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Refactoring is a technical approach to increase the internal quality of software without altering its external
functionalities. Developers often invest significant effort in refactoring. With the increased adoption of contin-
uous integration and deployment (CI/CD), refactoring activities may vary within and across different releases
and be influenced by various release goals. For example, developers may consistently allocate refactoring
activities throughout a release, or prioritize new features early on in a release and only pick up refactoring
late in a release. Different approaches to allocating refactoring tasks may have different implications for
code quality. However, there is a lack of existing research on how practitioners allocate their refactoring
activities within a release and their impact on code quality. Therefore, we first empirically study the frequent
release-wise refactoring patterns in 207 open-source Java projects and their characteristics. Then, we analyze
how these patterns and their transitions affect code quality. We identify four major release-wise refactoring
patterns: early active, late active, steady active, and steady inactive. We find that adopting the late active
pattern—characterized by gradually increasing refactoring activities as the release approaches—leads to the
best code quality. We observe that as projects mature, refactoring becomes more active, reflected in the
increasing use of the steady active release-wise refactoring pattern and the decreasing utilization of the steady
inactive release-wise refactoring pattern. While the steady active pattern shows improvement in quality-related
code metrics (e.g., cohesion), it can also lead to more architectural problems. Additionally, we observe that
developers tend to adhere to a single refactoring pattern rather than switching between different patterns.
The late active pattern, in particular, can be a safe release-wise refactoring pattern that is used repeatedly. Our
results can help practitioners understand existing release-wise refactoring patterns and their effects on code
quality, enabling them to utilize the most effective pattern to enhance release quality.
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1 Introduction

With the adoption of short release cycles, particularly driven by the growing use of continuous
integration and continuous deployment (CI/CD) [22], software projects now release new versions
more frequently, in shorter cycles, automatically and continuously [16, 66]. Continuous release
cycles pressure practitioners to effectively integrate user feedback [21] and deliver high-quality
code efficiently. The frequency of these release cycles varies across projects, ranging from a few
days to weeks [1, 18, 20], whereas traditional software development often takes years to publish a
new version [4, 20].
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Refactoring is a systematic process to improve the internal quality of software without altering
its external functionalities [13, 35]. Refactoring enhances the maintainability [27] of the code by
improving readability, reducing complexity, and increasing modularity [31, 38]. Previous studies
have shown a relationship between refactoring and the elimination of code smells and improving
the quality of the code [17, 34, 53, 60, 65]. Code smells are poor coding practices that reflect the
design flaws of the code [54]; the success of refactoring is often evidenced by the reduction or
elimination of code smells, which often requires multiple refactoring operations [6].

Previous studies categorize refactoring strategies into long-term refactoring strategies, which
include frequent but lightweight refactoring during development (i.e., floss tactic) and infrequent
but heavyweight refactoring (i.e., root-canal tactic) [13, 34, 55]. These strategies illustrate how
refactoring is integrated into the long-term development of a project to maintain code quality over
a long period. However, refactoring strategies within release cycles, which typically span shorter
time frames and may depend on the release time, remain unexplored in these studies. Given the
substantial amount of effort developers invest in refactoring [15, 39], it remains unclear how these
efforts are distributed throughout release cycles and the corresponding impact on code quality.
Shorter release cycles may prompt the adoption of specific refactoring patterns aligned with release
dates. This paper aims to address this gap by analyzing refactoring strategies within release cycles
and identifying patterns contributing to high-quality software delivery.

In this study, we conduct a large-scale empirical analysis of refactoring practices across 1,604
releases from 207 open-source projects. We define release-wise refactoring patterns to describe
how practitioners distribute their refactoring activities throughout a release. Our goal is to identify
and analyze the dominant release-wise refactoring patterns by examining changes in refactoring
density throughout each release. Additionally, we assess the relationship between release-wise
refactoring patterns and code quality by measuring code smells and metrics (e.g., cohesion and
coupling) before and after each release. Based on our findings, we aim to propose best practices for
refactoring within a release, including strategies for switching between different patterns.

We aim to answer the following research questions:

RQ1. What release-wise refactoring patterns are present in open-source projects? De-
velopers spend effort on refactoring during the software development process; however, it is not
clear how they allocate refactoring tasks within a release. We study the evolution of refactoring
densities throughout software releases and identify four major release-wise refactoring patterns:
early active, late active, steady active, and steady inactive. Furthermore, by analyzing the types of
refactoring and external factors (e.g., the number of developers) associated with each release, we
provide details on the characteristics of each release-wise refactoring pattern.

RQ2. What is the relationship between release-wise refactoring patterns and code
quality? To identify the most effective refactoring patterns, we assess the relationship between
release-wise refactoring patterns and code quality. We use code smells and code metrics as code
quality indicators to evaluate the quality of the code before and after each release. Then, we
rank and cluster the identified release-wise refactoring patterns based on improvements in these
quality metrics. Our findings indicate that late active refactoring pattern is associated with a greater
reduction in code smells and higher code quality compared to the other identified patterns.

RQ3. Does the usage of release-wise refactoring patterns change over time, and how do
developers switch from one pattern to another? To understand how practitioners’ refactoring
patterns evolve across the lifecycle of a project, we analyze the distribution of various release-wise
refactoring patterns during the early, middle, late, and last stages of the project lifecycles, as well
as the transitions among these patterns. We find that developers tend to continue using previous
refactoring patterns. Moreover, we observe an increase in the utilization of the steady active pattern,
while the adoption of the steady inactive pattern decreases over time. Additionally, the usage of the
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Fig. 1. The overview of our study.

late active refactoring pattern remains consistent across all development stages. While early active
and steady active patterns may offer temporarily improved release quality, the late active pattern
contributes to higher code quality when applied continuously.

Our work makes the following main contributions:

e We provide a large-scale empirical study on the refactoring strategies corresponding to release
cycles: release-wise refactoring patterns.

o We identify prevalent release-wise refactoring patterns, which can aid practitioners in identi-
fying common refactoring patterns developers use for project management and supporting
tooling developments.

e By understanding the effect of the release-wise refactoring patterns, we help developers
understand the most effective way of incorporating refactoring within release cycles.

e We provide a dataset consisting of refactoring and release information for 207 open-source
projects.

