
How Do Developers React to RESTful API
Evolution?

Shaohua Wang, Iman Keivanloo, Ying Zou

Queen’s University, Kingston, Ontario, Canada
shaohua@cs.queensu.ca, {iman.keivanloo, ying.zou}@queensu.ca

Abstract. With the rapid adoption of REpresentational State Trans-
fer (REST), more software organizations expose their applications as
RESTful web APIs and client code developers integrate RESTful APIs
into their applications. When web APIs evolve, the client code devel-
opers have to update their applications to incorporate the API changes
accordingly. However client code developers often encounter challenges
during the migration and API providers have little knowledge of how
client code developers react to the API changes. In this paper, we in-
vestigate the changes among subsequent versions of APIs and classify
the identified changes to understand how the RESTful web APIs evolve.
We study the on-line discussion from developers to the API changes by
analyzing the StackOverflow questions. Through an empirical study, we
identify 21 change types and 7 of them are new compared with exist-
ing studies. We find that a larger portion of RESTful web API elements
are changed between versions compared with Java APIs and WSDL ser-
vices. Moreover, our results show that adding new methods in the new
version causes more questions and views from developers. However the
deleted methods draw more relevant discussions. In general, our results
provide valuable insights of RESTful web API evolution and help service
providers understand how their consumers react to the API changes in
order to improve the practice of evolving the service APIs.

Keywords: REST API; API Evolution; StackOverflow; Social Media;

1 Introduction

Nowadays, on-line users can conduct various tasks such as posting text on Twit-
ter1 through web applications or services. With the rapid emergence of REp-
resentational State Transfer (REST) and high demand of engaging on-line ex-
perience from end-users, software organizations such as Twitter are willing to
open their applications as RESTful web service APIs described in plain HTML
pages [1]. Client code developers often integrate the web APIs into their appli-
cations or services to accelerate their development or stay away from low level
programming tasks [2]. Typically web API providers (e.g., Twitter) evolve their
APIs for various reasons, such as adding new functionality [3]. Client code devel-
opers have no control of web API evolution and have to evolve their client appli-
cations or services to incorporate the changes of new versions of web APIs [2][3].

1 https://twitter.com/



It causes difficulties to developers to migrate client applications, since the API
client code developers have no knowledge of how the web APIs evolve [4]. More-
over, API providers are not aware of how client code developers react to web
API evolution. Therefore analyzing and understanding client code developers’
on-line discussion related to API changes is essential for service providers to im-
prove API evolution practices. The communication gap between API providers
and client developers should be resolved.

Recently, several research studies have explored the impact of API evolution.
For example, Espinha et al. [2] conduct semi-structured interviews with web API
client developers and mine source code changes of client applications. Li et al. [3]
conduct an empirical study on classifying the changes of web API evolution,
without studying the developers’ reactions to the changes. Understanding all of
the possible types of changes can help developers have a better preparation for
migration. Recently, crowd-sourced resources such as StackOverflow is getting
popular among developers. When studying the new changes of web APIs or solv-
ing a specific software development problem, client code developers start posting
questions or development experience on these crowd-sourced resources instead
of mailing lists or project-specific forums [5][6]. Therefore, crowd-sourced social
media platforms become an excellent source for studying developers’ discussion.
Linares-Vásquez et al. [7] investigate how developers react to the Andorid API
instability in StackOverflow2, a question & answer website for developers to
share experience on software development. They study which types of changes
trigger more questions and more discussion in StackOverflow.

In this paper, we conduct an empirical study on API changes between sub-
sequent versions of web APIs to explore all of the possible types of changes
during API evolution. Since web API source code is usually not publicly avail-
able, we compare web API documentation (i.e., migration guides or reference
documents), and identify changes between subsequent versions of each API. We
further categorize the changes into different change types. Compared with the
change types identified in [3], we identify 7 more types of changes in web API evo-
lution. Moreover, we explore how client code developers react to identified types
of changes by analyzing developers’ online discussion regarding API changes. We
adopt the analysis approach in [7] for analyzing StackOverflow posts related to
RESTful APIs. To the best of our knowledge, we are the first to link the analysis
of developer discussion in StackOverflow with web API changes.

We conduct our empirical study on 11 web APIs from 9 application domains
and address the following three research questions:

RQ1. What are the change types of web API evolution?

