association with long build durations.

Approach. Our dataset contains builds from 67 studied projects. Such projects
are very different in terms of size and domain. As the results of RQ1 suggest,
long build durations are different from one project to another. Therefore, we use a
mixed-effects regression to control the variation between projects in terms of build
durations. Mixed-effects logistic models allow to assign (and estimate) a different
intercept for each project [65]. Considering that we aim to study the relationships
between long build durations and the factors listed in Table [2] we particularly use
the generalized mixed-effects models for logistic regression. Generalized mixed-
effects models are statistical regression models that contain both fixed and random
effects [20]. Fixed effects are variables with constant coefficients and intercepts
for every individual observation. Random effects are variables that are used to
control the variances between observations across different groups (i.e., projects).
Our mixed-effects logistic models assume a different intercept for each project [39].
Traditional regression models, in contrast, use fixed effects only, which disregard
the variances of build durations across projects.

Equation [I] shows the equation of the mixed-effects logistic model. In Eq.
Y, denotes the binary build duration (i.e., long or short); fo demonstrates the
constant intercept; X; represents the independent variables; 3; represents the co-
efficients of each Xj; €4 indicates the errors; and 64 represents the intercepts that
vary across each project. We use the glmer function in the 1me4 R package to use

8 https://travis-ci.org/diaspora/diaspora/builds/4033669
9 https://travis-ci.org/diaspora/diaspora/builds/10766342

https://travis-ci.org/diaspora/diaspora/builds/4033669
https://travis-ci.org/diaspora/diaspora/builds/10766342

18 Taher Ahmed Ghaleb et al.

mixed-effects logistic models. We use the binomial distribution, Laplace approxi-
mation, and the bobyqa optimizer as parameters to the glmer function.

n
Yy =Bo+0,+ > BiXi+e (1)
i=1

Significant independent variables are marked with asterisks in the output of the
mixed-effects logistic models using the ANOVA test [49]. An independent variables is
significant if it has Pr(< |x?|) < 0.05. Pr(< |x?|) is the p-value that is associated
with the y2-statistical test. The x> (Chi-Squared) values show whether the model
is statistically different from the same model in the absence of a given independent
variable according to the degrees of freedom in the model. The higher the x?, the
higher the explanatory power of an independent variable. We use upward () and
downward () arrows to indicate whether a variable has a direct or an inverse
relationship, respectively, with the long build duration.

We compute the number of Events Per Variable (EPV) in the models. EPV
shows the likelihood of a regression model to overfit [48]. EPV values represent the
ratio of the number of builds with long durations to the number of independent
variables. A dataset with an EPV above 10 is less risky to run into an overfitting
problem [4§].

We evaluate the performance of the models using the Area Under the Curve
(AUC), the marginal R?, and the conditional R?. We describe each of our perfor-
mance measures below:

e The Area Under the Curve (AUC) evaluates the diagnostic ability of the mixed-
effects logistic models to discriminate long build durations [26]. AUC is the area
below the curve created by plotting the true positive rate (TPR) against the
false positive rate (FPR) using all the possible classification thresholds. The
value of AUC ranges between 0 (worst) and 1 (best). An AUC value that is
greater than 0.5 indicates that the explanatory model outperforms a random
predictor.

e The marginal R? is a measure of the goodness-of-fit of our mixed-effects mod-
els. It represents the proportion of the total variance explained by the fixed
effects [46]. Higher values of the marginal R? indicate that fixed effects can
well explain the dependent variable (in our case, long build durations).

e The conditional R? is a measure of the goodness-of-fit of the mixed-effects
models. It represents the proportion of the variance explained by both fixed
and random effects [46]. Higher values of the conditional R* indicate that the
proportion of the variance that is explained by both fixed and random effects
is higher than the proportion of the variance that is explained by fixed effects
only. A high difference between the values of conditional and marginal R>
suggests that the random effects significantly help to explain the dependent
variable.

We conduct a sensitivity analysis using three scenarios of different classification
thresholds for long build durations. We perform the sensitivity analysis to study
how the model is sensitive to the classification threshold for long build durations.
Table [7] presents the thresholds for classifying build durations into short and long
using three classification scenarios. For each classification scenario, we present the
obtained number of builds with short and long and the number of independent

An Empirical Study of the Long Duration of Continuous Integration Builds

19

Table 7: Classification scenarios of build durations

Scenario #

Classification threshold

Number of builds

Number of

short long variables
Min. 1t Qu. Median 31 Qu. Max.
gr: Qu i Qu Iax
Scenario 1 |7 —| 26,140 26,113 28
Short Long
Mi{:, 1Qu. Median 31 Qu. l\‘/(Iax,
Scenario 2 |7 —| 78,321 26,113 30
Short Long
Mi{:, 1Qu. Median 31 Qu. l\‘/(Iax,
Scenario 3 |7 4| 52,206 52,208 30
Short Long

variables that survive the correlation and redundancy analyses. We explain the
three classification scenarios below:

e Scenario 1: Build durations below the lower quantile are considered short,
while the durations above the upper quantile are considered long. This scenario
classifies 25% of the builds as short and 25% of the builds as long.

e Scenario 2: Build durations below the upper quantile are considered short,
while the durations above the upper quantile are considered long. This scenario
classifies 75% of the builds as short and 25% of the builds as long.

e Scenario 3: Build durations below the median are considered short, while the
durations above the median are considered long. This scenario classifies 50%
of the builds as short and 50% of the builds as long.

Findings. Our mized-effects logistic models maintain a good discrimina-
tion performance when classifying long build durations using different
duration thresholds. Table [§]shows the performance of the mixed-effects logistic
models in terms of AUC, marginal R?, and conditional R?. Our results indicate
that the models maintain a high performance in all the classification scenarios
for long build durations. We observe that the model using Scenario 1 obtains a
good AUC value of 0.87 for discriminating long build durations. In the second
and third scenarios, the models obtain AUC values of 0.78 and 0.79, respectively.
The conditional R? values of all the three models are higher than the values of
the marginal R? values by 22%, 36%, and 19% respectively. The EPV values in
the three scenarios are 932.61, 870.43, and 1, 740.27, respectively. Such high EPV
values indicate that the models are less likely to be overfitting. In our subsequent
analyses, we use the results obtained by the top performing modeling scenario
(i.e., Scenario 1).