Organization. The remainder of our study is organized as follows. Section 2 provides the ex-
periment setup of our study. Section 3 presents the motivation, approaches, and findings of our
research questions. Section 5 discusses the implications of our study. Section 4 explains the threats
to the validity of our findings. Section 6 surveys related studies. Finally, we conclude our study and
present future research directions in Section 7.

2 Experiment Setup

This section details the experimental setup of our study, covering our methods for data collection,
pre-processing, and analysis.

2.1 Overview of Our Approach

An overview of our study is shown in Figure 1. We conduct our experiments by systematically select-
ing 207 active and popular open-source Java projects with sufficient commit history. Furthermore,
we select the major and minor releases within each project and identify the responsible commits
for each release. From the selected commits, we extract code and refactoring-related features as
well as project-related features such as the number of developers per release. We then create a
time series describing the refactoring changes within each release. We answer the first research
question by clustering the release-wise refactoring time series and identifying the main patterns
therewithin. By measuring code smells and code metrics as code quality indicators before and after
each release, we explain the best release-wise refactoring patterns for maintaining code quality,
addressing the second research question. Finally, by analyzing the distribution of the identified
release-wise refactoring patterns across different stages of the development lifecycle and examining
the transition among them, we aim to understand how developers use and switch between these
patterns and their implications for code quality. We detail the analyses specific to each individual
research question in Section 3.
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2.2 Subject Selection

We use a systematic approach to select the subject projects for our study. Considering that Java is
one of the most popular programming languages [43, 58], and it is supported by robust refactoring
detection tools, such as RMiner [60, 61], we start by collecting all Java repositories with at least
one star and one fork using the GitHub advanced search,' which yields 490,880 Java repositories
on GitHub. To ensure we include the most active and popular projects with a sufficient history of
development, we select repositories that:

e are up to date with current development practices
— have been active in the year of the data collection (with at least one push in 2023)
e are not disabled or archived
e have a healthy level of interest and activity in the repository
- have more than 13 forks? (13 is calculated as the 3rd quartile of the distribution of number
of forks of all the projects)
e are popular within the open-source community
- have more than 22 stars (22 is calculated as the 3rd quartile of the number of stars)
e have a sufficient development history for our analysis
— have at least 1,000 commits, similar to prior work [34]
o have enough releases to conduct our experiments (at least two releases), and
o provides sufficient data on the details of their releases
— follow a standard semantic versioning format (e.g., v2.0.3), which consists of three numbers
in the format MAJOR.MINOR.PATCH [42]

Since the implementations of CI/CD vary across projects and are sometimes only partially
adopted [49], we focus on projects with systematic versioning [42], which is often associated with
the adoption of CI/CD [7, 11, 64]. This approach enables us to distinguish between major, minor,
and patch releases, thereby ensuring the broader applicability of our results. The different types of
releases are described below:

o Major release: focuses on introducing significant new features or architectural changes to the
software. The versioning convention for a major release is a number followed by two zeroes
(e.g., v1.0.0).

e Minor release: is typically used to introduce a new feature or a minor improvement in the
software. It is represented by the major version number followed by the minor version number
and a zero (e.g., v1.2.0).

o Patch release: is often used for a hotfix or a minor improvement in the software. It is indicated
by the major version number followed by the minor version number and the patch number
(e.g., v1.2.3).

As a result, we select 207 repositories as the subject dataset for our study.

2.3 Release Commits Selection

Different projects choose different release strategies to release their software [41]. Some projects
may choose a mainline branch to release, while others may choose different branches for their
feature development or releases [40]. The projects in our dataset utilize the following dominant
release strategies:

e Mainline release strategy: This strategy is a single-branch release strategy, in which the
project uses only one branch for releases and keeps developments in a separate branch.

Ihttps://github.com/search/advanced
2A copy of that repository under a different GitHub account.
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Consequently, all releases originate from the main/master branch. 121 projects in our dataset
mainly employ the mainline release strategy.

e Release branch strategy: This strategy focuses on creating a dedicated branch for each
release and releasing from that specific branch. As a result, each software release has its own
branch, and all versions are accessible through their respective branches. 86 projects of our
dataset mainly follow the release branch strategy.

As we aim to analyze the refactoring patterns corresponding to each release, we focus on major
and minor releases as they typically reflect significant changes and improvements. Patch releases,
on the other hand, usually address single hotfixes and may not contribute to release-wise refactoring
pattern analysis. To select the commits corresponding to each major/minor release, we retrieve
release information from the GitHub REST API® for each repository to collect their major/minor
release dates. Depending on the release strategy employed by the projects, we first identify the
branch used for the release, including any merged branches. We then select the commits with
timestamps that fall within the relevant release period from that branch, and then sort these commits
based on their timestamps. We identify release strategies by analyzing the branches from which
releases are made. If a project consistently uses the master/main branch, we identify it as following
a mainline strategy. Projects consistently using different branches for releases are classified under
the release branch strategy. If a project releases from the master/main branch and then switches to
a different branch, we classify it as using both techniques. As a result, we select a total of 1,604
releases, consisting of 1,439 minor releases and 165 major releases. On median, each project includes
1 major release and 7 minor releases. Since the median time between major-to-major releases is 451
days, we exclude these from our analysis, as they align more closely with traditional development
patterns (i.e., not continuous release) [20, 34]. Instead, we focus on transitions involving minor-to-
minor, minor-to-major, and major-to-minor releases, which have a median of 8 releases, with an
interquartile range of 4 (first quartile) to 15 (third quartile). The selected releases have a median
duration of 56 days, with an interquartile range of 28 to 118 days.

2.4 Commits Feature Extraction

For each commit, we select (1) the commit log information that includes details such as the author
and commit date, and (2) the code change and refactoring information that contains the files changed,
lines of code changes, and the frequency and types of refactoring applied in each commit. To obtain
the refactoring information, we use RMiner 3.0.0, which is the most accurate state-of-the-art
refactoring detection with the maximum number of refactoring types (102 types) detected [23, 34].
RMiner has demonstrated a precision of 99.7% and a recall of 94.2% [60]. We use git log to extract
information about the files and lines of code affected in each commit. This approach enables us to
capture not only basic commit information but also details such as the affected files, refactoring
lines, and refactoring operations (e.g., pull-up method).