Identifying and understanding all of the possible types of changes of RESTful
web APIs is useful for client code developers to have a better preparation for mi-
grating their code. We manually compare the API documentation of a web API
to identify the changes [3][8]. We classify the identified changes into 21 change
types and count the number of changes for each change type. Compared with
existing research work, we identify new unreported change types. Our empirical
results show that the change type of Adding New Methods has the highest per-

2 http://stackoverflow.com/

2



centage of the number of total changes (i.e., 41.52% of total changes belongs to
Adding New Methods).
RQ2. Which types of changes trigger more questions from client code
developers?

To understand the difficulties of developers to adopt different types of API
changes, the first step is to identify which types of changes trigger a larger volume
of discussion (i.e., in terms of the number of questions) regarding the changes
from client code developers. We extract the question posts related to change
types of web API evolution in StackOverflow, an online platform for developers
to share software development experience. We investigate the differences between
change types in terms of the average number of question posts per change from
developers. Our empirical results show that the change type of Adding New
Methods attracts more question than other change types do.
RQ3. Which types of changes bring discussion on posted questions
from developers?

When a question post attracts developers’ attention and is worth discussing,
the post starts receiving more answers, comments and views from developers.
Analyzing such question posts regarding API changes is helpful to understand
on which type of problems the developers are stuck. We use the number of
answers, the number of views from developers received by a question and its score
as measurements of the more discussed questions for developers. In RQ2, the
impact of API changes on the volume of discussion is explored. In this question,
we investigate the impact of API changes on the quality of discussion. Our
empirical results show that Deleted Methods generates most discussed questions
in the developer community, and the type of change Adding New Methods draws
the questions with more view counts from developers.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of this study. Section 3 introduces the empirical study setup and research
questions. Section 4 discusses threats to validity. Section 5 summarizes the re-
lated literature. Finally, Section 6 concludes the paper and outlines some avenues
for future work.

2 Background

In this section, we introduce the basic structure of web APIs and Question & An-
swer websites.

2.1 Web APIs

The software organizations open their resources (e.g., services or data) by defin-
ing application programming interfaces (APIs) to a request-response message
system [9]. The resources can be data or services provided by the organizations.
The web APIs are usually described in plain HTML web pages. Client applica-
tions access the resources via direct HTTP requests and responses. The format
of the requests and responses can be defined in various protocols, such as XML-
RPC. A RESTful HTTP request must be associated with one of four standard
HTTP methods: GET, PUT, POST and DELETE. A typical RESTful HTTP
request includes 1) a HTTP method (e.g., GET); 2) a domain address of API
server; 3) a name of RESTful API method; 4) a format of return data; 5) a set

3



of parameters of the method. The (domain + method name) can also be referred
as resource URL. For example, a Twitter RESTful request of retrieving the 2
most recent mentions is listed as follows:
GET https://api.twitter.com/1.1/statuses/mentions timeline.json?count=2

GET is the standard HTTP method. api.twitter.com/1.1 is the address of
the API server. statuses/mentions timeline is the method name. json is the
format of return data. count is a parameter specifying the number of tweets to
be retrieved.

2.2 Question and Answer Websites

Recently, developers have started posting on Question&Answer (Q&A) websites,
such as StackOverflow, to share their experience in software development or
search for solutions regarding software development. Such Q&A websites has
become an excellent data source for analyzing developers.

Fig. 1: A labeled screen shot of a question titled “What are REST resources?”
in StackOverflow

StackOverflow is one of the top Q&A websites, allows developers to ask a
new question or answer any existing questions, as well as to make a comment
on other developers’ posts. There are three types of posts: question, answer
and comment. Developers can “vote” a post (i.e., a question or answer) up or
down. Every question post has the number of answers received by the question,
possible comments and a score which equals the number of up votes minus
the number of down votes. Fig. 1 illustrates a sample post with the number of
answers, comments and a score. StackOverflow opens its dataset on-line through
StackExchange Data Explorer3. In this paper, we extract developers’ posts in
StackOverflow through StackExchange Data Explorer for analyzing developers’
discussions regarding the evolution of RESTful services.
3 https://data.stackexchange.com/

4



3 Empirical Study

In this section, we first introduce the setup. Then we discuss the research ques-
tions of our study. For each question, we introduce the motivation of the question,
analysis approach and the findings.