Build durations have a strong association with CI build factors, such as
(1) the build triggering time, (2) the number of times to rerun failing
commands, (3) caching, and (4}) finishing as soon as the required jobs
finish. Table [J] presents the variable importance results obtained from the model

20 Taher Ahmed Ghaleb et al.

Table 8: Performance of the mixed-effects logistic models

Classification scenario AUC Marginal R> Conditional R?

Scenario 1 0.87 0.70 0.92
Scenario 2 0.78 0.45 0.81
Scenario 3 0.79 0.71 0.90

fit using the best performing scenario (i.e., Scenario 1). All the independent vari-
ables are sorted based on their x? values in a descending order. For each inde-
pendent variable, we show its estimated coefficient (estimated coefficients of the
days of week are presented in Table , its x? value, the p-value (represented by
Pr(< x?%)), its significance to model long build durations, and whether each inde-
pendent variable has a direct or an inverse association with long build durations
(represented by the upward and downward arrows). We observe that, as expected,
the common wisdom factors (i.e., SLOC, lines of .travis.yml, team size, and test
cases/KLOC) have significantly strong association with long build durations. How-
ever, we observe other less obvious factors to explain long build durations (e.g.,
caching, rerunning failing commands, time of triggering the build, and developer’s
experience). We also observe that commit-level factors have a weak association
with long build durations (e.g., tests added/deleted, files added/deleted, and the
number of commits in a push). To better investigate the explanatory power of
the less obvious factors to explain long build durations, we fit our top performing
model without using the common wisdom factors (i.e., SLOC, lines of .travis.yml,
team size, and test cases/KLOC). We observe that the model also maintains a
good performance (i.e., the AUC values 85%). In addition, the model becomes
more sensitive to project variances (i.e., the conditional R? is higher than the
marginal R? by 0.46). Moreover, the less-obvious important factors preserve their
explanatory power in both models (i.e., with and without the common wisdom
factors).

RQs: What is the relationship between long build durations and the most important
factors?

Motivation. RQ2 suggests that long build durations are strongly associated with
several important factors. In this RQ, we use the results obtained from our top
performing model to study whether each important factor has a direct or inverse
relationship with long build durations. In addition, we perform manual analyses
on the builds of the subject projects to gain insights on the relationship between
long build durations and the most important factors.

Approach. We use the values, generated by the top performing model, of the
estimated coefficients of the independent variables. Estimated coefficients can be
positive or negative. A positive coefficient indicates that the variable has a direct
relationship with long build durations. A negative coefficient indicates that the
variable has an inverse relationship with long build durations. We use the sign
of the estimated coefficient of each variable to produce upward and downward
arrows. The upward and downward arrows represent a direct or an inverse rela-
tionship between a variable and long build durations. We use the odds ratios [2] to
measure the association of the dependent variable with the presence/absence of a
binary independent variable (or the increase/decrease of a continuous independent
variable) while holding the other variables at a fixed value. For example, odds ra-

An Empirical Study of the Long Duration of Continuous Integration Builds 21

Table 9: Results of the mixed-effects logistic model — sorted by x? descendingly

Factor Coef. X2 Pr(<x?) Sign.t™ Relationship
(Intercept) 2.59 12.0800 5.1e=04 *kk -
Fast finish —0.72 1343.62 < 2.2e716 ook N
Team size 4.53 843.73 < 2.2¢716 xRk Va
Retries of failed commands 0.61 667.21 < 2.2¢716 Hoxx Va
Test cases/KLOC 1.32 431.64 < 2.2e716 sokok Va
SLOC 111 402.63 < 2.2¢716 ok Ve
Lines of .travis.yml 0.67 308.88 < 2.2¢716 Hoxx Va
Day of week —* 214.59 < 2.2e716 HoAok —*
Is pull request —0.19 163.78 < 2.2¢716 Hoxk AW
Day or night (night) —0.14 25.69 4.01e=97 ook .
Caching —0.08 13.82 2.01e~04 ook N\
Source churn —0.19 6.51 0.011 * ¢
Configuration files changed 0.04 5.32 0.021 * Va
Test churn —0.11 3.10 0.078 AW
Files deleted 0.02 1.93 0.165 N
Files added 0.01 1.25 0.263 Va
Tests added —0.01 1.22 0.270 ¢
Tests deleted —0.04 1.16 0.282 ¢
Language (ruby) —0.87 0.99 0.319 N
Commits on touched files —0.02 0.93 0.336 o
Author experience: # of days 0.01 0.58 0.445 N
Other files changed —0.02 0.35 0.555 N\
Travis wait 0.01 0.18 0.672 Va
By core team member 0.00 0.06 0.809 N\
SLOC delta 0.00 0.02 0.882 ¢
Number of commits in push 0.00 0.00 0.952 Va
Doc files changed 0.00 0.00 0.997 o

FSignificance codes: 0 ¥ 0.001 “** 0.01 **’ 0.05 " 0.1 *’ 1
*Individual coefficients for each day of the week are presented in Table

Table 10: Estimated coefficients obtained from the mixed-effects logistic model for
each Day of week

Factor Coef. Pr(<|z|) Sign.t Relationship
Saturday —0.45 4.46e 1% HoAk N
Sunday —0.51 1.23¢715 ok N
Monday 0.12 0.011 * Va
Tuesday 0.09 0.037 * Va
Wednesday 0.12 0.007 oK Va
Thursday 0.13 0.005 ok Va

*Significance codes: 0 “***’ 0.001 “**’ 0.01 “*** 0.05 <" 0.1 ‘"’ 1

tios can explain how the long duration differs between builds that use and builds
that do not use caching. We compute odds ratios by taking the exponentiation of
the estimated coefficients obtained from the model for each independent variables.
For the Day of week independent variable, the odds ratio for each day of week is
computed over the reference day (i.e., Friday).