2.5 Code Quality Measurement
Code smells have been shown as effective refactoring quality indicators, as refactorings tend to
eliminate code smells [17, 34, 63]. To this end, we use Designite 2.5.5 [50, 51] to measure code smells
before and after each release. Designite is a robust tool that surpasses its competitors, capable of
detecting 47 types of code smells across various code levels, which fall into five higher-level code
smell categories:

o Architecture smells: Explain the issues related to overall system structure and dependencies,

such as cyclic dependencies. This category contains 7 code smell types.

3https://docs.github.com/en/rest
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e Design smells: Include problems related to fundamental design principles, such as unneces-
sary abstractions and deficient encapsulation. This category contains 18 code smell types.

o Testability smells: Explain the aspects of testability of the code, such as excessive dependency.
This category includes 4 code smell types.

e Implementation smells: Explain concerns with code implementation, like complex methods,
long parameter lists, or long statements. This category has 10 code smell types.

o Test smells: Include the problems within the test code, such as missing assertions, and ignored
tests. This category includes 8 code smell types.

If refactoring is not performed properly, it can negatively impact the overall quality of the code.
Previous studies have shown that refactoring is not always motivated by the elimination of code
smells [53]. Therefore, we consider common code quality metrics such as cohesion, coupling, and
complexity [44] to measure code quality before and after refactoring. To achieve this, we use
the Understand tool [47] and select 13 code quality metrics related to cohesion, coupling, and
complexity. The explanation of each category is as follows:

e Lack of Cohesion: Describe the extent to which functions and classes of the code work
together. We measure this by evaluating the lack of cohesion among functions and classes.

e Coupling: Explain the degree of interdependence between different classes and functions
of the code. We assess coupling by examining the number of base classes, coupled classes,
derived classes, and the inputs and outputs of functions and classes.

e Complexity: Describe the complexity of the code components. We assess complexity by
analyzing cyclomatic complexity [28] and the max nesting degree of statements (e.g., for loops
inside while loops).

3 Results

In this section, we discuss the motivation, approach, and findings for each of our research questions.

3.1 RQ1: What release-wise refactoring patterns are present in open-source projects?

3.1.1 Motivation. Previous studies have examined long-term refactoring strategies, categorizing
them into two general types: floss and root canal refactorings, with some variations in the frequency
of their applications [13, 34, 55]. Additionally, these studies have identified a correlation between
adopting different refactoring strategies and their impact on code quality [33, 34]. With the increased
adoption of continuous release cycles, development and feature delivery are now segmented into
shorter release cycles. However, there is no large-scale study on the refactoring strategies relative
to release cycles and their impact on code quality. In this research question, we aim to identify
the frequent patterns developers utilize to integrate refactoring tasks within software releases.
By identifying these patterns, we aim to deepen our understanding of refactoring practices and
measure their efficacy in the fast-release cycles. Ultimately, we aim to identify the most successful
release-wise refactoring strategies to improve code quality and establish best refactoring practices
in continuous release cycles.

3.1.2  Approach. To identify and gain insights into release-wise refactoring patterns, we first
measure refactoring density over time, then form a normalized refactoring time series for each
release. Finally, using time series clustering, we identify common refactoring patterns and their
characteristics within the releases. In the following, we provide detailed explanations of each step
conducted in this process:

Calculating refactoring density: To identify the refactoring trends and study changes in
refactoring activities within each release, we use a metric to capture the density of daily refactoring
activities with each release. Following prior work [34], we use the commits submitted on each
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active day of development to calculate the daily refactoring density (DRD), as defined in Equation 1.

Total refactoring churn of the day (i)
Total code churn of the day (i)

DRD explains the amount of refactoring effort that is deviated from the regular development
process. We use refactoring churn instead of the refactoring action count, as each action can
change a varying number of lines of code. Using the DRD metric within each release, we create the
refactoring-release time series, which represents the changes in refactoring density within each
release.

Normalizing release time series: Due to differences in the length of release cycles, the
refactoring time series of different releases vary in length, making them incomparable, as they
cannot be directly mapped onto each other. To identify common release-wise refactoring patterns,
we standardize the created release-wise refactoring time series within each release using linear
interpolation [14, 25], which fits the time series of different releases into a fixed range of 10 data
points representing 10 quartiles of refactoring densities within each release. Linear interpolation
estimates the DRD at a desired point based on the values of two neighboring points on the line
connecting them [2]. Therefore, linear interpolation does not alter the overall trend but scales the
time series into the same range. To compare historical refactoring information across releases and
better interpret release-wise patterns, we calculate DRD for the entire refactoring history before
each release. This historical refactoring density provides insight into the amount of past refactoring
effort from the beginning of the project until the start of a release.

Identifying refactoring release patterns: To identify release-wise refactoring patterns applied
within a release, we utilize Soft Dynamic Time Warping [9] (Soft-DTW) for clustering our time
series of refactoring densities (i.e., DRDs). Each cluster represents a release-wise refactoring pattern,
specifically reflecting common refactoring activities within each release. Soft-DTW is an extension
of DTW designed for time series with variable speeds, enabling it to capture the overall pattern
trends of refactoring within a release. It allows for adjustments in time series that may begin their
trends slightly earlier or later. Soft-DTW helps to minimize the impact of noise in our release-
wise refactoring time series (i.e., random fluctuations or outliers in refactoring time series) by
incorporating a smoothing function that is particularly effective in handling noisy data. This
function smooths the time series, reducing sensitivity to noise during clustering without altering
the original data. To determine the optimal number of clusters, we first plot t-distributed Stochastic
Neighbor Embedding (t-SNE)[62] and calculate the silhouette score[45] for different numbers of
clusters. The t-SNE plots help visualize the distribution of time series in a reduced 2D space, while
the silhouette score, ranging from -1 to 1 [48], assesses the quality of the clustering. Then, we
manually examine the cluster centroids to ensure they represent distinct and meaningful patterns.

Analyzing the release-wise refactoring patterns: Given that RMiner [60, 61] can identify
102 distinct types of refactorings, we categorize these refactorings into six mutually exclusive levels
of granularity: variable, method, class, package, organization, and test levels. The description of
each granularity is below:

DRD(i) = 1)

e Variable: Focuses on variable levels within functions or classes (e.g., rename variable).

o Method: Contains refactoring at the method level of the code. For example, extracting smaller
methods from a larger one (i.e., extract method).

o Class: Consists of refactorings that involve a class. For instance, extracting a superclass.

e Package: Includes refactorings that involve multiple classes grouped as a package. For example,
merging multiple packages into one.

e Organization: Contains refactorings that address the overall structure of the code. For exam-
ple, moving code within files.
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Fig. 2. Boxplot of release-wise refactoring patterns. The dotted line represents the centroid of each cluster.
The blue bars indicate the refactoring density of the current release and the pink bar indicates the historical
refactoring density that shows the distribution of refactoring density from the start of the project up to the
current release.

o Test: Has refactorings for test files. For example, parameterized tests, which involve running
tests with different sets of input data.

