
An Exploratory Study on the Relation between
User Interface Complexity and the Perceived

Quality of Android Applications

Seyyed Ehsan Salamati Taba1, Iman Keivanloo2, Ying Zou2, Joanna Ng3,
Tinny Ng3

1 School of Computing, Queen’s University, Canada
2 Department of Electrical and Computer Engineering, Queen’s University,

Canada
3 IBM Toronto Lab, Markham, Ontario, Canada

taba@cs.queensu.ca, {iman.keivanloo, ying.zou}@queensu.ca, {jwng,
tinny.ng}@ca.ibm.com

Abstract. The number of mobile applications has increased drastically
in the past few years. Some applications are superior to the others in
terms of user-perceived quality. User-perceived quality can be defined as
the user’s opinion of a product. For mobile applications, it can be quan-
tified by the number of downloads and ratings. Earlier studies suggested
that user interface (UI) barriers (i.e., input or output challenges) can af-
fect the user-perceived quality of mobile applications. In this paper, we
explore the relation between UI complexity and user-perceived quality
in Android applications. Furthermore, we strive to provide guidelines for
the proper amount of UI complexity that helps an application achieve
high user-perceived quality through an empirical study on 1,292 mobile
applications in 8 different categories.

1 Introduction

Mobile applications are pervasive in our society and play a vital role in our daily
lives. Users can perform similar tasks both on smartphones and PCs [1] such
as: checking e-mails or browsing the web. Due to the limitations of smartphones
(e.g., small screen size, network problems and computational power) developers
should be more careful in designing their applications on smartphones than PCs.
Developers’ negligence in the importance of UI design is one of the major reasons
for users to abandon a task on smartphone and switch to PC [2].

User-perceived quality can be defined as user’s opinion of a mobile applica-
tion. It can be quantified by the number of downloads and ratings in mobile
stores. It is important to mention that based on our definition user-perceived
quality has no relation with usability in this context. The studies conducted by
Karlson et al. [2] and Kane et al. [3] demonstrate that improper use of UI ele-
ments (e.g., input and output) on mobile applications increases end-user frus-
tration. For example, the excessive use of input fields in mobile applications
negatively affect user-perceived quality. Although mobile applications seem to



2

be simple and easy to develop, these studies illustrate that designing UI for
mobile applications is not a trivial task.

Software metrics are widely used to derive guidelines for programmers. For
example, McCabe [4] defines a complexity metric for functions, and recommends
a proper implementation should hold a value below 10. Such guidelines can be
exploited either during the development process for on-the-fly recommendation
or during the quality assurance process. There exist several studies on the de-
sign patterns for UI development of mobile applications [5]. However, they do
not provide a concrete number of appropriate UI complexity for mobile applica-
tions in order to achieve high user-perceived quality. In this paper, we focus on
UI complexity and its relation with the user-perceived quality of mobile appli-
cations. Moreover, we aim to derive guidelines for UI complexity by mining the
available mobile applications on Android Market. We define seven UI complex-
ity metrics that can be calculated using static analysis. We calculate the metrics
in two different granularities: i) category, and ii) functionality of 1,292 mobile
applications. A category reflects the purpose of a group of mobile applications
(e.g., Shopping or Health) extracted from mobile stores. A functionality defines
a fine-grained capability of a mobile application (e.g., Payment or Sign in). We
observe that there exists a relation between UI complexity and user-perceived
quality of application pages (activities) belong to a similar functionality. UI
complexity is dependent on the corresponding functionality. Activities with high
user-perceived quality tend to be simpler in terms of UI complexity in general.

2 Background

In this section, we briefly talk about the architecture of Android applications.
Android applications are written in Java programming language using Android
Software Development Kit (SDK). The Android SDK compiles the code into an
Android PaKage (APK) file which is an archive file with a “.apk” extension.
One APK file contains all the content of an Android application.

