
Mining User Intents to Compose Services for
End-Users

Yu Zhao, Shaohua Wang, Ying Zou
Queen’s University, Kingston, Ontario, Canada
yu.zhao@queensu.ca, shaohua@cs.queensu.ca,

ying.zou@queensu.ca

Joanna Ng, Tinny Ng
IBM CAS Research, Markham, Canada

{jwng, tng}@ca.ibm.com

Abstract—End-users repetitively perform various on-line tasks
and invoke multiple web services for their re-occurring activities,
such as planning a trip. Usually, end-users have to complete
different tasks in order to achieve a goal, and look through
large volumes of services to find the best ones that satisfy
their constraints, such as a budget limit. Current approaches
on service composition require programming skills and domain
knowledge to accomplish goals. Moreover, existing approaches
lack an automatic way to analyze end-users’ goals and extract
relevant tasks for achieving goals. In this paper, we provide a
lightweight service composition framework for end-users with
limited technical background. Our framework analyzes end-
users’ goals expressed in natural languages to mine tasks (e.g.,
plan a trip) and non-functional constraints (e.g., budget < 500).
Our framework extracts task models from textual descriptions
of tasks (e.g., eHow, a How-to instruction website) to guide the
selection of services and recommend web services that can finish
tasks and satisfy constraints. We have designed and developed
a prototype as a proof of concept. We conduct case studies to
evaluate the effectiveness of our framework. Our framework can
identify tasks with a precision of 93% and a recall of 77%, and
extract non-functional constraints with a precision of 89% and a
recall of 76%. A user study shows that our framework is helpful
for end-users to compose services.

Index Terms—end-user goals and constraints, natural language
processing, web tasks, service composition

I. INTRODUCTION

Web services are prevalent in our daily life. Pro-
grammableWeb1, a service repository, indexes more than
14,000 web services. Such a large volume of web services
enable end-users to conduct various on-line tasks to achieve
end-users’ goals, such as shopping on-line and planning a
trip. Intuitively, an end-user’s goal can be expressed in natural
languages. For example, one friend can send a message “I want
to plan a Disney World trip with a budget less than $500” to
another friend. This message, a textual description, conveys
an end-user’s goal that has a task and a constraint. A task
represents the main intent of the goal, e.g., plan a Disney
World trip, and constraints show end-users’ non-functional
requirements, e.g., “price < 500”. Generally speaking, a single
web service is not sufficient to accomplish an end-user’s
goal. End-users have to decompose an end-user’s goal into
a set of relevant tasks at a lower granularity to discover
the relevant services that can carry out the corresponding

1http://www.programmableweb.com/

tasks, and compose a set of logically related web services
to accomplish the end-user’s goal.

An extensive research effort has focused on assist-
ing end-users in service composition. Approaches such
as [5][7][16][26] rely on programming logics to orchestrate
services and data sources. Such approaches require in-depth
knowledge and technical skills. Mashup technology provides a
user-friendly infrastructure for end-users to combine different
services [14][17][28]. However, end-users have to specify rele-
vant tasks to achieve a goal and repetitively search for services
that can achieve the relevant tasks. Moreover, the aforemen-
tioned approaches do not consider end-users’ constraints in
service composition. End-users experience the following pain
points to perform on-line tasks:

• Unable to automatically analyze end-users’ goals and
identify relevant tasks for given goals. End-users need
some knowledge of relevant tasks and a plan to achieve
the tasks for a given goal. For example, to plan a trip
to Orlando Disney, end-users need know the relevant
tasks, such as buying admission tickets, booking hotels
and purchasing flight tickets. In the current practice, end-
users issue queries manually and search the web for
relevant web services. To relieve end-users from cognitive
overloading, we need to provide end-users techniques for
automatically analyzing end-users’ goals and obtaining
relevant tasks.