To characterize the changes in the refactoring operations applied during the time span of a release,
we partition each release into several development phases. Specifically, we divide each release
into three time segments using the first and third quartiles of the release duration, representing
the early (before the first quartile), middle (between the first and third quartiles), and late (after
the third quartile) phases of the release cycle. We are interested in determining how refactoring
activities evolve across these different phases and the corresponding refactoring categories. To this
end, we perform a Kruskal-Wallis [24] test for each refactoring category (e.g., method level) within
each release-wise refactoring pattern to identify if there is a significant difference in the adoption
of various refactoring operations across different phases of a release.

Analyzing the external features: To gain a contextual understanding of the external features
contributing to the adoption of each release-wise refactoring pattern, we analyze three features of:
project size (i.e., code size), development community size (i.e., the number of contributors), and
project popularity (i.e., the number of stars)—thereby providing a clearer picture of how these
external features relate to different refactoring patterns. We divide each feature into four equal
parts and label them as least, less, more, and most [34] (i.e., a release with the most contributors).
We analyze each categorized feature using the chi-square test [29], which determines if there is a
significant difference (p-value < 0.05) between the categorized values of external features across
different release-wise refactoring patterns. Additionally, we present the distribution of each feature
for each refactoring pattern.

3.1.3 Results. From the total of 1,604 analyzed releases, our clustering approach reveals
four dominant refactoring patterns relative to software releases across all releases: (1)
early active (30%), (2) steady active (17%), (3) late active (23%), and (4) steady inactive (30%).
Figure 2 illustrates the evolution of each identified pattern within a release. As shown in Figure 2,
the early active pattern shows a higher refactoring density at the beginning of the release, and then
it gradually decreases as it gets closer to the release. In contrast, the late active pattern exhibits
patterns with an increased refactoring density as it approaches the release. The steady active pattern
indicates a consistently higher density of refactoring compared to the average history, while the
steady inactive shows a low density of refactoring throughout the release. Interestingly, more than
half of the project releases (53%) exhibit varying (increasing/decreasing) refactoring intensities in
their release cycles. Figure 3 shows the t-SNE plot of the identified clusters of our release-wise time
series. The plot indicates a clear separation between clusters, highlighting distinct patterns within
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Fig. 3. t-SNE plot showing the distribution of our clustering results in two dimensions.

Table 1. Median of the sum of distributions for different refactoring types in release-wise refactoring patterns
per 1,000 lines of code churn, where significant differences in distributions are observed at different phases of
the release. Non-existing categories do not show significant differences across phases and are thus applied
equally.

Pattern Name | Category | Early Middle Late P-value
Early Active Variable 20.06  14.93 9.41 0.000
Method 61.13 53.17 37.91 0.000
Class 20.60 16.32 11.82 0.005
All 126.13  103.83 83.69 0.000
Late Active Variable 11.93 1835 18.58 | 0.001
Method 38.41 55.31 60.06 0.001
All 86.78 109.5 119.98 | 0.002
Steady Active | Variable 2253 20.07 15.49 | 0.011
All 122.35  93.19 96.54 0.032

the data. Furthermore, our approach yields a silhouette score of 0.3, suggesting a fair separation of
the data [19].

Early active releases tend to have more class/method/variable-level refactoring earlier
in a release, whereas late active releases tend to avoid extensive class-level refactoring
late in a release. We use the Kruskal-Wallis test [24] to examine the differences in refactoring
granularities across various phases of development with the following hypothesis:

o Hy: There is no significant difference in the utilization of different granularities of refactorings
across different phases of each release-wise refactoring pattern.

Table 1 shows the results of comparing the distribution of different refactoring types across the early,
middle, and late phases of development for each pattern, for the cases where the Hy hypothesis is
rejected (p-value < 0.05). As it is shown, the adoption of package, organization, and testing
level refactorings does not exhibit statistically significant differences across any phases
of the releases in various patterns. Furthermore, in the early active pattern, with lower DRD at
the beginning of the release, there is an increase in refactoring activities at the method, class, and
variable levels initially, which then significantly decreases closer to the release. Conversely, in late
active, method, and variable level refactorings significantly increase as the release approaches, while
other categories, including the class level refactoring, remain at the same pace. In the steady inactive
pattern, there are no significant variations in overall refactoring types, indicating a consistent
low frequency of refactoring throughout the release cycle. Likewise, the steady active pattern
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Fig. 4. Distribution of Features Across Refactoring Release Patterns.

experiences a consistently increased frequency of refactoring throughout the release, except for
variable-level refactoring operations, which are considered lower-level refactorings.

Projects utilizing different release-wise refactoring patterns exhibit distinct character-
istics. Figure 4 shows the distribution of the size, contributors, and stars external features among
different release-wise refactoring patterns. The results of the chi-square test indicate significant
differences in the distribution of each external feature among different refactoring release patterns,
with p-values of 0.003 for size, 0.000 for contributors, and 0.001 for stars, respectively. We observe
that:

o The steady inactive pattern is associated with less size, less developers, and the most stars.

o The steady active pattern is associated with least size, the least developers, and less stars.

o The early active pattern is associated with the more size, the most developers, and more stars.
o The late active pattern shows the most size, more developers, and least stars.

Smaller projects with fewer developers are mainly associated with either steady active
or steady inactive patterns, where refactoring activities remain consistent throughout a
release. In contrast, larger projects with more developers exhibit a variety of refactoring
patterns, where refactoring activities may increase or decrease over time. This suggests
that smaller projects tend to integrate refactoring into daily development activities, while larger
projects may concentrate refactoring efforts in specific phases of a release, such as the early or late
stages.

We identify four dominant release-wise refactoring patterns: late active, early active, steady active,
and steady inactive, each associated with different types of refactoring and project characteristics.