Findings. Configuring CI builds to finish as soon as the required jobs fin-
ish is most likely to be associated with short build durations. The fast_finish
setting in Travis CI allows builds to finish as soon as the status of the required
build jobs is determined. In other words, the build is finished and its status is
determined without the need to wait for jobs that are marked as allow_failures.

22 Taher Ahmed Ghaleb et al.

Such a feature shows a high importance in producing short build durations. Our
results reveal a strong inverse association between fast build finishing and long
build durations (x? of 1343.62). Looking at the negative estimated coefficient (i.e.,
—0.72) of the Fast Finish independent variable, we observe that builds that are
configured to finish as soon as the required jobs finish have significantly shorter
durations than builds that are not configured with the fast_finish setting (p-
value = 2.2¢719). The odds of having a long build duration for builds with the
fast_finish setting is 51% lower than the odds for builds without the fast_finish
setting.

To gain more insights about builds that are configured to perform fasting finish-
ing, we analyze the .travis.yml file of the studied projects. We consider (a) builds
that were triggered after supporting fast-finishing on Travis C]IE (i.e., Novem-
ber 27" 2013); and (b) builds that have allow failures jobs. We find that
37 of the studied projects have builds that contain allow_failures jobs. How-
ever, we observe that only 16 (i.e., less than half) of these 37 projects have their
builds configured with the fast_finish setting. In 10 projects, builds with the
fast_finish setting run faster than builds without that setting (a median differ-
ence of 9 minutes). We investigate the projects that experienced no major reduc-
tions of build durations after enabling the fast_finish setting. We observe that
the more allow_failures jobs a build have, the more likely for the fast_finish
setting to speed up the build generation. For example, the killbillB project ex-
periences the least benefit of the fast_finish setting among all the other projects.
In killbill, the median percentage of the allow_failures jobs to the total num-
ber of jobs is 20%. On the other hand, the rubotﬂ project had the maximum
reduction of build durations after enabling the fast_finish setting. In ruboto,
the median percentage of the allow_failures jobs to the total number of jobs
is 53%. Therefore, development teams should consider enabling the fast_finish
setting to receive feedback about their builds as soon as the required jobs finish.

Caching content that does not change often has a strong inverse asso-
ciation with long build durations. Travis CI allows developers to cache contents
(e.g., directories and dependencies) in their repositories onto the CI backend server.
Caching enables Travis CI to upload the cache content only once and then use it
while running all upcoming builds. Our results reveal a strong inverse association
between caching and long build durations (x? of 13.82). Looking at the negative
estimated coefficient (i.e., —0.08) of the Caching independent variable, we observe
that builds that use caching are significantly shorter than builds that do not use
caching (p-value = 2.01e~°*). The odds of having a long build duration for builds
that use caching is 8% lower than the odds for builds that do not use caching.

To gain more insights about why builds might experience long build durations
even with the use of caching, we analyze the .travis.yml file of the studied projects.
We consider builds that were triggered after December 17", 2014 (i.e., after Travis
CI introduced the caching feature for open source projectﬂ. We find that 42 (i.e.,
63%) of the projects have the caching feature enabled in their builds. We observe
that caching was actively used in 30 out of the 42 projects (i.e., caching was

10 https://blog.travis-ci.com/2013-11-27-fast-finishing-builds
11 https://github.com/killbill/killbill
12 https://github.com/ruboto/ruboto

13 https://blog.travis—ci.com/2014-12-17-faster-builds-with-container-based-infrastructure/

https://blog.travis-ci.com/2013-11-27-fast-finishing-builds
https://github.com/killbill/killbill
https://github.com/ruboto/ruboto
https://blog.travis-ci.com/2014-12-17-faster-builds-with-container-based-infrastructure/

An Empirical Study of the Long Duration of Continuous Integration Builds 23

enabled in more than 80% of the builds). We observe that caching reduced the
build duration by a median of 11 minutes for only 13 of these projects. Moreover,
we investigate the projects that have no notable reduction in the durations of
builds that perform caching. We observe that, in some projects (e.g., killbil
and flinkIEI) caching was enabled in the build configuration without specifying the
content to cache. In other projects (e.g., vanity| |and openprojec , we observe
that caching was applied mostly to bundler) °|a gem for dependency management,
rather than specific directories. Since bundler maintains frequent updates, caching
it is less likely to have a significant reduction to build durations. As a consequence,
caching content that changes more often can introduce an overhead to the build
generation process, since Travis CI may need to upload the cache frequently.

Maintaining a stable build status has a strong association with long
build durations but with a negligible reduction in the build failure ratio.
Our results reveals that there is a trade-off between long build durations and
the attempts of developers to maintain passing builds. In particular, developers
may configure their builds to rerun failing commands multiple times to avoid
having many build failures. However, we observe that such a configuration has
a strong association with long build durations. It is true that allowing builds
to rerun a failing command several times may help to reduce the ratio of build
failures. However, developers should take into consideration that the more times
a command fails, the more duration the build would take. Most of Travis CI
internal build commands can be wrapped with travis_retry to reduce the impact
of network timeoutsE Looking at the positive estimated coefficient (i.e., 0.61) of
the Retries of failed commands independent variable, we observe that the more
reruns of a failed command in a build the longer the duration of that build. Such
an association between the number of retries of failed commands and long build
durations is significant (x? = 667.21 and p-value < 2.2¢'®). In addition, a one-
unit increase in the number of times of rerunning failed commands increases the
odds of having a long build duration by 84%.