• Repetitively searching for desired web services. To find
the best service among functionally similar services, end-
users have to look through a large amount of services. For
example, an end-user can visit various ticket sale websites
to find the greatest deal for Disney tickets. Moreover,
the end-user has to be cautious about the constraints on
selecting services. For example, in the above example, the
end-user needs to limit all of the expenses within $500. It
is a tedious and time-consuming job to repetitively search
for services to meet the constraints. Therefore, there is an
urgent need for automatically discovering and composing
related web services based on the constraints.

To guide end-users to accomplish their goals, our earlier
work by Upadhyaya et al. [25] proposes an approach to
extract the relevant tasks from on-line How-to instructions.
However, the approach lacks the analysis of end-users’ goals

(e.g., in natural languages) for mining tasks and constraints.
Moreover, the approach does not take into consideration end-
users’ constraints in service selection and integration.

In this work, we extend the earlier work [25]. Our frame-
work allows end-users to express their goals in natural lan-
guages without relying on any programming language and
technical terms. Our framework understands user intents using
natural language processing techniques. We leverage textual
descriptions of tasks, such as on-line How-to instruction web
pages, to automatically discover a collection of relevant tasks
for guiding the selection of web services. Compared with
the approach of task identification in [25], our approach is
more sophisticated by analyzing grammatical structures of
sentences. Moreover, we recommend sets of services that
match end-users’ constraints.

We have implemented a prototype of our framework as a
proof of concept. We evaluate the effectiveness of our frame-
work through empirical experiments and a user case study. On
average, we achieve a precision of 93% and a recall of 77%
on identifying tasks, and a precision of 89% and a recall of
76% on identifying constraints from natural languages. The
results of our case study show that our framework is helpful
for end-users in service composition.

Paper Organization: Section II presents the background of
this paper. Section III describes our proposed framework that
automatically analyzes user intents and recommends services.
Section IV introduces our empirical studies. Section V sum-
marizes the related studies. Section VI concludes our work
and describes the future work.

II. BACKGROUND

In this paper, we analyze textual descriptions of tasks, such
as on-line How-to instruction web pages to generate relevant
tasks using natural language processing (NLP) techniques.
Here, we discuss the NLP tools used by our framework and
basic structures of How-to instruction web pages.

Plan/VB a/DT cheap/JJ Disney/NNP World/NNP trip/NN less/JJR than/IN $/$
500/CD to/TO spend/VB my/PRP holiday/NN

Noun Phrase (NP): a cheap Disney World trip, less than $500
Clause (SBAR): to spend my holiday

If/IN the/DT price/NN reduces/VBZ to/TO 500/CD dollars/NNS, buy/VB an/
DT iPhone/NNP and/CC a/DT phone/NN case/NN for/IN my/PRP sister/NN
and/CC notify/VB my/PRP mother/NN about/IN the/DT expense/NN.

Noun Phrase (NP): an iPhone and a phone case, my mother
Prepositional Phrase (PP): for my sister, about the expense
Clause (SBAR): If the price reduces to 500 dollars

Example 1

Example 2

Tagger
Plan a cheap Disney World trip less than $500 to spend my holiday.

If the price reduces to $500, buy an iPhone and a phone case for my sister
and notify my mother about the expense.

Parser

Parser

Tagger

Fig. 1: Two examples of POS tagger and Parser analyzed sentences (POS
tags: determiner (DT), verb (VB), noun (NN), preposition (IN), to (TO),
conjunction (CC), adjective (JJ), comparative adjective (JJR), adverb (RB),
number (CD) and personal pronoun (PRP))

1) Natural Language Processing: We analyze the grammat-
ical structure of a sentence using the state-of-the-art Stanford

Part-of-Speech (POS) Tagger [24] and Stanford Natural Lan-
guage Parser [9]. Figure 1 shows two examples of using the
POS tagger and the Parser for analyzing sentences. POS tagger
tags each word in a sentence with part-of-speech markers. For
example, in Figure 1, “plan” is tagged as a verb and “cheap” is
tagged as an adjective. The Parser groups words into phrases
with brackets. For example, “a cheap Disney World trip” is
grouped as a noun phrase (i.e., NP) in the Example 1 of
Figure 1. Another noun phrase “less than $500” expresses
an end-user’s requirement about the goal. The Example 2
shows a more complex sentence that contains three tasks: “buy
iPhone”, “buy phone case” and “notify mother expense”.