Application components are the essential building blocks of an Android ap-
plication. There are four different types of application components, including ac-
tivities, services, content providers and broadcast receivers. Among those, users
only interact with activities. An Android application consists of several activ-
ities. An activity is a single, focused task that the user can do. Each activity
represents a single-screen user interface (UI). As a result, only one activity can
be in the foreground for the users to interact with.

There are two ways to declare a UI layout for an activity: i) Declaring UI
layout elements in an XML file (standard), or ii) Instantiating UI layout elements
programmatically. Our premise in this work is towards the former approach since
it is the recommended way by Android design guidelines [6]. Applications using
the latter way are excluded from our study since our analysis and data gathering
approach cannot handle them.



3

Every Android application has an AndroidManifest.xml (manifest) file in root
directory. It contains meta-data information of an application (e.g., the path to
the source code of activities, permissions).

3 Study Design

3.1 Data Collection

In Android Market, there are 34 different kinds of categories from which we
analyze 8 different categories. The 8 different categories are: Shopping, Health,
Transportation, News, Weather, Travel, Finance and Social. Table 1 shows de-
scriptive statistics for different categories. In total, we study 1,292 free android
applications crawled in the first quarter of 2013.

Table 1. Summary of the characteristics of different categories

Category # Applications # Activities # Inputs # Outputs # Elements

Shopping 193 2,822 12,529 25,058 68,468

Health 286 4,129 23,232 40,330 108,366

Transportation 128 1,078 5,603 7,718 22,991

News 114 1,302 4,725 7,407 23,507

Weather 244 1,608 6,713 38,659 84,739

Travel 106 1,711 7,164 15,210 38,285

Finance 103 1,167 5,989 12,899 33,818

Social 118 1,107 4,948 7,646 24,091

Extracting User-Perceived Quality. In Android Market, users can rate ap-
plications from 1 to 5 (i.e., Low to High), and write comments. The rating
reflects the user-perceived quality of applications.However, Ruiz et al. [7] have
shown that the rating of an application reported by Android Market is not
solely a reliable quality measure. They found that 86% of the five-star appli-
cations throughout the Android Market in 2011 are applications with very few
raters (less than 10 raters). Moreover, Harman et al. [8] show that the ratings
have a high correlation with the download counts which is a key measure of
the success for mobile applications. To overcome these challenges, we measure
user-perceived quality by considering both rating and popularity factors (i.e.,
the number of downloads and raters) using Equation (1):

UPQ(A) = (
1

n
∗

n∑
j=1

log(Qj)) ∗Rating(A). (1)

Where UPQ(A) is the measured user-perceived quality for an application; A
refers to an application; n is the total number of quality attributes (i.e., the num-
ber of downloads and raters) extracted from Android Market for A. Qj shows a
quality attribute. To normalize the value of quality attributes, we used log trans-
form. Rating(A) is the rating score extracted for A from the Android Market.



4

3.2 Data Processing

Extracting APK Files. To extract the content and the needed information
from APKs, we use apktool [9], a tool for reverse engineering closed, binary An-
droid applications. It decodes APK files almost to the original form and struc-
ture. It provides the source code of the application in an intermediate “Smali”
format [10] which is an assembler for the dex format used in Android Java virtual
machine implementation.
Inspecting Decoded APK Files. Given an activity, there does not exist
any direct mapping between its source code and its UI page. To measure UI
complexity, we need to recover this linking.

Given an application, we extract the path to the source code of activities
from the manifest file. To map the activities to their corresponding XML layouts,
similar to Shirazi et al.’s work [11], we parse the source code of an activity (i.e.,
Smali file) to look for a call of the SetContentView() method, which includes an
ID to the corresponding UI XML layout file. However, this heuristic cannot map
an activity to the corresponding XML layout file if the input argument to this
method is the name of the UI XML layout file. To overcome this issue, we trace
both IDs and names.
Calculating Metrics. We parse the XML layout files to calculate different UI
metrics that is used to quantify UI complexity. We consider two sets of metrics in
different granularities (i.e., application and activity levels) as shown in Table 2.
For the application level metrics, we compute the UI complexity metrics for each
activity, and lift the metrics up to the application level by using the average
values for ANI, ANO, ANE and sum for NA. We categorize the elements as
inputs and outputs as shown in Table 3. We use input and output tags listed in
Table 3 since such elements are frequently used in Android applications [11].