3.2 RQ2: What is the relationship between release-wise refactoring patterns and code
quality?

3.2.1 Motivation. The first research question identifies four primary refactoring patterns develop-
ers utilize. Understanding the relationship of these patterns with code quality can help developers
make informed decisions to manage and distribute refactoring tasks throughout the release cycle.
With the understanding, we can provide practitioners with insights into how adopting different
release-wise refactoring patterns could potentially increase code quality. In this research ques-
tion, we investigate the relationship between release-wise refactoring patterns and code quality
measured by code smells and quality-related code metrics.
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3.2.2  Approach. To measure the relationship between the detected release-wise refactoring pat-
terns, we first use a set of code quality metrics to assess changes in quality after applying each
pattern. We then rank and cluster the refactoring patterns based on these quality metric changes
to evaluate their effectiveness. The following provides a detailed explanation of each step in this
process:

Quality measurement: Previous studies have identified code smells as indicators of refactoring
quality [17, 34, 63]. However, refactoring may not be motivated solely by the elimination of
code smells [53]. Therefore, we measure the effectiveness of the release-wise refactoring patterns
in eliminating or reducing code smells and use changes in code metrics (e.g., low coupling) to
complement these results. We measure changes in code smells categorized into six granularities and
code metrics categorized into three granularities (as explained in Section 2.5), before and after each
release. We then use the following equation to measure the normalized overall and category-specific
differences in code smells/metrics (csp) before and after each release [34]:

(ECS(i) /ELC(i) — ICS(i) /ILC(i))

CSD(i) = CC(i)/ELC(i)

@)

Ecs indicates the frequency of code smells/metrics at the end of a release; ELcC indicates the lines
of code at the end of a release; 1cs shows the initial code smells/metrics of a release; 1LC indicates
the initial lines of code at the beginning of a release; and cc indicates the total code churn of each
release. This equation calculates the change in code smell per line from the start to the change
in code smell at the end of a release, normalized by the code churn relative to the codebase size,
providing a measure of how code quality has been impacted by modifications during that release.

Ranking and clustering: To measure similarities and rank the identified release-wise refac-
toring patterns, we use the Scott-Knott-ESD [56, 57] test. This test helps us: (1) perform statistical
comparisons among the metric value changes of different patterns and rank the release-wise refac-
toring patterns based on the magnitude of quality changes, and (2) cluster release-wise refactoring
patterns that do not exhibit significant differences in quality measures. Therefore, we can identify
which groups of release-wise refactoring patterns do not show significant differences and which
group represents the most effective treatment (i.e., improvement in each quality measure).

3.2.3 Findings. Late active and steady active release-wise refactoring patterns exhibit
higher quality by improving cohesion and reducing coupling. Overall lower coupling and
higher cohesion (i.e., lower lack of cohesion) contribute to better code quality. As shown in Table 2,
steady inactive and early active release-wise refactoring patterns have higher mean values and
ranks (i.e,, rank 1) for coupling, indicating higher coupling, and higher mean and rank in lack
of cohesion, indicating lower cohesion, compared to late active and steady active release-wise
refactoring patterns. Therefore, steady inactive and early active release-wise refactoring patterns
exhibit lower code quality compared to late active and steady active patterns. The steady inactive
and early active release-wise refactoring patterns may indicate little or no refactoring, with a focus
on addressing previous developments rather than the current release. In contrast, the steady active
and late active patterns reflect a more cleaning-focused phase later or throughout the release, likely
targeting the current state of the code in preparation for the release.

The steady inactive release-wise refactoring pattern exhibits the worst performance in
design, implementation, and total code smells reduction. As shown in Table 3, the steady
inactive pattern has the highest mean (4.30) for code smell changes, indicating a greater increase in
code smells after adoption compared to other release-wise refactoring patterns, leading to reduced
code quality. Therefore, the lack of active refactoring and the accumulation of code smells can
continuously reduce code quality and degrade its maintainability over time.
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Table 2. The results of the Scott-Knott-ESD test on code metrics within each release-wise refactoring pattern.
Patterns within the same cluster are represented by the same color. Clusters shown in red indicate lower
quality compared to those highlighted in green.

Complexity Coupling Lack of Cohesion

Pattern Rank Mean | Pattern Rank Mean | Pattern Rank Mean
Steady Inactive 1 2.51 Steady Inactive 1 6.85 Steady Inactive 1 5.83
Early Active 1 1.77 Early Active 1 4.59 Early Active 1 3.70
Steady Active 1 1.54 Late Active 2 4.13 Late Active 2 3.41
Late Active 1 1.53 Steady Active 2 3.54 Steady Active 2 3.39

Table 3. The results of the Scott-Knott-ESD test on code smells within each release-wise refactoring pattern.
The same color represents patterns within the same cluster. Clusters shown in red indicate lower quality
compared to those highlighted in green. Positive mean values indicate an increase in the mean of code smells,
while negative values represent a decrease in the mean of code smells. The mean values represent the overall
mean change in each metric, respectively.

Architecture Design Testability

Pattern Rank Mean | Pattern Rank Mean | Pattern Rank Mean
Steady Active 1 0.03 Steady Inactive 1 -0.03 Early Active 1 0.08
Steady Inactive 2 -0.02 Steady Active 2 -0.06 Steady Inactive 1 0.07
Late Active 2 -0.03 Early Active 2 -0.07 Late Active 1 0.01
Early Active 2 -0.04 Late Active 2 -0.12 Steady Active 1 0.00
Implementation Test Overall

Pattern Rank Mean | Pattern Rank Mean | Pattern Rank Mean
Steady Inactive 1 4.16 Early Active 1 0.43 Steady Inactive 1 4.30
Late Active 2 1.80 Late Active 1 0.15 Late Active 2 1.82
Steady Active 2 0.84 Steady Inactive 1 0.12 Steady Active 2 0.86
Early Active 2 0.26 Steady Active 1 0.03 Early Active 2 0.66

Steady active shows better performance in reducing coupling and improving cohesion,
but it exhibits the worst release-wise refactoring pattern in terms of reducing architectural
code smells. This suggests that excessive refactoring at the implementation or design level could
potentially reduce the architectural quality of the code, for example, by making dependencies
unstable. It highlights the need for regular maintenance and long-term planning to eliminate
architectural code smells. Therefore, it is recommended that developers, if they adopt this pattern,
pay attention to the overall structure of the code and avoid making significant changes that might
increase architectural code smells while addressing other code smells.