2) On-line How-to Instructions: How-to instruction web-
sites, such as eHow2 and wikiHow3, are knowledge bases that
teach people to conduct activities in various aspects of human
lives, such as education, travel and finance. Typically, a How-
to instruction web page describes a list of steps that need
to be executed for accomplishing a goal. Figure 2 shows an
example of a How-to instruction web page containing steps
for planing a Disney World trip4. The How-to instruction
web page contains a goal and textual descriptions of tasks
to achieve the goal.

Goal

Step 1 Textual D
escriptions of Tasks

to achieve the goal

Step 2

Step 3

Step 4

Fig. 2: An annotated screen shot of an eHow How-to instruction web page

III. OVERVIEW OF OUR FRAMEWORK

Figure 3 shows the steps of our framework. An end-user
enters a goal description into our framework, as shown in
Figure 4. We analyze the goal description to extract tasks and
constraints. If an end-user’s goal description is high-level and
coarse-grained, we expand the goal to extract a collection of
relevant tasks from textual descriptions of tasks. We discover
proper services from our service pool based on the extracted
relevant tasks. We incorporate the constraints extracted from
the goal description (e.g., price < 500) into the selection of
services and recommend the selected services to end-users, as
shown in Figure 5.

Please input your goal: I want to plan a Disney World
trip with a budget less than $500.

Fig. 4: Goal input box in our framework

2http://www.wikihow.com
3http://www.ehow.com
4www.ehow.com/how 4716518 plan-disney-world-vacation-budget.html

2

Goal Description Identify Tasks

Textual
Descriptions of

Tasks

Generate a Task
Model Select ServicesTask

Descriptions

Constraint
Descriptions

Task Model

Service
Repository

Composite
Service

Step 1: Extracting Tasks and Constraints Step 2: Selecting Services

Identify
Constraints

Discover Services

Fig. 3: An overview of our framework

TABLE I: Rules to extract tasks in various linguistic patterns (VB stands for Verb, NP denotes Noun Phrase and PP represents Prepositional Phrase)

Linguistic
Pattern Rules to Extract Task Example

1 VB+NP Action: verb (VB); Object: nouns in a noun phrase (NP) In “buy an iPhone”, the task is “buy iPhone”.

2 VB+PP Action: verb (VB); Object: nouns in a prepositional phrase (PP) In “invest in the company”, the task is “invest
company”.

3 VB+NP+PP Action: verb (VB); Object: nouns in a noun phrase (NP) and nouns
in a prepositional phrase (PP) that has a preposition “of” or “about”

In “notify my mother about the expense,
the task is “notify mother expense”.

price: $106
discount: 10%

1 day ticket Orlando
Gateway Hotel

price: $99
discount: 50%
rating: 7.7/10.0

Spirit Airline
Round trip

price: $246
time: 2h19m

Service:

Attribute
Values:

Fig. 5: Output of our framework: a set of services

A. Extracting Tasks and Constraints
We analyze sentences to extract tasks and constraints. We

normalize words in sentences to their stem, base or root form
using the Porter stemmer [19] (e.g., “reduced”, “reducing” and
“reduces” are normalized to “reduce”).

1) Identifying Tasks: A sentence has at least a verb and a
noun to express tasks and constraints. Verbs and nouns from
noun phrases or prepositional phrases are formed into action-
object pairs [11]. An action-object pair shows how an action
can be performed on an object. For example, “plan a Disney
World trip” has an action “plan” and an object “Disney World
trip”. We identify tasks from action-object pairs.

A sentence can have multiple tasks depending on the
number of action-object pairs. For example, “buy iPhone”,
“buy phone case” and “notify mother expense” are three tasks
for the Example 2 in Figure 1. We separate a sentence into
multiple segments, and identify tasks in each segment. A
valid segment should have a verb and an object. We identify
segments in the following two cases:

• Segments separated by conjunctions: As shown in the
Example 2 of Figure 1, the sentence segment before the
conjunction (i.e., and) contains a verb “buy” and a noun
phrase “an iPhone and a phone case”. “Notify my mother
about the expense” following the conjunction (i.e., and)
is another segment.