Table 2. Proposed Application and Activity Level Metrics

Metric Names Description

Activity Level
NI Number of Inputs in an activity
NO Number of Outputs in an activity
NE Number of Elements in an activity

ANI Average Number of Inputs in an application
Application ANO Average Number of Outputs in an application

Level ANE Average Number of Elements in an application
NA Average Number of Activities in an application

Extracting Functionalities We extract the functionalities of each mobile ap-
plication using text mining techniques. For each activity, we extract contents,
strings, labels and filenames associated to the source code of activities and their
corresponding UI XML layout files. We use two different heuristics to extract
the texts shown to a user from an activity: i) labels assigned to each element in
the UI XML layout file, and ii) strings assigned from the source code. Finally,
we use LDA [12] to automatically extract the functionalities in each category.



5

Table 3. Input and Output Tags

Element Names

Inputs
Button, EditText, AutoCompleteTextView, RadioGroup, RadioButton
ToggleButton, DatePicker, TimePicker, ImageButton, CheckBox, Spinner

Outputs TextView, ListView, GridView, View, ImageView, ProgressBar, GroupView

4 Study Results

This section presents and discusses the results of our two research questions.

RQ1: Can our measurement approach quantify UI complexity?

Motivation. Measuring the complexity of a UI is not a trivial task. As the first
step, we evaluate if our UI complexity metrics and our measurement approach
(i.e., static analysis) can be used to quantify UI complexity. We want to answer
this concern by testing whether our UI complexity metrics can testify hypothe-
ses reported by previous different studies. A user study by Kane et al. [3] has
shown that user-perceived quality of some categories of mobile applications is
lower than the others. For example, users are reluctant to use smartphones for
shopping purposes. As a result, we aim to find out whether we can make similar
observations using our metrics and approach. If we provide evidence that our
measured metrics for quantifying UI complexity can correlate with the findings
of previous studies, we will conjecture that our proposed metrics can be used for
studies on the UI complexity of mobile applications.
Approach. For each APK file (application), we use the approach mentioned in
Section 3.2 to map the source code of activities to their corresponding UI XML
layout files. Next, to quantify UI complexity within each category (see Table 2),
we calculate four application level UI metrics (i.e., ANI, ANO, ANE and NA).
Finally, based on each metric, we observe whether the UI complexity is different
between categories. We test the following null hypothesis among categories:

H1
0 : there is no difference in UI complexity of various categories.

We perform Kruskal Wallis test [13] using the 5% confidence level (i.e., p-
value < 0.05) among categories. This test assesses whether two or more samples
are originated from the same distribution.

To testify the previous findings by Kane et al. [3], we classify our categories
based on their study into two categories: i) applications that belong to the cate-
gories with high user-perceived quality, and ii) the ones that belong to categories
with low user-perceived quality (i.e., Shopping, Health, Travel, Finance, Social).
Then, we investigate whether UI complexity is different among these two groups.
We test the following null hypothesis for these two groups:

H2
0 : there is no difference in the UI complexity of applications related to

categories with high and low user-perceived quality.
We perform a Wilcoxon rank sum test [13] to evaluate H2

0 , using the 5% level
(i.e., p-value < 0.05).



6

Table 4. Kruskal-Wallis test
results for application level UI
metrics in different categories.

Metric p-value

ANI 0.001148
ANO <2.2e-16
ANE <2.2e-16
NA 4.842e-05

Table 5. Wilcoxon rank sum test results for
the usage of application level UI metrics in cat-
egories with high and low user-perceived quality.