3.1 Study Setup

We conduct our study on public web APIs and StackOverflow posts.

Table 1: Subject Web APIs
API Name Category Versions Studied
Twitter Social Network V1, V1.1
Blogger Blogging V1, V2, V3
Bitly API Service V2, V3
MusicBrainz Music V1, V2
Friendfeed Social Network V1, V2
Tumblr Social Network V1, V2
Sunlight Congress Government V1, V2
OpenStreetMap (OSM) Mapping V0.3, V0.4, V0.5, V0.6
Groupon Shopping V1, V2
Yelp Recommendation V1, V2
New York Times News V1, V2
Article Search (NYT)

Table 2: Number of Posts of Each Web API in StackOverflow
API Name Keyword Number of Posts Retrieved
Twitter twitter 46,646
Blogger blogger 982
Bitly API bit.ly 146
MusicBrainz musicbrainz 39
Friendfeed friendfeed 11
Tumblr tumblr 1,372
Sunlight Congress sunlight 0
OpenStreetMap (OSM) openstreetmap 1,072
Groupon groupon 21
Yelp yelp 108
New York Times newyork 0
Article Search (NYT)

Data Collection
Collecting web APIs: To study web API changes, we need different versions of
a web API. We extracted the list of most popular APIs in ProgrammableWeb4

and use them as the candidates of our study. Then, we use the following criteria
to choose web APIs as the subject APIs in our study: 1) The web APIs have
at least two versions, and the API documentation of each version is available
on-line; 2) The web APIs are from different application domains; 3) The web
APIs are from different companies, since we aim to study the various change
types of different development teams. For each selected web API, we study all

4 http://www.programmableweb.com/

5



of the publicly available versions of the API. We identify the types of web API
changes by comparing the differences between subsequent versions of each API.
We downloaded the web pages describing the web API methods for comparison.
Table 1 shows the information of our subject web APIs.

Collecting the developers’ on-line discussion on web API changes in Stack-
Overflow: We composed SQL scripts and ran these scripts to retrieve posts
related to web APIs through StackExchange Data Explorer5. For each web API,
we defined a keyword and conducted a wild-card search to mine all of the posts
tagged with labels including the keyword [7]. We considered only posts with the
matching labels to exclude possible irrelevant posts. For example, we retrieved
46,646 posts with labels including the “twitter” keyword (e.g., twitter, twitter-
api). Table 2 shows the keywords used and the number of posts retrieved for
each API. All of the posts were retrieved on May 1st, 2014.

3.2 Research Questions

In this sub-section, we present our three research questions. For each research
question, we introduce the motivation of the research question, analysis approach
and findings of the question.
RQ1. What are the change types of web APIs during evolution?

Motivation. Usually, the web API providers conduct various changes on
their APIs between two subsequent versions such as adding new functionality or
fixing bugs [3]. The API client developers have to study the API changes and
incorporate the client applications with the changes accordingly. Understanding
the types of changes is useful to help client code developers to conduct a code
migration [3]. In this question, we explore the change types during API evolution.

Table 3: Summary of API-level Change Types.
Change Type Explanation
Change 1) Entire Format Change: e.g., from XML to JSON
Response Format 2) Structure Change: add, remove or reorganize XML tags

3) Slight Modification: change XML tag or attribute name
e.g., OpenStreetMap API conducted practices 2) and 3).

Change Replace the old version number with new one in URLs
Resource URL e.g., The domain name of Twitter changed from

api.twitter.com/1 to api.twitter.com/1.1.
Change Update existing authN model with new one
Authentication Model e.g., Twitter API v1.1 requires every request to be

authenticated and client applications must use OAuth.
Change 1) Change Limit Window: change the length of window
Rate Limit 2) New Headers and Resp Codes:

update messages showing limit exceeded or status
Delete Unsupport a format:
Response Format e.g., XML is not supported in Twitter API v1.1.
Add Support a new format in new version:
Response Format e.g., NYT Article Search API added JSONP in Version 2.
Add Support a new model but keep old ones:
Authentication Model e.g., MusicBrainz and Blogger API added more models.