Overall, we observe that the late active refactoring pattern exhibits the best performance
in terms of reducing code smells and improving code quality measures by code metrics
compared to the others. It minimizes increases in all types of code smells while maintaining
high cohesion and low coupling. This suggests that a dedicated refactoring approach might be
more effective, where refactoring focuses on improving code quality before each release. Building
on the state-of-the-art [34], which suggests that dedicating specific timeframes to refactoring
improves code quality without considering the adoption of continuous release strategies, we
find that refactoring timeframes are most effective when allocated at the end of each release in
continuous release strategies. This suggests that prioritizing feature delivery or other development
tasks, followed by code cleanup through refactoring, may lead to the highest code quality. Therefore,
it is recommended that developers allocate an incremental and dedicated time frame for
refactoring before each release.
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Using the Mann-Whitney U test [30], we compare the frequency of different refactoring types
between minor-to-major and minor-to-minor releases. Our analysis shows that package and vari-
able level refactorings are significantly more frequent in minor-to-major releases, possibly due to
package updates or the need to make incompatible API changes in major versions [42].

The late active release-wise refactoring pattern demonstrates the best performance in decreasing
coupling, increasing cohesion, and reducing code smells. Furthermore, while the steady active
release-wise refactoring pattern shows a good performance in reducing coupling and improving
cohesion, it demonstrates the poorest performance in reducing architectural code smells. This
suggests that excessive refactoring may play an opposite role for architectural code smells.

3.3 RQ3. Does the usage of release-wise refactoring patterns change over time, and how
do developers switch from one pattern to another?

3.3.1 Motivation. We identify four primary refactoring patterns related to software releases: early
active, late active, steady active, and steady inactive. Among these, the late active release-wise
refactoring pattern is observed to be the most effective. However, the utilization of these patterns
in different stages of development or how to switch from one pattern to another is not clearly
understood, specifically in terms of their implications to code quality. This research question aims
to provide deeper insights into the evolution of refactoring release patterns over time, examining
how and why developers switch between these patterns and their respective impacts on refactoring
quality. This understanding allows practitioners to comprehend existing patterns and evaluate
how transitioning between them can enhance code quality through refactoring efforts. We aim to
provide a road map that developers can follow when performing refactoring in continuous release
cycles.

3.3.2 Approach. To analyze how the utilization of release-wise refactoring patterns changes over
time for a project, we define four stages of development over the lifetime of a project and measure
the utilization rate of each pattern throughout these stages. Additionally, we assess the probability
of switching from one pattern to another and its effect on code quality. The following presents a
breakdown of each step in this process:

Analyzing pattern utilization: To understand and measure the utilization of refactoring
release patterns over time, we follow a similar methodology as in previous work [34]. We divide
the consecutive release lengths of all projects into three time quartiles, each containing an equal
number of projects, representing different stages of the project’s lifecycle. Using these three time
quartiles, we distribute the releases of all projects as follows:

e Early stage: First 3 releases (1! quartile).

o Middle stage: Releases 4 to 6 (1* to 2"? quartile).
e Late stage: Releases 7 to 13 (2"? to 3" quartiles).
e Last stage: More than 13 releases (3" quartile).

This approach allows us to analyze changes in pattern adoption over time by comparing the
distribution of each release-wise refactoring pattern across different stages of development. This
helps identify the most and least popular patterns and shows how their popularity shifts as software
undergoes more releases or matures.

Measuring quality of pattern transitions: To study and analyze the transitions between
patterns and their relationship with code quality, we conduct a two-step experiment. First, we
calculate the transition probabilities between patterns using Markov chains [37], which model the
likelihood of moving from one state (i.e., release-wise refactoring pattern) to another, where each
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Fig. 5. The distribution of different refactoring release patterns at various stages of development. Each
point represents the percentage of utilization of each pattern on the y-axis, while the x-axis indicates the
development stage at which the pattern is utilized.

transition depends on the previous state. Second, we use Scott-Knott-ESD [56, 57] to measure and
rank code smell changes associated with each transition, grouping them based on the significance
of the reduction rate of code smells between the transitions. This two-step approach allows us to
identify common shifts in refactoring practices, leading to a deeper understanding of how and
why developers adopt and change refactoring patterns throughout the project’s lifecycle and their
impact on code quality.

3.3.3 Findings. The distribution of the utilization of release-wise refactoring patterns across differ-
ent stages of development is depicted in Figure 5. Furthermore, the results of our two-step approach,
which incorporates Scott-Knott-ESD with the probabilities of transition from one approach to
another, are shown in Table 4.
Developers are more likely to repeat the previous refactoring pattern in later releases, as
shown in Table 4, particularly in the steady inactive (39%) refactoring pattern, where the refactoring
density is the lowest compared to other release-wise refactoring patterns. Refactoring transitions
may result from developers’ choices or be driven by code properties. For instance, the 39% probability
of transitioning from steady inactive to steady inactive may indicate a prioritization of feature
delivery over code maintenance, a higher demand for new features, or no need for refactoring.
Furthermore, the 30% probability of transitioning from late active to early active may suggest
postponed refactorings to the next release. Similarly, the 31% probability of switching from steady
inactive to early active may indicate code preparation for development, where the current state
of the code is not ideally maintainable. The steady inactive state is the most probable, with a 39%
probability of occurring, and shows the least effectiveness in eliminating the total code smells. It
ranks worst (Rank 1) in achieving high cohesion (mean 6.72), worst in reducing complexity (mean
2.73), and second worst in lowering coupling (mean 7.02). Therefore, it is recommended to avoid
staying in the steady inactive state if the goal is to improve quality.

Even though the likelihood of transitioning from a steady inactive to a steady active
pattern is the lowest (9%), the results from the Scott-Knott-ESD show that switching from
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Table 4. Results of the Scott-Knott-ESD test results on the total changes in code smells (per 1,000 lines of
code) after transitioning between release-wise refactoring patterns. Patterns within the same cluster (rank)
are represented by the same color. Positive mean code smell values indicate an increase in the mean of code
smells, while negative code smell values represent a decrease in the mean of code smells (i.e., increase in code
quality). Abbreviations used: Arch. = Architecture, Des. = Design, Impl. = Implementation, Cohes. = Cohesion,
Coup. = Coupling, Compl. = Complexity. The Prob. column indicates the transition probabilities obtained
from the Markov chains.