• Segments in a prepositional phrase or a subordinate
clause: A prepositional phrase (e.g., after buying an
iPhone) or a subordinate clause (e.g., to spend my hol-
iday) can have sentence segments. We identify action-
object pairs and extract sentence segments.

Segments, declaring facts about various situations, are irrel-
evant to service composition, e.g., “The hotel is in Toronto”.
We filter out such sentence segments based on phrasal verbs
and subject noun phrases:

• Phrasal verb: If only one verb exists and the verb is one
of {be, is, am, are, was, were, ’s, ’re}, we filter out the
segment since the verb is not an action.

• Subject noun phrase: If a subject noun phrase contains a
determiner, such as “a”, “the” and “this”, we consider that
the segment does not include a task, since the segment
declares facts about the referenced subject.

Table I shows our rules for extracting tasks using various
linguistic patterns from segments. In pattern #1, we skip a
noun phrase without a noun and identify objects from the next
noun phrase. For example, “buy her an iPhone” contains two
noun phrases (i.e., “her” and “an iPhone”), and has a task
“buy iPhone”. A segment with a pattern #1, 2 or 3 can contain
multiple tasks, since objects in a phrase (i.e., a noun phrase
or a prepositional phrase) can be separated by a comma or a
conjunction. For instance, “buy an iPhone and a phone case”
contains two tasks “buy iPhone” and “buy phone case”. In an
extracted task description (using rules from Table I), an object
“this” or “it” is replaced with the last mentioned object [25].

We identify tasks from segments in a subordinate clause.
Tasks in a subordinate clause, such as an infinitive-clause and
a that-clause (i.e., a clause starts with a that), can be used to
explain the main clause. We merge tasks in the main clause and
the subordinate clause in such a case. For example, Example 1
in Figure 1 has a task “plan Disney World trip spend holiday”.

2) Identifying Constraints: Non-functional constraints are
linked with tasks to express an end-user’s desire about ser-
vices [29]. Constraints can be used to 1) fill in service
parameters (e.g., “in Toronto” for a hotel service); 2) identify
a target person (e.g., for my sister); and 3) restrict on the
selected services (e.g., less than $500).

We identify constraints from prepositional phrases, noun
phrases and clauses in a segment. Table II shows our rules
for extracting constraints. We store constraints in a key-value
pair form. A key defines a label for a constraint and a value
shows the details of a constraint. For example, in pattern #3
of Table II, the key is an object (i.e., sister) and the value
contains the object and a preposition (i.e., {sister, for}).

Constraints can have an upper or a lower range to restrict the
selected services. When phrases contain a numerical number

3

TABLE II: Rules to extract constraints from Noun Phrases, Prepositional
Phrases and Clauses

Linguistic
Pattern Example Key-Value pair

(Key=Value)

N
ou

n
Ph

ra
se

1 Adjective cheap
Key:Adjective
Value:{Adjective};
cheap={cheap}

2 Quantifier
Phrase less than $500

Key:Measurement Unit
Value:{Number,Operator};
dollars={500, less than}

Pr
ep

os
iti

on
al

Ph
ra

se

3 Without
Number for my sister

Key:Noun
Value:{Noun,Preposition};
sister={sister,for}

4 With
Number over 500 dollars

Key:Measurement Unit
Value:{Number,Operator};
dollars={500, greater than}

5 Preposition is
“than”

price lower than
iPhone

Key:Last Mentioned Object
Value:{Noun, Operator};
price={iPhone, less than}

Clause 6 Verb + “to” +
Number

if the price
reduces to 500

Key:Measurement Unit
Value:{Number, Operator};
price={500, less than}

or a preposition “than” (e.g., pattern # 2, 4, 5 and 6 in Table II),
we detect such constraints with the following steps:

• The key of the constraint is a measurement unit, such
as $ and dollars. Symbols (e.g., $) are transferred into
natural languages (e.g., dollars). If no measurement unit
is detected, we use the last mentioned object as the key
(such as pattern #6 in Table II).