6



Table 4: Summary of Method-level Change Types.
Change Type Explanation
Change e.g., We observed this practice from Twitter, Blogger
Method Name MusicBranz, FriendFeed, Yelp and NYT Article Search.
Change The return format of a method can be changed, such as
Response Format returning more values e.g., Twitter method

“GET friendships/lookup”
Change A limit is usually set up on the number of data units
Rate Limit can be retrieved per request. The rate limit can be changed.
Change Different authentication models are set up for different
Authentication Model methods. e.g., to protect critical data, they update

the authN model on methods modifying databases.
e.g., OpenStreetMap and MusicBrainz practiced this.

Change It is different from “Resource URL change” on,
Domain URL API level, because it is only applicable to very few methods.

e.g., the domain name of Twitter method
“POST statuses/update with media” is changed from

upload.twitter to api.twitter.com.
Delete Unsupported methods in new version: e.g., we observe
Method every API practiced this, except for Blogger (v1 to v2),

Yelp and NYT search
Add Support new methods: e.g., we observe every API practiced
Method this, except for Blogger (v1 to v2) and NYT search
Add Add more error codes to specific methods: e.g., Twitter
Error Code Blogger and OpenStreetMap.

Analysis Approach. To answer this question, we conduct the following
steps: Step 1: We first identify API changes among subsequent versions of web
APIs. We manually compare API documentation, such as migration guides or
reference documents, of subsequent versions of an API. We process two versions
of a web API in the following steps:

1. We cross-reference two versions of the API and identify any changes made for
all of the API methods. Such changes are considered as API-level changes.

2. We focus on changes made on methods such as changing a method name,
adding a new method or deleting a method. Such changes are considered as
method-level changes.

3. We identify any changes made on parameters. Such changes are considered
as parameter-level changes.

Step 2: We summarize and classify the identified changes in Step 1. Then, in order
to identify new change types, we compare the summarized change types of web
APIs with the ones of Web APIs [3], JAVA APIs [8] and WSDL service [10][11].
Step 3: We summarize and count the frequency of each change type to identify
the common practices.

Findings. In total, we identify 21 change types on the eleven studied web
APIs. We divide them into three groups: 1) the API-level change types made on
all of the methods; 2) the method-level change types made on specific methods;
3) the parameter-level change types made on parameters of methods.

5 https://data.stackexchange.com/

7



Table 5: Summary of Parameter-level Change Types Made on Parameters.
Change Type Explanation
Change Rename parameters with a self-explanatory names
Change Format or Type The return format of using a parameter can be

changed. NYT Article Search practiced.
Change Rate Limit The limit can be raised up or reduced.

e.g., OpenStreetMap raised up a limit.
Change Require Type e.g., require type of “cursor” of “GET friends/ids”

is changed from optional to semi-optional.
Delete Parameter Unsupported some functionalities of a method
Add Parameter Support new functionalities of a method

Table 6: Total Number of Elements Changed Between subsequent Versions
API Name Versions # of Elements # of Elements Proportion(%)

in Latter Version Changed
Twitter v1-v1.1 109 51 47
Blogger v1-v2 12 5 29
Blogger v2-v3 33 33 100
Bitly API v2-v3 74 74 100
MusicBrainz v1-v2 36 36 100
Friendfeed v1-v2 23 17 74
Tumblr v1-v2 21 21 100
Sunlight Congress v1-v2 12 12 100
OpenStreetMap v0.3-v0.4 23 12 52
OpenStreetMap v0.4-v0.5 35 20 57
OpenStreetMap v0.5-v0.6 52 51 91
Groupon v1-v2 8 8 100
Yelp v1-v2 2 2 100
New York Times v1-v2 1 1 100
Article Search
Average 82

Table 3 shows our summary of change types at API-level. All of the change
types in Table 3 are observed based on the comparison of subsequent versions
of a web API. However API providers can support several versions and make
changes on all of the running versions at the same time. For example, on Nov.
2nd, 2012, Twitter changed the format of “withheld in countries” field from a
comma-separated JSON string to an array of uppercase strings [12], which is a
breaking change applicable to all of the versions of Twitter.