Metric p-value ∆Cliff

ANI 1.23e-11 -0.21
ANO 1.927e-10 -0.19
ANE 0.001 -0.10
NA 0.007 -0.05

Findings. Our approach for quantifying UI complexity confirms the
findings of previous studies. The Kruskal Wallis test was statistically signif-
icant for each application level UI metric between different categories (Table 4)
meaning that there exists a significant difference in the UI complexity of various
categories. Moreover, there also exists a difference between the UI complexity of
applications related to categories with high and low user-perceived quality. As
shown in Table 5, there exists a significant difference in UI complexity quanti-
fied by the four studied metrics that are used to quantify the applications in the
categories of high and low user-perceived quality. Therefore, by quantifying UI
complexity of mobile applications, we found the similar findings as the earlier
user studies ([2], [3]) that UI complexity is important on user-perceived quality
of mobile applications, and it varies among different categories. Therefore, our
measurement approach based on static analysis can quantify UI complexity.

RQ2: Does UI complexity have an impact on the user-perceived
quality of the functionalities in mobile applications?

Motivation. Mobile applications have a lot of variety even in the same category.
To perform a fine-grained analysis, we cluster the activities based on their func-
tionalities. We investigate whether there is a relation between UI complexity and
the user-perceived quality among various functionalities of mobile applications.
If yes, we can provide guidelines to developers of the proper number of activity
level UI metrics required to have a high quality functionality.
Approach. For each application, we extract the corresponding activities and
their UI XML layouts (see Section 3.2). Next, to label each activity with a fine-
grained functionality, we use LDA [12] which clusters the activities (documents)
based on their functionalities (i.e., topics). In other words, for each activity, we
extract all the strings and labels shown to the users (see Section 3.2). We apply
LDA to all the activities retrieved from the existing applications in a category
to extract their corresponding functionalities.

Since mobile applications perform a limited number of functionalities, the
number of topics (i.e., K ) should be small in our research context. As we are
interested in the major functionalities of applications, we empirically found that
K = 9 is a proper number for our dataset by manual labeling and analysis
of randomly selected mobile applications. We use MALLET [14] as our LDA
implementation. We run the algorithm with 1000 sampling iterations, and use



7

the parameter optimization provided by the tool to optimize α and β. In our
corpus, for each category, we have n activities (extracted from the applications
in the corresponding category) A = {a1, ..., an}, and we name the set of our
topics (i.e., functionalities) F = {f1, ..., fK}. These functionalities are different
in each category, but the number of them is the same (K = 9). For instance, f1 in
the Shopping category is about “Login” and “Sign in” functionality. However,
in the Health category, it is about “information seeking” functionality. LDA
automatically discovers a set of functionalities (i.e., F), as well as the mapping
(i.e., θ) between functionalities and activities. We use the notation θij to describe
the topic membership value of functionality fi in activity aj .

Each application (A) is consisted of several activities ({a1, a2, ..., an}), and
it has a user-perceived quality calculated by Equation (1). To compute the user-
perceived quality for each activity, we assign each activity the user-perceived
quality obtained from the application that they belong to. All the activities
from the same application acquire the same user-perceived quality. However, by
applying LDA [12] each activity acquires a weight of relevance to each function-
ality. Therefore, the user-perceived quality for an activity can originate from two
sources: i) the user-perceived quality of its corresponding application, and ii) the
probability that this activity belongs to a functionality. Moreover, we use a cut-
off threshold for θ (i.e., 0.1) that determines if the relatedness of an activity to a
functionality is important. A similar decision has been made by Chen et al. [15].
We calculate the user-perceived quality for each activity as the following:

AUPQ(aj) = θij ∗ UPQ(aj), (2)

Where AUPQ(aj) reflects the activity level user-perceived quality for activity j
(aj); θij is the probability that activity j (aj) is related to functionality i (fi);
UPQ(aj) is the user-perceived quality of the application which aj belongs to it.