Code Smells Code Metrics
From To Rank | Prob. | Total | Arch. Des. Impl. | Coh. Coup. Compl.
Steady Inactive  Steady Inactive | 1 0.39 5.03 -0.05 -0.03 5.1 6.72 7.02 2.73
Early Active Steady Inactive | 2 0.27 3.98 0.01 0.12  3.61 510  7.24 2.19
Steady Active Steady Inactive | 3 0.19 2.80 0.02 0.09 246 2.41 2.54 1.07
Steady Active Late Active 4 0.24 2.78 0.01 -0.22  3.11 2.93 3.44 1.24
Early Active Steady Active 5 0.18 2.28 0.02 -0.01 192 2.95 3.04 1.27
Early Active Early Active 6 0.32 2.11 -0.08 0.07 1.60 2.95 3.82 1.53
Steady Inactive Late Active 7 0.21 1.73 -0.05 -0.22  2.01 3.67 4.45 1.55
Early Active Late Active 8 0.23 1.29 0.00 0.35  0.59 2.75 3.35 1.31
Steady Inactive  Early Active 9 0.31 0.90 0.02 -0.22  0.86 3.35  4.07 1.54
Late Active Steady Active 10 0.17 0.86 -0.01 0.01  0.74 2.29 2.72 1.08
Late Active Steady Inactive | 11 0.28 0.85 -0.05 -0.25 093 427 470 1.80
Steady Active Steady Active 12 0.32 0.58 0.06 -0.05  0.60 3.71 3.83 1.69
Steady Active Early Active 13 0.25 0.42 -0.06 0.11  0.19 2.48 2.78 1.03
Steady Inactive  Steady Active 14 0.09 -0.11 0.01 -0.08 -0.08 2.26 2.57 0.97
Late Active Late Active 14 0.25 -0.71 -0.09 -0.36  -0.20 2.65 3.32 1.23
Late Active Early Active 14 0.30 -0.81 -0.01 -0.33  -1.09 2.78 3.53 1.30

steady inactive to steady active can effectively eliminate code smells and improve code
quality. Specifically, this transition exhibits the second-best improvement in reducing coupling
(mean of 2.57), the best improvement in achieving higher cohesion (mean of 2.26), and the best
reduction in complexity (mean of 0.97), but a mean increase in architecture smells (mean of 0.01).
Additionally, the 9% switch probability rate may indicate less interest or difficulties in shifting from
the steady inactive to the steady active pattern. It is therefore recommended when switching
from the steady inactive pattern, characterized by minimal refactoring throughout the
release, to the steady active pattern, which involves consistent more intensive refactoring
throughout the release, one should be aware of potential architectural problems that may
arise from the sudden increased refactoring.

Figure 6 illustrates the possible transitions between patterns, highlighting their mean relationship
with code smell reduction, reported from the Scott-Knott-ESD test. Safe states, where remaining
consistently reduces code smells, are marked in green, while not-safe states, where no transition
exists to another state without increasing code smells, are marked in red. As shown, switching
from the late active to the early active pattern positively affects quality, reducing code smells by a
mean of 0.81. However, switching back to late active results in a decrease in quality, with a mean
increase in code smells of 1.29. Therefore, it is recommended to avoid deferring refactorings
to post-release and instead perform refactorings and cleanings closer to before release
dates.

As shown in Figure 5, the increased utilization of the steady active release-wise refactoring
pattern by 8% from the early to the later stages of development suggests more frequent
and intensive refactoring efforts compared to earlier stages, where usage decreases by 8.3%.
This observation may indicate that as projects become mature, they require more maintenance,
and the frequency of active refactoring patterns increases over time. Conversely, the reduced usage
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Fig. 6. Summary of positive transitions (green lines) and negative transitions (red lines). Positive transitions
indicate an average increase in code smells after adopting each pattern, while negative transitions show a
decrease in code smells. The green circle represents a safe transition that can be adopted repeatedly.

of the steady inactive release-wise refactoring pattern may be attributed to the growing need for
refactoring as the project progresses.

Developers tend to repeat previously used patterns rather than frequently switching to different
ones. The usage of the steady active pattern increases as projects progress; however, late active
may be a better alternative, which is the most reliable release-wise refactoring pattern and is
considered a safe pattern for continuous use. Moreover, postponing refactoring to the next release
(i.e., early active) can temporarily increase quality but may lead to decreased software quality
if reverting to the late active state. The steady inactive release-wise refactoring pattern can be
followed by the steady active pattern for improved quality.

4 Threats to Validity

In this section, we examine the potential threats to the validity of our study.

Threats to Construct validity. Indicate the data preparation and feature selection. For gen-
erating refactoring time series, we opt to calculate the refactored lines of code divided by the
overall code churn. The refactored LOC is calculated from the 102 types of refactoring detected
by RMiner. However, if there are additional types of refactoring that RMiner does not detect, we
cannot capture them. Therefore, using a different set of refactorings would reflect different numbers
of refactoring lines in our generated refactoring release time series. When selecting commits for
each release, particularly in the mainline release strategy, we consider only those commits merged
into the release branch. However, since commit histories can contain multiple branches evolving in
parallel, other branches under development but not merged into the release branch may represent
additional development efforts that were not completed for release. For the external features that
impact the switching, we measure the features detectable from the commit messages and project
repository. However, incorporating more socio-technical information could provide additional
insights into the causes of the switching between patterns. When counting contributors, we use git
log to identify contributors; however, we acknowledge that some developers may have multiple
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accounts or commit anonymously. Moreover, we search for the keyword bot in the commit history
and find that 0.3% of commits contain this keyword. Therefore, we recognize that some commits
may have been made by bots. Lastly, for measuring refactoring release pattern quality, we use code
smells as indicators of refactoring quality. However, incorporating additional metrics, including
more code metrics and attributes related to code quality—such as reliability and bug resolution
rates—could provide further insights into the potential benefits of different refactoring release
patterns on various aspects of the code.

Threats to Internal validity. Indicate the validity of the methods applied in our study. We choose
the Java language domain for our studied projects because Java has the most reliable refactoring
tool [60, 61], which detects the highest number of refactoring types. However, if comparable
tools are available for other languages, studying projects written in those languages could reveal
additional refactoring patterns. For the number of clusters (i.e., refactoring release patterns), we
opt for the cluster number with the most distinct centroids while maintaining good separation
of data on the scatter plot. This approach reveals the most dominant refactoring release patterns.
However, some minority refactorings could be miscategorized into these clusters. Additionally, our
analysis is based on cluster centroids, so there may be some outliers that do not fit neatly into the
identified patterns. To determine the quality of release-wise refactoring patterns, we rely on code
smells with the addition of code metrics as quality indicators. However, other metrics may also
provide valuable insights and could impact the quality assessment differently.