Table 4 shows our summary of change types at method-level and Table 5
shows our summarized change types at parameter-level. We found that the
functionality of several API methods was merged into the functionality of one
method, or the functionality of a method was divided into several methods in the
newer version of API [3][8][10]. The web APIs follow a long deprecate-replace-
remove cycle to preserve backward compatibility on “Deprecated” methods. Be-
cause we compare subsequent versions of APIs, the deprecated methods are
removed and new methods are added. Therefore, our way of dealing these three
scenarios is similar to the way in [10], we consider a merged, divided or depre-

8



Table 7: Frequency of Change Types. Prop. stands for Proportion.

Category
Method Level Parameter Level

Type Count Prop.(%) Type Count Prop.(%)
Change Method Name 53 11.52 Parameter Name 32 6.96

Response Format 7 1.52 Format or Type 13 2.83
Rate Limit 7 1.52 Rate Limit 1 0.22

Authentication Model 10 2.18 Require Type 4 0.87
Domain URL 2 0.43

Delete Method 72 15.65 Parameter 21 4.57
Add New Method 191 41.52 New Parameter 51 11.09

New Error Code 2 0.43

cated method in older version as a deleted method, and the method replacing
them in new version as an added method in new version. In addition, we ob-
served that some APIs, such as OpenStreetMap, are added with more resource
types and each resource is associated with a set of methods. In this scenario, we
consider the set of methods as new methods.

We compare our identified change types with the ones of web APIs [3], Java
API [8], and WSDL services [10][11], we found that:�




�

	
The unique API-level change types are Delete Response Format, Add Re-
sponse Format and Change Resource URL. The unique method-level types
are Change Response Format, Change Domain URL, Add Error Code.
The unique parameter-level change type is Change Require Type.

Table 6 shows that the average proportion of changed elements (i.e., Methods
and Parameters) between two consecutive versions of a web API is 82%. However
only 30% of JAVA API elements and 41% of WSDL service elements (i.e., Types
and Operations) are changed compared with two consecutive versions [8][11].�
�

�
�

RESTful web APIs are more change-prone than JAVA APIs and WSDL
services during API evolution.

Table 7 summarizes the number of changes of each change type. The most
four common practices are: Add Method, Delete Method, Change Method Name
and Add Parameter. In total, we identify 460 changes and 191 changes (i.e.,
41.52%) of them belong to Add Method. The API-level change types are not
included in the frequency counting, since they are typically applicable to all of
the methods and including the frequency of API level change types will skew
the results.�
�

�
�

The change type of Add Method makes up the largest proportion (i.e.,
41.52%) of total changes in the studied RESTful services

RQ2. Which types of changes trigger more questions from client code
developers?

Motivation. When encountering problems in software development, devel-
opers start using crowd-sourced resources such as StackOverflow instead of using

9



mailing lists or project-specific forums [7]. Therefore, analyzing on-line discussion
regarding API changes in StackOverflow is useful to understand the developers’
difficulties in dealing with different types of API changes. The first step of under-
standing the developer’s challenges is to identify the change types drawing more
discussion (i.e., in terms of the number of questions) than others in StackOver-
flow. By knowing the change types triggering more discussion, RESTful API
providers can arrange their resources to approach such change types carefully to
help client code developers during the client code migration.

Analysis Approach. To answer this question, we analyze the StackOverflow
question posts from Twitter, Blogger, Tumblr and OpenStreetMap, because they
relatively have more posts than the other APIs in our dataset in Section 3.1. To
identify which change types trigger more questions from developers, we conduct
the following steps:

Step 1: we link API changes with StackOverflow posts in the following steps:
1) we obtain a mapping from method-level and parameter-level changes to API
HTTP methods from RQ1. We search for API-related posts containing the API
method names; 2) we remove any special characters such as “/” in a method
name; 3) some methods can be linked with several change types. In this case,
we cannot identify the change types with which StackOverflow posts belong to.
Instead of introducing bias in our results, we remove such methods from our
analysis (i.e., we only have very few such methods). We obtain a mapping chain:
a change type— a set of API methods—a set of Posts.

Step 2: we compute the average number of questions concerning each method.
In this question, we only study the method and parameter level change types,
because such types of changes can be linked with StackOverflow posts through
API method names and introduce less noise in our data than API-level changes.

Step 3: we compute the Mann-Whitney Test and the Cliff’s Delta, a non-
parametric effect size measure [13], to compare the distribution of questions for
different types of changes (i.e., only change types at method and parameter
level) in our study. We follow the guidelines in [13] to interpret the effect size
values: small for d < 0.33 (positive as well as negative values), medium for
0.33 ≤ d < 0.474 and large for d ≥ 0.474.