To gain more insights about builds that rerun failing commands, we analyze
the projects that have explicit configuration instructions for specifying the number
of times to rerun failing commands. We find 13 of the studied projects with such a
configuration in their builds. We analyze projects that have at least 10% of their
builds configured to retry failing commands multiple times. We observe that the
median duration of builds that are configured to rerun failing commands is 13
minutes more than the builds without such a configuration. Although we observe
that rerunning failing commands several times reduced the ratio of build failures
in 60% of the projects, we find that the median reduction is only 3%. We manually
investigate a sample of builds of the jruby@ project. Such builds were configured
to retry failing commands for 3 times. We find that the duration of build # 1184@

14 https://github.com/killbill/killbill

15 https://github.com/apache/flink

16 https://github.com/assaf/vanity

17 https://github.com/opf/openproject

18 https://bundler.io

19 https://docs.travis—ci.com/user/common-build-problems/#travis_retry
20 https://github.com/jruby/jruby

21 https://travis-ci.org/jruby/jruby/builds/108164066

https://github.com/killbill/killbill
https://github.com/apache/flink
https://github.com/assaf/vanity
https://github.com/opf/openproject
https://bundler.io
https://docs.travis-ci.com/user/common-build-problems/#travis_retry
https://github.com/jruby/jruby
https://travis-ci.org/jruby/jruby/builds/108164066

24 Taher Ahmed Ghaleb et al.

of jruby is more than the duration of its precedingjﬂ and succeedinﬂ builds by
27 and 49 minutes, respectively. Although the commi@ that triggered build #
11843 only updated the copyright year, the build was errored. The majority of the
jobs of build # 11843 reran failing commands for 2—3 times. Therefore, developers
should carefully study the number of times to rerun failing commands, since it can
generate unnecessary waiting durations in broken builds.

Builds are more likely to have longer durations if they are triggered
on weekdays or at daytime. We observe that the day of week factor is one
of the important factors to model long build durations (x?*=214.59 with a p-
value < 2.2¢19). Table |10 shows the individual estimated coefficients obtained
from the mixed-effects logistic model for each day of the week. It is clear from
Table that Saturday and Sunday have an inverse relationship with long build
durations, whereas the other weekdays have a direct relationship with long build
durations. The estimated coefficient results implies that the odds of having long
build durations on Saturday and Sunday is 36% and 40% lowers than the odds
for Friday (p-values of 4.46e~ ' and 1.23¢7 12, respectively). However, the odds
of having long build durations on the other weekdays are 9 — 14% higher than
the odds for Friday(p-values of 0.011-0.037). Such a finding suggests that the
servers of Travis CI have a higher workload on weekdays. Existing research has
also found an association between the Day of week and buggy code changes [19]
56]. Furthermore, builds are more likely to have longer durations when they are
triggered during the day. Looking at the estimated coefficient (i.e., —0.14) of the
Day or night independent variable, we observe that builds triggered at night have
a significant inverse relationship with long build durations (p-value = 4.01e~°7).
This suggests that the odds for having long durations of builds triggered at night
is 13% lower than the odds for triggering builds during the day. Hence, builds are
most likely to run faster because Travis CI’s servers have lower workloads at night.

5 Discussion

In this section, we discuss our findings about the important factors in terms of
direct implications for developers, researchers, tool builders, and CI services.

5.1 Developers

Developers should consider optimizing their core tests in addition to the
removal of unnecessary tests. Developers acknowledge that tests are signif-
icantly associated with long build durations [28]. Much of developers’ effort is
usually invested to identify and remove unnecessary tests. However, developers
should consider that the important software tests cannot be ignored. For impor-
tant tests, the performance of test cases may be improved by reducing brittle
assertions (i.e., assertions that depend on uncontrolled inputs) and unused inputs
(i.e., inputs controlled by a test but not checked by an assertion) [32]. Tests can be
optimized using a proper management of test dependencies [60]. Employing test
case minimization techniques can improve the efficiency of software testing while

22 https://travis-ci.org/jruby/jruby/builds/108161963
23 https://travis-ci.org/jruby/jruby/builds/108165671
24 https://github.com/jruby/jruby/commit/30d975e6abdbibdablb80b0bfbd83313£139£8a2

https://travis-ci.org/jruby/jruby/builds/108161963
https://travis-ci.org/jruby/jruby/builds/108165671
https://github.com/jruby/jruby/commit/30d975e6abdb1bdab1b80b0bfbd83313f139f8a2

An Empirical Study of the Long Duration of Continuous Integration Builds 25

maintaining an effective coverage [37,[38]. As a result, such techniques may help to
reduce build durations. There exists a rule of thumb of restricting a test case to
only one assertion [4]. Employing a single test assertion per test case improves fault
localization [67] and test readability [43], but may have an association with long
build durations. If the build duration is a very important factor to a development
team, sacrificing the test readability factor might be a wiser choice. For example,
developers may combine several test cases into a single comprehensive test case
if such tests share similar characteristics. Developers may use proper explanatory
messages for test assertions to distinguish the test assertions of each functionality
in the case of test failures. Nevertheless, developers should take into consideration
that removing a few tests in a commit (or a push of commits) will less likely have
an association with the build duration. For example, the commit level factors, such
as the Test churn, Tests added, and Tests deleted, have a weak association with
long build durations. Therefore, development teams should consider performing
test optimization whenever they produce a new release of the project.

To gain more insights about how the test density may be associated with the
long build duration, we perform a manual analysis for sample test cases of the
structrﬁ project. We find five test cases (i.e., test methods) that contain 33 — 60
test lines and 5 — 9 test asserts. Although each of such test cases targets a certain
system functionality, we observe duplicate code and asserts between them. For
example, we find a test case for the functionality of moving a file to an arbitrary
directory and another test case for moving a file to the root directory. Having a
separate test case for each functionality of the system helps to locate test failures.
However, if reducing the build duration is more important, refactoring the test
code (e.g., by resource inlining or reducing the test data) [43[60] would be a wiser
option.