For each functionality, we sort the activities based on the user-perceived
quality. Then, we break the data into four equal parts, and named the ones in the
highest quartile, activities with high user-perceived quality, and the ones in the
lowest quartile, activities with low user-perceived quality. Finally, we investigate
whether there exists any difference in the distribution of activity level UI metrics
(i.e., quantifiers of UI complexity in functionality level) between activities of low
and high user-perceived quality. We test the following null hypothesis for each
activity level UI metric in each category for each functionality:

H3
0 : there is no difference in UI complexity between activities with low and

high user-perceived quality.

We perform a Wilcoxon rank sum test [13] to evaluate H3
0 . To control family-

wise errors, we apply Bonferroni correction which adjusts the threshold p-value
by dividing the number of tests (i.e., 216). There exists a statistically significant
difference, if p-value is less than 0.05/216=2.31e-04.
Findings. There is a significant difference between UI complexity of
activities with low and high user-perceived quality. For each cell of Ta-
ble 6, we report three pieces of information. Let’s consider the cell related to the
Shopping category for the first functionality (i.e., f1) which refers to “Login”



8

Table 6. Average usage of activity level UI metrics in the activities with low and
high user-perceived quality for each functionality in each category. (p<0.0002/50?;
p<0.0002/5◦; p <0.0002+)

f1 f2 f3 f4 f5 f6 f7 f8 f9

Shopping
NI ↗2.23? ↗2.38? ↗3.92 ↗2.83? ↘3.89 ↗3.22? ↗2.53? ↘3.44? ↗2.25
NO ↗4.01? ↗3.55 ↗4.77? ↗4.92? ↘8.55 ↗5.40? ↗4.28? ↗6.27? ↗3.57
NE ↗11.13? ↗9.84? ↗16.17? ↗13.32? ↘22.80 ↗15.71? ↗11.83? ↗16.90? ↗10.00?

Health
NI ↗2.92? ↗2.01? ↘2.57? ↗3.25? ↗2.41? ↗2.54? ↘2.55 ↗3.23 ↘2.46
NO ↘4.20? ↘3.16? ↗3.22? ↗5.24? ↗2.70? ↗3.70? ↗3.78? ↗4.66? ↘3.11?

NE ↗13.41? ↘13.43? ↗10.35? ↗14.55? ↗8.32? ↗10.89? ↗10.86? ↗13.77? ↘8.95?

News
NI ↗2.63? ↘2.36? ↘3.25 ↗2.50? ↗2.21? ↗2.45? ↗3.26? ↗2.13? ↘2.47?

NO ↘3.70? ↘3.15? ↗3.50? ↘3.03? ↗3.00? ↗3.91? ↗3.58? ↗2.51? ↗3.72?

NE ↘11.66? ↘10.40? ↘11.94? ↘9.69? ↗10.06? ↗12.38? ↗12.59? ↗8.63? ↗12.75?

Transportation
NI ↘3.49? ↗4.17 ↗3.11? ↘1.77? ↘3.83? ↗4.39 ↗3.22? ↗4.09+ ↗3.78?

NO ↗2.81? ↗5.07+ ↗2.84? ↗3.35? ↘3.49? ↘4.21? ↗4.85? ↗3.53? ↘5.25◦

NE ↗10.39? ↗15.91+ ↗8.96? ↗9.44? ↗12.83? ↘12.72? ↗13.34? ↗12.70? ↘12.98?

Weather
NI ↗2.08? ↘3.33 ↗2.35 ↗1.23? ↗2.87? ↘2.04 ↗2.03? ↗3.78+ ↘3.29◦
NO ↘5.35? ↘6.17? ↗5.57? ↘11.77? ↘5.48? ↗4.23? ↗1.82? ↗6.38? ↗3.79?

NE ↘10.92? ↘16.61? ↗14.03? ↘30.97? ↗14.15? ↗8.99? ↗5.92? ↗14.65? ↗11.51?

Travel
NI ↗3.36? ↘3.81 ↗2.36? ↘3.52+ ↗3.51? ↘2.87? ↗3.64? ↗3.03? ↗2.41?