Fig. 2: Average Number of Questions Per Methods with Different Change Types

10



Table 8: Questions per Method of Change Types: Manny-Whitney Test (adj.
p-value) and Cliff’s Delta (d) Between Different Change Types. Only Significant
Results and Major Change Types are reported.

Test adj. p-value d
Add Method vs Delete Parameter < 0.01 -0.12 (Small)
Add Method vs Change Method Name < 0.01 0.15 (Small)
Add Method vs Add Parameter < 0.01 -0.57 (Large)
Add Method vs Change Parameter Name < 0.01 -0.48 (Large)
Add Method vs Delete Method < 0.01 0.07 (Small)
Delete Method vs Add Parameter < 0.01 -0.39 (Medium)
Delete Method vs Change Parameter Name < 0.01 -0.36 (Medium)
Delete Parameter vs Add Parameter < 0.01 -0.33 (Medium)
Delete Parameter vs Change Parameter Name < 0.01 -0.29 (Medium)

Findings. Fig. 2 shows that the change type of Add Method draws average 63
questions per change which is higher than other change types. Add Method draw
1.3 times more questions than Delete Method, with a statistically significant dif-
ference (p-value< 0.01) shown in Table 8. Furthermore, the method-level change
types trigger more questions that parameter-level change types. Summarizing
results in Fig. 2 and Table 8, we find that�
�

�
�Add Method draws more questions than other change types.

RQ3. Which types of changes bring discussion on posted questions
from developers?

Motivation. When a question is worth discussing and attracting develop-
ers’ attention due to various reasons (e.g., the question is hard to be solved), the
question post starts receiving more answers, comments and views from develop-
ers. Identifying the change types drawing such questions is helpful to understand
which change types are more related to developers. In RQ2, the impact of change
types on the volume of discussion regarding API changes is investigated. In this
question, we analyze the quality of discussion.

Table 9: API Changes Triggering More Discussed Questions
Change Type Average Score Average View Count Average Answer Count
Change Parameter Name 2.4 15 0.5
Add Parameter 1.2 21.4 0.8
Delete Parameter 4.1 15.6 1.4
Add Method 5.8 48.2 2.1
Delete Method 7.8 31 3.1
Change Method Name 4.9 18 0.8

Analysis Approach. We compute metrics for each question. We use similar
metrics in [7] for measuring the discussion quality of a question:

– Score: is the difference between up-votes and down-votes.
– View Count: is the number of times the question has been viewed.
– Answer Count: is the number of answers for the question.

11



Table 10: Discussed Questions of Change Types: Manny-Whitney Test (adj. p-
value) and Cliff’s Delta (d) Between Different Change Types. Only Significant
Results are reported.

Average Score Test adj. p-value d
Delete Method vs Add Method <0.01 -0.92. (large)
Delete Method vs Add Parameter <0.01 -3.41 (large)
Delete Method vs Change Parameter Name <0.01 -2.44 (large)
Add Method vs Add Parameter <0.01 -2.93 (large)
Average View Count Test adj. p-value d
Add Method vs Delete Method <0.01 -1.21 (large)
Add Method vs Add Parameter <0.01 -2.37 (large)
Add Method vs Change Method Name <0.01 -2.62 (large)
Delete Method vs Delete Parameter <0.01 -1.83 (large)
Average Answer Count Test adj. p-value d
Delete Method vs Add Method <0.01 -1.01 (large)
Delete Method vs Add Parameter <0.01 -3.73 (large)
Delete Method vs Change Method Name <0.01 -3.86 (large)
Delete Method vs Delete Parameter <0.01 -1.82 (large)
Add Method vs Change Method Name <0.01 -2.32 (large)
Add Method vs Add Parameter <0.01 -2.22 (large)

Each question post has 3 values and each change type is associated with a set
of questions. Second, based on the results in RQ2, we study 6 change types
causing more questions than other change types: Change Method Name, Delete
Method, Add Method, Delete Parameter, Add Parameter and Change Parameter
Name. We compute the average score, average view count, average answer count
for each change type. Third, to check whether there are significant differences
between the sets of questions associated with different change types, we run
Mann-Whitney test (adj. p-Value) and Cliff’s Delta (d) on the sets of questions.