Not all build jobs are parallelized. Developers should realize that, for free
subscriptions of Travis CI, there is a limit of 5 jobs to run simultaneously. If a
build has more than five jobs, only five of them would be running in parallel. Once
one of the jobs finishes, another job can start running along with the four running
jobs, and so on. Development teams can maintain paid subscriptions depending on
how many concurrent jobs are needed to run. On the other hand, build jobs may
be configured to run in stages. A build stage may contain a set of jobs that can
run in parallel. Jobs of a build stage do not run in parallel with jobs of other build
stages. Instead, jobs of next build stages wait for the jobs of previous build stages
to finish. Hence, maintaining build stages indicates that, even though parallelizing
jobs significantly helps to reduce build duration, the number of jobs still matters
when it comes to the build duration. Future research should study how open source
projects (i.e., free CI subscribers) may become more costly than projects with a
paid service based on the gain in terms of build durations.

5.2 Researchers

Test optimization and prioritization may be useful to reduce the build
duration. Researchers should explore ways to identify tests that may perform
similarly (i.e., semantic test clones) in order to potentially reduce build durations.
Developers add more tests whenever a new system functionality is introduced to

25 https://github.com/structr/structr

https://github.com/structr/structr

26 Taher Ahmed Ghaleb et al.

the project. Hence, due to the frequent additions of tests, developers may neglect
writing efficient test cases. In addition, due to parallel development activities, it
could be hard for developers to identify whether a test is a duplicate of another
existing test. Therefore, researchers may explore ways to prioritize software tests
from a CI perspective [18]/40].

Longer build durations may indicate a potential low performance of the
system at runtime. Researchers should investigate whether the build duration
has a potential correlation with the performance of the system at runtime. If such
a correlation exists, researchers may leverage existing performance optimization
techniques to optimize existing software tests. Doing so may help to reduce the
build duration.

5.3 Tool builders

Tool for detecting cacheable spots of the project. Developers need tools to
identify build configurations that may be associated with build durations. For
example, it would be beneficial for developers to have a tool that detects parts of
the project that do not change often. Developers can cache such parts to speed up
running the builds.

Tool for detecting commands that often pass after multiple reruns. Devel-
opers may wish to know information about the commands that require multiple
runs to pass. Developers can leverage such information to identify the cause of the
frequent command failures and fix the issue accordingly. For example, if installing
a dependency frequently fails, it is better for developers to find alternative mirrors
or versions of that dependency.

5.4 CI services

The workload of CI servers can indicate latency in build generation. CI
services (e.g., Travis CI) should provide mechanisms for developers to receive in-
stant updates about the workload of their servers. Information about the current
workload of a CI server can help developers to expect any possible delays that
might impact the perceived build duration.

CI services should utilize the current behavior of builds to suggest possi-
ble build (re)configurations. Existing research shows that development teams
misuse CI configurations [25]. Misusing a CI configuration may unintentionally
be associated with long build durations. For example, developers may configure
builds to update dependencies in every run to avoid breaking the build in the
case of unexpected dependency updates. Therefore, it is better for services CI to
optionally perform such an update only if a dependency is recognized to be not
up to update. It is also better to send feedback to development teams about the
possible (re)configuration performed on their builds. The feedback may also in-
corporate information about the reasons why recently triggered builds have longer
build durations than the previously triggered builds.

An Empirical Study of the Long Duration of Continuous Integration Builds 27

6 Threats to Validity
In this section, we discuss the threats to the validity of our study.

6.1 Construct Validity

Construct threats to validity are concerned with the degree to which our anal-
yses measure what we claim to analyze. In our study, we rely on the data col-
lected mostly from TravisTorrent and from the Git repositories that we clone
from GitHub. Mistakenly computed values can have an influence on our results.
However, we carefully filter and test the data to reduce the possibility of wrong
computations that may impact the analyses in this paper. In addition, the build
status data may contain noise that may impact our obtained results. For example,
passed builds may contain broken jobs while broken builds may contain passed
jobs. We filter such noises and perform a status-wise analysis of build durations
using cleaned data. We observe that noises in build statuses do not significantly
impact our overall observations.

6.2 Internal Validity

Internal threats to validity are concerned with the ability to draw conclusions
from the relation between the independent and dependent variables. We study the
factors that are strongly associated with long build durations. To do so, we use
mixed-effects logistic models and study the explanatory power of the independent
variables to explain long build durations. We also perform a sensitivity analysis
with the use of three classification scenarios using different statistical thresholds
for build durations: the median, the lower quantile, and the upper quantile.

In the mixed-effects logistic models, we use 28 factors as independent variables
spanning five dimensions: CI factors, code factors & density factors, commit fac-
tors, file factors, and developer factors. However, we are aware that these factors
are not fully comprehensive and using other factors may affect our results. In our
correlation analysis, deciding which variables to keep in the mixed-effects logistic
models may have an impact on the results of the models. To make our obtained
results reproducible, we explicitly define our choices of variables for all the possible
pairs of highly correlated variables.

6.3 External Validity

External threats are concerned with our ability to generalize our results. Our
study is based on builds that are collected from a set of 67 projects. Therefore, we
cannot generalize our conclusions to other projects with different characteristics.
Nevertheless, our study selects projects with high variations of build durations
where the problem of long build durations may occur. To this end, we select
the projects that have a build durations MAD above 10 minutes [IT|28]. However,
despite the relatively small sample, our dataset contains well-known and previously
studied projects (e.g., rails, jruby, and openproject) Projects with lower build
durations MADs (i.e., less than 10 minutes) are less likely to suffer from long
build durations. Still, future work should investigate whether lower MADs of build
durations would produce different results as compared to our findings. Moreover,
a replication of our work using projects written in other programming languages
is required to reach more general conclusions.

28 Taher Ahmed Ghaleb et al.

7 Related Work

This section presents the related research about CI builds while highlighting the
contributions of our work.