NO ↗4.22? ↗5.64? ↗2.61? ↘5.66? ↗4.77? ↘4.03? ↗4.26? ↘3.57? ↘3.21?

NE ↗12.94? ↗16.62? ↗7.78? ↘16.19? ↗14.52? ↘12.38? ↗11.94? ↘12.68? ↗10.46?

Finance
NI ↗3.38? ↘2.81? ↗3.97? ↘2.81? ↗2.40? ↗2.37? ↘4.14 ↗4.02? ↘5.29

NO ↗6.42? ↘4.59? ↘7.85? ↗6.30? ↗4.00? ↗4.01? ↗7.22? ↗5.98? ↘9.41◦
NE ↗15.90? ↘11.60? ↘21.00? ↗18.16? ↘11.24? ↗10.58? ↗18.24? ↗16.85? ↘24.77

Social
NI ↗2.77? ↘3.17? ↗2.48? ↘2.04? ↗2.96+ ↗3.02? ↗3.12? ↗2.06? ↘4.07
NO ↗4.57? ↘3.81? ↗3.86? ↗2.56? ↗3.50? ↗3.86? ↗5.38? ↗2.55? ↘6.16
NE ↗14.45? ↘14.10? ↗13.43? ↘9.39? ↗12.41? ↗14.36? ↗16.38? ↗9.35? ↘19.34

and “Sign in” functionalities, for the NI (i.e., Number of Inputs) metric. In this
cell, first, there is a “↗” or “↘” sign which implies whether the difference for
the corresponding metric (i.e., NI) between activities with low and high user-
perceived quality is positive or negative. In this example, it is positive (“↗”)
which means that activities related to this functionality (f1) in the Shopping
category with low user-perceived quality have more complexity for NI than the
ones with high user-perceived quality. Moreover, we report the average usage of
the corresponding metric (NI) for the activities with high user-perceived quality
which is 2.23 in this example. Such average values can be used to derive software
development guidelines (e.g., McCabe [4]). Here, it implies the average number
of the corresponding activity level UI metric for high quality activities. Finally,
we report whether the difference in the usage of the corresponding metric (i.e.,
NI) is statistically significant between low quality activities and high quality
ones. In this example, the difference is statistically significant (?).

As it can be seen from Table 6, we can reject H3
0 , and conclude that there ex-

ists a significant difference in UI complexity between activities with low and high
user-perceived quality. Furthermore, we observe that UI complexity is dependent
on the corresponding functionality and category. For some functionalities higher
UI complexity can result in a better user-perceived quality. However, in some
cases this relation is quite different. In most cases this difference is a positive
number (“↗”) meaning that low quality activities tend to use more activity
level UI metrics than the high quality ones. In other words, simpler activities
in terms of our used activity level UI metrics may results in a better perceived
quality by the users. Our guidelines can be exploited by developers to use the
proper UI complexity required to have functionalities with high user-perceived
quality.



9

5 Threats to Validity

We now discuss the threats to validity of our study following common guidelines
for empirical studies [16].

Construct validity threats concern the relation between theory and observa-
tion. They are mainly due to measurement errors. Szydlowski et al. discuss the
challenges for dynamic analysis of iOS applications [17]. They mention that these
challenges are user interface driven. Due to such challenges, we were not able to
use dynamic analysis for mobile application UI reverse engineering for a large
scale study. In this study, our premise is based on the UI elements declared in
XML files since it is the recommended approach by Android guidelines [6].

Threats to internal validity concern our selection of subject systems, tools,
and analysis method. The accuracy of apktool impacts our results since the
extracted activity and XML files are provided by this tool. Moreover, the choice
of the optimal number of topics in LDA is a difficult task. However, through a
manual analysis approach, we found that in all categories there exist at least 9
common functionalities.

Conclusion validity threats concern the relation between the treatment and
the outcome. We paid attention not to violate assumptions of the constructed
statistical models; in particular we used non-parametric tests that do not require
any assumption on the underlying data distribution.