Findings. Table 9 shows that the questions of Delete Method receive a higher
score and more answers than those related to other change types, questions of
Add Method have a higher view count than those related to the other types.
Table 10 shows that statistical tests confirm the above three findings. The results
suggest that when dealing with the change type of Delete Method, developers
can have more various solutions and more communication with other developers.
However, when learning new methods in the newer version, developers experience
a hard time to find a solution. Our study supports the fact that since deleted
methods can break client applications, client code developers feel the pressure
to update their client applications and start searching for a solution intensively.�
�

�
�

Questions related to Delete Method are most relevant and discussed in
terms of higher score values and more answers.

4 Threats to Validity

This section discusses the threats to validity of our study following the guidelines
for case study research [14].

Construct validity threats concern the relation between theory and observa-
tion. In this paper, the construct validity threats are mainly from the human
judgment involved in identification and categorization of API changes during

12



web API evolution. Many research studies (e.g., [8][3]) have conducted manual
analysis of API changes. We set guidelines before we conduct manual study and
we paid attention not to violate any guidelines to avoid the big fluctuation of
results with a change of the experiment conductor.

External validity threats concern the generalization of our findings. In this
paper, we only analyze the dataset from StackOverflow. Although StackOverflow
is one of the top Questions&Answer websites for developers and many research
studies (e.g., [7][16]) have been conducted on only StackOverflow, further analy-
sis is desired to claim that our findings of reactions of developers are generalized
well for different Questions&Answer websites, different developer population and
other forums for programming.

Reliability validity threats concern the possibility of replicating this study.
We attempt to provide all the necessary details to replicate our study. The posts
from developers are publicly available on Stack Exchange Data Explorer6. All
the documentation of our subject web APIs are available on-line.

5 Related Work

In this section, we summarize the related work on API changes and developer
discussion in StackOverflow.
Analysis of evolution of Java APIs, WSDL services, and web APIs
Several studies (e.g., [3][8][10]) have studied the API evolution. Li et al. [3] con-
duct an empirical study on classifying web API changes. They identify 16 API
change patterns. This study is the most similar one to our analysis in research
question 1. However our study is based on more web APIs and identifies 7 more
change types. Although Li et al. [3] discuss the potential troubles from developers
during the migration, they do not conduct any empirical study on the developers
reactions to the changes. Dig et al. [8] conduct a manual analysis on classification
of API changes of Java API evolution. They mainly focus on breaking changes
due to the refactoring during the evolution. Fokaefs et al. [10] conduct an empir-
ical study on the changes, potentially affecting client applications, of WSDL web
service interface evolution using VTracker to differentiate XML schema by com-
paring different versions of web service. Furthermore, Fokaefs et al. [11] introduce
a domain-specific differencing method called WSDarwin to compare interfaces
of web services described in WSDL or WADL. Romano et al. [15] propose a tool
called WSDLDiff analyzing fine-grained changes by comparing the versions of
WSDL interfaces. However all of the above studies do not analyze changes of
web API evolution and how developers react to the API evolution.

Analysis of Developer Reactions
Espinha et al. [2] explore the impact of common change practices of API evo-
lution on the client applications by conducting semi-structured interviews with
client developers and mining source code changes of client applications, however
their focus is not on identifying change types of web APIs. Linares-Vásquez et
al. investigate how developers react to the Andorid API instability on Stack-
Overflow7 and suggest practices to both API providers and client developers.

6 https://data.stackexchange.com/
7 http://stackoverflow.com/

13



A survey [4] conducted among 130 web API clients was published online about
the integration pain from API evolution, and reports some practices (e.g., bad
documentation and randomly change without warnings) causing troubles to de-
velopers. Barua et al. [16] explore the hot topics of software development on
StackOverflow as well as their relationships and trends over time using topic
modeling techniques. The topics of the posts from developers reflect developers’
reactions on specific technologies. In our study, we mostly study the discussions
on the Stack Overflow to know the impact of API changes on developers.