7.1 Studying CI build status

Existing research has investigated the reasons behind CI build failures[7}[68|[5T1[64].
A study by Beller et al. [7] shows that tests are central to the CI build process,
since they highly impact the build duration and the build status. Another study
by Zolfagharinia et al. [68] indicates that build status could be impacted by op-
erating systems or runtime environments in which the code should be integrated.
Rausch et al. [5I] studied the causes of build errors and failures and found 14
common error categories of CI builds. They also found that process factors (e.g.,
the complexity of changes) have a strong impact on build statuses, in addition to
the history build stability (i.e., failing ratio). Another study by Vassallo et al. [64]
derived a taxonomy of build failures and found that, although open source and in-
dustrial projects have differences in their design and their ways for reporting build
failures, they share common failing patterns. None of such studies investigated
how build status is associated with long build durations. In our study, we analyze
build durations per build statuses to investigate whether long build durations are
associated with build statuses. We also study the most important factors to model
long build durations.

Other studies introduced prediction models to predict the build status [66}47].
Xia and Li [66] built 9 prediction models to predict the build status. They validated
their models using a cross-validation scenario and an online scenario. Their models
achieved a prediction AUC of over 0.80 for the majority of the projects they stud-
ied. They found that predicting a build status using the online scenario performed
worse than that of cross-validation, with a mean AUC difference of 0.19. They
observed that the prediction accuracy falls down due to the frequent changes of
project characteristics, development phases, and build characteristics across dif-
ferent version control branches. Ni and Li et al. [47] used cascade classifiers to
predict build failures. Their classifiers achieve an AUC of 0.75, which outperforms
other classifiers, such as decision trees and Naive Bayes. They also observed that
historical committer and project statistics are the best indicators of build status.
In our study, we use mixed-effects logistic models to study the association of vari-
ous factors with long build durations across 67 projects. We fit the models to long
build durations instead of build statuses. We analyze the explanatory power of the
most important factors to explain the long build durations.

7.2 Studying CI build duration

Studies in the literature have investigated build durations from different perspec-
tives [B2LB0L3] A study by Rogers [52] observes that a long build duration consid-
erably interrupts the development process. The author suggests strategies to keep
complex projects coping with CI, such as accumulating the integration to be per-
formed once a week. It is also argued that every project should maintain a certain
limit of build durations and keep up with that. Similarly, Rasmusson [50] studied
how feedback and team spirits are negatively impacted when a build takes a long
duration. Another study proposed an approach to split large builds into smaller

An Empirical Study of the Long Duration of Continuous Integration Builds 29

builds and adopt the so-called incremental builds [3]. Incremental builds enhanced
the overall build duration. However, none of such studies have investigated the
factors that may be associated with long build durations. In our work, we study
long durations of CI builds. Instead of studying how long durations of CI builds
impact the development process, we gain insights on how developers can optimize
their code or configure their builds to reduce the long build durations.

Brooks [II] highlighted that long build durations affect the development flow
and lead to changing the frequency and size of commits. According to reports of
expert developers of a private company, a build duration of 2 minutes is considered
optimal, while is acceptable to take up to 10 minutes. Nonetheless, we cannot
generalize such an assumption, since builds of complex software systems (e.g.,
Linux) may definitely require more time to process. On the other hand, building
and testing tools may impact the duration of builds, since they require running
internal libraries or other dependent tools [45]. Additionally, users have a limited
control over such tools. All such studies lack an empirical evidence of the frequency
of builds with long durations in software projects and the factors that may be
associated with such a latency. In our work, we empirically study the factors that
have a strong association with long build durations by employing mixed-effects
logistic models.

The work by Bisong et al. [10] is relevant to our work in the sense that it
investigates the duration of CI build generation. We summarize the distinctions
between our study and the study conducted by Bisong et al. [10] in the following:

e Bisong et al. evaluated 13 prediction models for build durations and reported
which models are best to estimate build durations using a dataset of 10,000
builds collected from different projects in TravisTorrent. In our study, we model
long build durations using a mixed-effects logistic model, which take into con-
sideration the variance in build duration across projects.

e The models presented by Bisong et al.were not entirely suitable for modeling
build durations, since post-build factors were used in their models (e.g., the
number of tests runs, test duration, and CI latency). In our study, we exclude
such kind of factors from our models to make them suitable to be used for
prediction. We also compute more factors, in addition to TravisTorrent factors,
to study their relationship with long build durations.

e The models presented by Bisong et al.use the build duration factor introduced
by TravisTorrent as a dependent variable. However, such duration values are
misleading, since they do not represent the perceived build duration but rather
the summation of the durations of all build jobs. In our study, we compute the
perceived build durations using the build starting time and build finishing time
provided by Travis API.

e Bisong et al. reported the results of the top-performing models in estimating
build duration. However, there was no analysis about the factor that may be
associated with long build durations. In our study, we leverage the results of
the mixed-effects model to analyze the most important factors to model long
build durations. Furthermore, we perform manual analyses to gain insights
about the relationship between long build durations and the most important
factors of our model.

30 Taher Ahmed Ghaleb et al.

7.3 Other studies about CI builds

A study by Atchison et al. [5] performed a time-series analysis of the history of
CI builds. They observed a steady growth in the number of builds over time.
They also observed weekly and seasonal trends of how builds are generated by
software projects. Their approach was able to estimate the number of builds to
be generated in the future, with an average accuracy of 0.86. However, that study
did not investigate how build durations evolve over time. In our study, we observe
that build durations do not increase over time. We classify build durations into
short and long and study the frequency of long build durations.

8 Conclusion

In this paper, we conduct an empirical study to investigate long build durations.
We study the long duration of 104,442 CI builds over 67 GitHub projects that are
linked with Travis CI. We model long build durations using mixed-effects logistic
models. We use mixed-effects logistic models to identify the most important factors
to model long build durations. Finally, we gain more insights about the relation-
ship between the most important factors and long build durations by performing
manual analyses of the studied projects. We observe the following:

e About 40% of build durations take over 30 minutes to run.

e Build durations may increase or decrease over time, which indicates that there
exist important factors that have a strong association with such a fluctuation.

e Durations of passed builds are not always longer than durations of errored or
failed builds.

e Triggering CI builds during the day or on weekdays is most likely to be asso-
ciated with long build durations.

e Short build durations are associated with builds that are configured (a) to
cache content that does not change often or (b) to finish as soon as all the
required jobs finish. However, misusing such configurations may not help to
reduce the build duration.

e There is a tradeoff between maintaining stable build statuses and long build
durations. In particular, configuring builds to rerun failing commands multi-
ple times has a strong association with long build durations with a negligible
reduction in the build failure ratio.