Reliability validity threats concern the possibility of replicating this study.
Every result obtained through empirical studies is threatened by potential bias
from data sets [18]. To mitigate these threats we tested our hypotheses over 1,292
mobile applications in 8 different categories. We chose these categories since they
contain both categories with high and low user-perceived quality, and they are
from different domains. Also, we attempt to provide all the necessary details to
replicate our study.

Threats to external validity concern the possibility to generalize our results.
We try to study several mobile applications (1,292) from different categories. Our
study analyzes free (as in “no cost”) mobile applications in 8 different categories
of the Android Market. To find out if our results apply to other mobile stores and
mobile platforms, we need to perform additional studies on those environments.

6 Conclusion

In this paper, we provided empirical evidence that UI complexity has an impact
on user-perceived quality of Android applications. To quantify UI complexity,
we proposed various UI metrics. Then, we performed a detailed case study us-
ing 1,292 free Android applications distributed in 8 categories, to investigate
the impact of UI complexity on user-perceived quality of mobile applications.
The highlights of our analysis include: i) We can quantify UI complexity based
on our measurement approach (RQ1) and ii) There is a significant difference
between UI complexity of activities with low and high user-perceived quality.
Activities with high user-perceived quality tend to use less activity level UI



10

metrics (i.e., simpler) than activities with low user-perceived quality. Moreover,
we derive guidelines for the proper amount of UI complexity required to have
functionalities with high user-perceived quality (RQ2).

In future work, we plan to replicate this study on more categories existing
on Android Market. Moreover, we should investigate whether our findings are
consistent among other platforms (iOS and BlackBerry).

References

1. A. K. Karlson, B. R. Meyers, A. Jacobs, P. Johns, and S. K. Kane, “Working over-
time: Patterns of smartphone and pc usage in the day of an information worker,”
in PerCom, 2009.

2. A. K. Karlson, S. T. Iqbal, B. Meyers, G. Ramos, K. Lee, and J. C. Tang, “Mobile
taskflow in context: A screenshot study of smartphone usage,” in SIGCHI, 2010.

3. S. K. Kane, A. K. Karlson, B. R. Meyers, P. Johns, A. Jacobs, and G. Smith,
“Exploring cross-device web use on pcs and mobile devices,” in HCI: part I, 2009.

4. T. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions
on, vol. SE-2, no. 4, pp. 308–320, 1976.

5. E. G. Nilsson, “Design patterns for user interface for mobile applications,” Ad-
vances in Engineering Software, vol. 40, no. 12, pp. 1318–1328, 2009.

6. “Android guidelines,” Apr 2014. [Online]. Available: http://developer.android.
com/guide/developing/building/index.html

7. I. J. Mojica Ruiz, “Large-scale empirical studies of mobile apps,” Master’s thesis,
Queen’s University, 2013.

8. M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr for app
stores,” in MSR, 2012.

9. “apktool.” [Online]. Available: http://code.google.com/p/android-apktool/
10. “smali.” [Online]. Available: http://code.google.com/p/smali/
11. A. Sahami Shirazi, N. Henze, A. Schmidt, R. Goldberg, B. Schmidt, and

H. Schmauder, “Insights into layout patterns of mobile user interfaces by an auto-
matic analysis of android apps,” in SIGCHI, 2013.

12. D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the J. of
machine Learning research, vol. 3, pp. 993–1022, 2003.

13. D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures.
crc Press, 2003.

14. A. K. McCallum, “Mallet: A machine learning for language toolkit,” 2002.
[Online]. Available: http://mallet.cs.umass.edu

15. T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining software
defects using topic models,” in MSR, 2012.

16. R. K. Yin, Case study research: Design and methods. Sage, 2009, vol. 5.
17. M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna, “Challenges for dynamic

analysis of ios applications,” in iNetSec, 2012.
18. T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to

learn defect predictors,” Software Engineering, IEEE Transactions on, vol. 33,
no. 1, pp. 2–13, Feb 2007.