Threats to External validity. Concern about the generalizability of our approach. Our ex-
periments and results are based exclusively on analyzing open-source projects that follow the
standard release naming convention. Consequently, our conclusions may not apply to other projects,
particularly those in different domains. Since our analysis is restricted to projects written in Java,
the findings may not extend to projects written in other programming languages. Furthermore, our
focus on identifying common patterns means that less common and infrequent patterns may be
overlooked.

5 Implications

In this section, we provide the implications of our study for the practitioners and tool makers.

Balancing between refactoring and software development. Our results reveal that the late
active refactoring pattern, characterized by increasing refactorings as the release approaches its end,
leads to more maintainable software. Therefore, we encourage practitioners to focus on development
tasks early in the release cycle and to concentrate on cleaning and performing refactoring before
the release to ensure higher-quality code.

External impacts on release-wise refactoring patterns and the effects of switching
between release patterns. Our results demonstrate that the use of the steady active release-wise
refactoring pattern increases over time, while the steady inactive pattern decreases. This trend may
be attributed to the growing refactoring needs as projects mature. However, adopting a steady
active pattern may cause architectural problems. Therefore, it is recommended to use a refactoring
pattern, preferably late active, to achieve higher quality code.

Providing common strategies and unique vocabulary. By identifying four refactoring release
patterns, our study offers a set of unique release-wise refactoring patterns that developers choose.
These refactoring release patterns also establish a common vocabulary for project managers and
stakeholders when managing refactoring release strategies.

Considering different refactoring strategies when studying software development. Our
results reveal that developers do not always follow the same refactoring pattern. Therefore, we
encourage researchers to account for varying refactoring behaviors within releases when studying
software releases or when treating releases as a factor in their analysis.
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Recognizing varied refactoring patterns for toolmakers. Our study reveals various strategies
in the adoption of refactoring and different transitions between patterns. We encourage refactoring
tool makers to consider this aspect, recognizing that not all developers consistently prefer to
perform refactoring in their daily development routines. Instead, based on the specific needs,
developers may require dedicated timeframes for refactoring tasks.

6 Related Work

In this section, we review the literature related to refactoring strategies, refactoring detection, and
release quality.

Refactoring patterns. Floss and Root Canal are two refactoring tactics identified in previous
studies [13, 34, 55]. These terms refer to long-term refactoring practices that teams apply to respond
to maintenance requests. Tsantalis et al. [59] perform an empirical study on refactoring in three
projects and observe that refactoring activities significantly increase before the release. Noei et
al. [34] study long-term and short-term (i.e., weekly) refactoring strategies and identify that root
canal refactoring patterns are correlated with higher quality code. Liu et al. [26] study the most
frequently applied patterns and identify floss as the most frequently adopted refactoring pattern.
In this study, we explore the existence of refactoring patterns within releases and identify
four variations of refactoring release strategies and their evolution over time. Moreover,
we study their relationship with code quality.

Refactoring and code smells. Previous research has investigated the connection between
refactoring, code smells, and code quality. Bibiano et al. [6] explore batch refactoring and the
support of automated refactoring tools on batch refactorings, measuring their success in reducing
code smells. Fontana et al. [12] explore refactoring tools and measure their limitations in removing
code smells. Noei et al. [34] measure the relationship between long-term and short-term refactoring
strategies and code smells. Cinnéide et al. [38] report that even though refactoring is aimed at
eliminating code smells, developers are not motivated to eliminate code smells by refactoring.
Previous studies [6, 8, 12, 34, 53, 65] link refactoring with code smells. Thus, we use code smells
as quality indicators for refactoring to measure the effectiveness of refactoring release patterns
on code quality. In this work we provide a quantitative study to explore and measure the
relationship between different refactoring release patterns and code quality.

Release and maintenance effort. Previous studies have shown that maintenance can have
a relationship with releasing new versions. Baumgartner [5] utilizes a Large Language Model
(LLM) and develops an Al-driven pipeline to eliminate data clumps during the release. Saidani [46]
explores refactoring after adopting CI/CD and finds a drop in refactoring frequency and application
after implementing CI/CD pipelines. Ding et al. [10] study the tests of the release and explain how
tests cannot reflect the code’s performance. In this study, we measure the frequent practices
of developers in switching and utilizing release-wise refactoring patterns over time.

Refactoring detection. Various tools have been proposed for detecting refactoring actions
in software history across different programming languages. However, the available refactoring
detection tools in Java can identify the most types of refactoring. Silva et al. [52] present RefDiff, a
refactoring detection tool designed for Java, C, and JavaScript, capable of identifying up to 10 types
of refactoring. Moghadamet al. [32] introduce RefDetect, which can detect up to 27 refactoring types
in Java and C++. Noei et al. [35] introduce MLRefScanner, a tool capable of detecting refactoring
commits in Python machine learning projects. Atwiet al. [3] introduce PyRef, capable of identifying
up to 11 refactoring operations in Python. Tsantaliset al. [60, 61] present RMiner, capable of
identifying 99 refactoring operations in Java codebases. In this work, we primarily use Java
as the language for studying projects due to its comprehensive tooling support, which
accurately reflects realistic refactorings during the release cycle.
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7 Conclusion

In this study, we analyze 207 popular and active open-source Java projects to identify the common
refactoring patterns employed by developers within software release cycles. We first examine
refactoring density frequencies and analyze changes in refactoring practices throughout the release
cycle, identifying four major refactoring release patterns: early active, late active, steady active, and
steady inactive. We find that the late active release-wise refactoring pattern, which is consistently
used across different stages of development, represents the best refactoring practice to be applied
continuously. This pattern is characterized by consistent class, package, and organizational-level
refactoring throughout the release, with an increased focus on method and variable-level refac-
torings as the release date approaches—leading to better code quality post-release. However, the
steady active pattern is increasingly adopted by practitioners as projects progress. While the steady
active pattern, characterized by a high density of refactoring throughout the release, may improve
software quality, it can also introduce architectural smells. For future work, we aim to explore
automated methods for assessing releases in response to maintenance needs.

8 Data Availability
The replication package of the study is available online [36].
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