In the future, we plan to perform a qualitative study to investigate how de-
velopers deal with long build durations. We also aim to extend our experimental
study to include an industrial setting.

References

. Online Appendix. https://taher-ghaleb.github.io/papers/emse_2018/appendix.html
. Agresti, A.: Tutorial on modeling ordered categorical response data. Psychological bulletin
105(2), 290 (1989)
3. Ammons, G.: Grexmk: speeding up scripted builds. In: Proceedings of the international
workshop on Dynamic Systems Analysis, pp. 81-87. ACM (2006)
4. Astels, D.: One Assertion Per Test. http://www.artima.com/weblogs/viewpost.jsp?
thread=35578. Visited on February 05, 2018

N =

https://taher-ghaleb.github.io/papers/emse_2018/appendix.html
http://www.artima.com/weblogs/viewpost.jsp?thread=35578
http://www.artima.com/weblogs/viewpost.jsp?thread=35578

An Empirical Study of the Long Duration of Continuous Integration Builds 31

5.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

Atchison, A., Berardi, C., Best, N., Stevens, E., Linstead, E.: A time series analysis of
TravisTorrent builds: to everything there is a season. In: Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, pp. 463-466 (2017)

. Beck, K.: Extreme programming explained: embrace change. addison-wesley professional

(2000)

. Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build: An explorative

analysis of Travis CI with GitHub. In: Proceedings of the 14th International Conference
on Mining Software Repositories, pp. 356-367 (2017)

. Beller, M., Gousios, G., Zaidman, A.: Travistorrent: Synthesizing travis ci and github for

full-stack research on continuous integration. In: Proceedings of the 14th International
Conference on Mining Software Repositories, pp. 447450 (2017)

. Bernardo, J.H., da Costa, D.A., Kulesza, U.: Studying the impact of adopting continuous

integration on the delivery time of pull requests. In: Proceedings of the 15th International
Conference on Mining Software Repositories, pp. 131-141. ACM (2018)

Bisong, E., Tran, E., Baysal, O.: Built to last or built too fast?: evaluating prediction
models for build times. In: Proceedings of the 14th International Conference on Mining
Software Repositories, pp. 487-490 (2017)

Brooks, G.: Team pace keeping build times down. In: Proceedings of the AGILE Confer-
ence, pp. 294-297. IEEE (2008)

Cliff, N.: Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological
Bulletin 114(3), 494 (1993)

Domingos, P.: A few useful things to know about machine learning. Communications of
the ACM 55(10), 78-87 (2012)

Dunn, O.J.: Multiple comparisons among means. Journal of the American Statistical
Association 56(293), 52-64 (1961)

Dunn, O.J.: Multiple comparisons using rank sums. Technometrics 6(3), 241-252 (1964)
Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software quality
and reducing risk. Pearson Education (2007)

Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods for
software engineering research. In: Guide to advanced empirical software engineering, pp.
285-311. Springer (2008)

Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing in con-
tinuous integration development environments. In: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pp. 235-245.
ACM (2014)

Eyolfson, J., Tan, L., Lam, P.: Do time of day and developer experience affect commit bug-
giness? In: Proceedings of the 8th Working Conference on Mining Software Repositories,
pp. 153-162. ACM (2011)

Faraway, J.J.: Extending the linear model with R: generalized linear, mixed effects and
nonparametric regression models, vol. 124. CRC press (2016)

Feldman, S.I.: MakeA program for maintaining computer programs. Software: Practice
and experience 9(4), 255-265 (1979)

Fisher, R.A.: Statistical methods for research workers. Genesis Publishing Pvt Ltd (1925)
Fowler, M., Foemmel, M.: Continuous integration. http://www.dccia.ua.es/dccia/inf/
asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf (2006)
Gallaba, K., Macho, C., Pinzger, M., Mclntosh, S.: Noise and heterogeneity in histori-
cal build data: an empirical study of travis ci. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 87-97. ACM (2018)
Gallaba, K., McIntosh, S.: Use and Misuse of Continuous Integration Features: An Empiri-
cal Study of Projects that (mis) use Travis CI. IEEE Transactions on Software Engineering
(2018)

Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology 143(1), 29-36 (1982)

Harrell, F.E.: Regression modeling strategies, with applications to linear models, survival
analysis and logistic regression. GET ADDRESS: Springer (2001)

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., Dig, D.: Trade-offs in continuous inte-
gration: assurance, security, and flexibility. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pp. 197-207. ACM (2017)

Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.: Usage, costs, and benefits of
continuous integration in open-source projects. In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, pp. 426-437. ACM (2016)

http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf

32

Taher Ahmed Ghaleb et al.

30.
31.

32.

33.
34.
35.

36.

37.

38.

39.
40.

41.

42.

43.
. Meyer, M.: Continuous integration and its tools. IEEE software 31(3), 14-16 (2014)
45.

46.

47.

48.

49.
50.

51.

52.

53.

54.
55.

Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian journal of
statistics pp. 65-70 (1979)

Howell, D.C.: Median absolute deviation. Wiley StatsRef: Statistics Reference Online
(2014)

Huo, C., Clause, J.: Improving oracle quality by detecting brittle assertions and unused
inputs in tests. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 621-631. ACM (2014)

Kampstra, P., et al.: Beanplot: A boxplot alternative for visual comparison of distributions.
Journal of Statistical Software 28 (2008)

Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. Journal of
the American statistical Association 47(260), 583—-621 (1952)

Kumfert, G., Epperly, T.: Software in the DOE: The Hidden Overhead of” The Build”.
Tech. rep., Lawrence Livermore National Lab., CA (US) (2002)

Laukkanen, E., Mantyla, M.V.: Build waiting time in continuous integration: an initial
interdisciplinary literature review. In: Proceedings of the Second International Workshop
on Rapid Continuous Software Engineering, pp. 1-4 (2015)

Lei, Y., Andrews, J.H.: Minimization of randomized unit test cases. In: Software Reliability
Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium on, pp. 10-pp. IEEE
2005

I(_Jeitne)zr, A., Oriol, M., Zeller, A., Ciupa, 1., Meyer, B.: Efficient unit test case minimization.
In: Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering, pp. 417-420. ACM (2007)

Lewis, A.J.: Mixed effects models and extensions in ecology with R. Springer (2009)
Liang, J., Elbaum, S., Rothermel, G.: Redefining prioritization: continuous prioritization
for continuous integration. In: Proceedings of the 40th International Conference on Soft-
ware Engineering, pp. 688-698. ACM (2018)

MclIntosh, S., Adams, B., Hassan, A.E.: The evolution of Java build systems. Empirical
Software Engineering 17(4-5), 578608 (2012)

Meclntosh, S., Nagappan, M., Adams, B., Mockus, A., Hassan, A.E.: A large-scale empirical
study of the relationship between build technology and build maintenance. Empirical
Software Engineering 20(6), 1587-1633 (2015)

Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)

Mokhov, A., Mitchell, N., Peyton Jones, S., Marlow, S.: Non-recursive make considered
harmful: Build systems at scale. In: Proceedings of the 9th International Symposium on
Haskell, pp. 170-181. ACM (2016)

Nakagawa, S., Schielzeth, H.: A general and simple method for obtaining R2 from gen-
eralized linear mixed-effects models. Methods in Ecology and Evolution 4(2), 133-142
2013

1(\11, A)., Li, M.: Cost-effective build outcome prediction using cascaded classifiers. In:
Proceedings of the 14th International Conference on Mining Software Repositories, pp.
455-458 (2017)

Peduzzi, P., Concato, J., Kemper, E., Holford, T.R., Feinstein, A.R.: A simulation study
of the number of events per variable in logistic regression analysis. Journal of clinical
epidemiology 49(12), 1373-1379 (1996)

Pinheiro, P.: Linear and nonlinear mixed effects models. r package version 3.1-97.
http://cran. r-project. org/web/packages/nlme (2010)

Rasmusson, J.: Long build trouble shooting guide. Proceedings of the Extreme Program-
ming and Agile Methods-XP/Agile Universe Conference pp. 557-574 (2004)

Rausch, T., Hummer, W., Leitner, P., Schulte, S.: An empirical analysis of build failures in
the continuous integration workflows of Java-based open-source software. In: Proceedings
of the 14th International Conference on Mining Software Repositories, pp. 345-355 (2017)
Rogers, R.O.: Scaling continuous integration. In: Proceedings of the International Confer-
ence on Extreme Programming and Agile Processes in Software Engineering, pp. 68-76.
Springer (2004)

Romano, J., Kromrey, J., Coraggio, J., Skowronek, J.: Should we really be using t-test
and cohen’sd for evaluating group differences on the nsse and other surveys. In: Annual
meeting of the Florida association of institutional research (2006)

Sarle, W.: The VARCLUS Procedure. SAS/STAT User’s Guide (1990)

Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.: Programmers’ build
errors: a case study (at google). In: Proceedings of the 36th International Conference on
Software Engineering, pp. 724-734. ACM (2014)

An Empirical Study of the Long Duration of Continuous Integration Builds 33

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: ACM sigsoft
software engineering notes, vol. 30(4), pp. 1-5. ACM (2005)

Smith, P.: Software build systems: principles and experience. Addison-Wesley Professional
(2011)

Sulir, M., Porubén, J.: A quantitative study of Java software buildability. In: Proceedings
of the 7th International Workshop on Evaluation and Usability of Programming Languages
and Tools, pp. 17-25. ACM (2016)

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk,
D.: There and back again: Can you compile that snapshot? Journal of Software: Evolution
and Process 29(4) (2017)

Van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Refactoring test code. In:
Proceedings of the 2nd international conference on extreme programming and flexible
processes in software engineering (XP2001), pp. 92-95 (2001)

Vandekerckhove, J., Matzke, D., Wagenmakers, E.J.: Model comparison and the principle.
In: The Oxford handbook of computational and mathematical psychology, vol. 300. Oxford
Library of Psychology (2015)

Vasilescu, B., Van Schuylenburg, S., Wulms, J., Serebrenik, A., van den Brand, M.G.:
Continuous integration in a social-coding world: Empirical evidence from github. In: Pro-
ceedings of the International Conference on Software Maintenance and Evolution (ICSME
2014), pp. 401-405. IEEE (2014)

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productivity out-
comes relating to continuous integration in GitHub. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pp. 805-816. ACM (2015)

Vassallo, C., Schermann, G., Zampetti, F., Romano, D., Leitner, P., Zaidman, A., Di Penta,
M., Panichella, S.: A Tale of CI Build Failures: an Open Source and a Financial Orga-
nization Perspective. In: Proceedings of the 33rd International Conference on Software
Maintenance and Evolution (2017)

Winter, B.: A very basic tutorial for performing linear mixed effects analyses. arXiv
preprint arXiv:1308.5499 (2013)

Xia, J., Li, Y.: Could We Predict the Result of a Continuous Integration Build? An Em-
pirical Study. In: Proceedings of the IEEE International Conference on Software Quality,
Reliability and Security Companion, pp. 311-315 (2017)

Xuan, J., Monperrus, M.: Test case purification for improving fault localization. In: Pro-
ceedings of the 22nd ACM SIGSOF'T International Symposium on Foundations of Software
Engineering, pp. 52-63. ACM (2014)

Zolfagharinia, M., Adams, B., Guéhéneuc, Y.G.: Do not trust build results at face value:
an empirical study of 30 million CPAN builds. In: Proceedings of the 14th International
Conference on Mining Software Repositories, pp. 312-322 (2017)

	Introduction
	Background
	Experimental Setup
	Experimental Results
	Discussion
	Threats to Validity
	Related Work
	Conclusion