6 Conclusion and Future Work
API changes affect client applications, however it is unclear how the web APIs
evolve and how developers react to the evolution. In this paper, we conduct
an empirical study on identifying and categorizing API changes. We identify 21
change types, and 7 of them (e.g., Add Response Format) are newly discovered
compared with existing research studies. In total, we identify 460 changes of 21
change types, and 41.52% of 460 changes belong to the change type Add Method,
which makes the change type of Add Method the most common API change prac-
tice. Furthermore, our empirical results show that the change type Delete Method
draws more discussed and relevant questions from developers in the community,
and the change type Add Method receives more questions and views from de-
velopers. The identified change types of web API evolution are useful for client
developers to understand the API changes and reduce troubles during client
application migration. Furthermore, understanding the developers’ discussion
regarding change types is useful for API providers to conduct better practices
on releasing new versions to reduce the negative effect of API evolution on client
code developers.

In the future, we plan to include more web APIs in our analysis. Further-
more, we want to conduct fine-grained analysis on source code changes of client
applications.

Acknowledgments

The authors would like to thank Pang Pei and Nasir Ali for their valuable com-
ments on this work.

References
1. Ranabahu A., Nagarajan M., Sheth P. A., Verma K., A Faceted Classification

Based Approach to Search and Rank Web APIs, in Proceedings of 2008 IEEE
International Conference on Web Services, pp. 177-184, Beijing, September, 2008.

2. Espinha T., Zaidman A., and Gross H. G., Web API Growing Pains: Stories from
Client Developers and Their Code, in Proceedings of the joint meeting of the Con-
ference on Software Maintenance and Reengineering and the Working Conference
on Reverse Engineering, pp. 84-93, Antwerp, February 2014.

3. Li J., Xiong Y., Liu X., and Zhang L., How Does Web Service API Evolution Affect
Clients?, in Proceedings of IEEE International Conference on Web Services, pp.
300-307, Santa Clara, CA, USA, June 28 - July 4, 2013.

4. S. Blank (YourTrove), API integration pain survey results, https://www.

yourtrove.com/blog/2011/08/11/api-integration-pain-survey-results/,
last accessed on May 18th, 2014.

14



5. Li H., Xing Z., Peng X., and Zhao W., What help do developers seek, when
and how?, in Proceedings of 20th Working Conference on Reverse Engineering
(WCRE’13), pp. 142-152, 2013.

6. Mamykina L., Manoim B., Mittal M., Hripcsak G., and Hartmann B., Design
lessons from the fastest Q&A site in the west, in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI’11), ,pp. 2857-2866, 2011.

7. Linares-Vásquez M., Bavota G., Di Penta M., Oliveto R. and Poshyvanyk D., How
do API Changes Trigger Stack Overflow Discussions? A Study on the Android
SDK, in Proceedings of 22nd IEEE International Conference on Program Compre-
hension (ICPC’14), Hyderabad, India, June 2-3, 2014.

8. Dig D. and Johnson R, How do APIs evolved? A story of refactoring, Journal of
software maintenance and evolution: Research and Practice, 18(2), 83-107, 2006.

9. Web API. http: // en. wikipedia. org/ wiki/ Web_ API . Last Accessed on May
19th, 2014.

10. Fokaefs M, Mikhaiel R., Tsantalis N., Stroulia E. and Lau A., An Empirical Study
on Web Service Evolution, in Proceedings of 2011 IEEE International Conference
on Web Services, pp. 49-56, Washington DC, 4-9 July 2011.

11. Fokaefs M and Stroulia E., WSDarwin:Studying the Evolution of Web Service Sys-
tems, Advanced Web Services, pp.199-223, 2014.

12. Changes to withheld content fields, https: // blog. twitter. com/ 2012/

changes-withheld-content-fields . Last Accessed on May 1st, 2014.
13. Grisson J R. and Kim J J, Effect sizes for research: A broad practical approach,

Lawrence Earlbaum Associates, 2nd edition, 2005.
14. Ying R.K., Case Study Research:Design and Methods-Third Edition, 3rd ed. SAGE

Publications, 2002.
15. Romano D., Pinzger M., Analyzing the Evolution of Web Services Using Fine-

Grained Changes, in Proceedings of 2012 IEEE International Conference on Web
Services, pp.392-399, Honolulu, Hawaii, USA, June 24-29, 2012.

16. Barua A., Thomas S. W., and Hassan A. E., What are developers talking about? An
analysis of topics and trends in Stack Overflow, Empirical Software Engineering,
1-36, 2012.

15