• The value contains an operator that defines either a “less
than” or a “greater than” relation. An operator can be
inferred from adjectives (e.g., less), prepositions (e.g.,
under) and phrasal verbs (e.g., reduce to). We define a
bag of words that denote a “less than” relation: less,
lower, fewer, most, maximum, below, under, reduce, de-
crease, and a “greater than” relation: more, higher, least,
minimum, over, increase, raise. A word in a constraint
that is synonymous with the bag-of-words determines an
operator. We use WordNet [4], a large English database,
to identify synonymous words. WordNet groups synony-
mous words into sets called synsets and connect synsets
by different relations, such as hypernym and meronym.
Hypernym denotes a “kind of” relation. For example, bed
is a hypernym of furniture.

To make the extracted constraints meaningful, we recognize
four types of constraints: location (e.g., in Toronto), time (e.g.,
at Christmas), price (e.g., less than $500), and relative (e.g.,
for my sister). To determine the type of a constraint, we use
WordNet to identify hypernym trees for each word in the
extracted key of the constraint. A hypernym tree represents
a sequence of synsets, and each of synsets has a hypernym
relation with the succeeding synset. The synsets of “location”,
“time”, “monetary” and “relative” represent the conceptual
semantic meaning of location, time, price and relative respec-
tively. We traverse all the paths of the hypernym trees to record
the number of occurrences of the four synsets. The synset with
the highest occurrence number wins and we classify the type
of the constraint as the semantic meaning of the synset. The
key of the constraint that is initially identified using rules in
Table II is replaced with the constraint type. For example,

“dollars” is replaced with “price”.
3) Generating a Task Model: To guide the service selec-

tion and execution, we automatically generate a task model to
represent the logical execution order of tasks. In a task model,
tasks are associated with parameters to the tasks. Parameters
are nouns that relate to input or output parameters of services.
For example, a task description “type room numbers” has a
parameter “room numbers”. We use verbs in a task description
to identify parameters of tasks [25]. Verbs for input parameters
are: input, enter, fill, click, submit, type, and for output param-
eters are: show, select, read, confirm, validate, check, review,
decide, ensure, choose. An identified parameter belongs to the
previous identified task.

To represent the tasks in a logical relation, we identify three
kinds of task relations, i.e., sequence, parallel and choice.

• Sequence: Tasks are performed in a sequential order. We
recognize the sequential order in textual descriptions from
prepositions and conjunctions, such as “before”, “after”,
“by” and “if”.

• Parallel: Tasks are performed in any order. “And” and “as
well as” in textual descriptions denote a parallel relation.

• Choice: Only one task needs to be performed. We con-
sider the conjunction “or” as a choice relation.

If the order of tasks can not be found, we arrange the tasks
based on the order of occurrences in a sentence. We generate a
task model using the approach described by [25]. More details
of the approach can refer to [25]. An end-user can customize
the generated task model to merge, modify, delete and add
tasks. Figure 6 shows the generated task model for the goal
of planning a Disney World trip.

Plan Disney
World Trip

Buy Ticket | Disney website, Official

Buy Visitor’s Pass

Buy Nuts = Buy Cookies = Buy Snacks | Quick

Stay Hotel | Nearby

Visit Disney World

Shop Disney Store |
Online, Specials, Discounted Merchandise

Step 1

Step 2

Step 3

Step 4
Send Video | Free = Send Photo Email Postcards

Fig. 6: A simplified task model extracted from Figure 2 (“|” separates a task
and constraints, “!”: sequence order, “=”: choice order).

B. Selecting Services
We select sets of services that are desired by end-users by

incorporating end-users’ constraints from goal descriptions.
We follow the control flow specified in a task model (in
Section III-A3) as the order to select services. We first discover
services and then we perform the process of selecting services.

1) Discovering Services: A service in our framework has
a service description, input and output parameter descriptions.
We normalize words in service descriptions to identify mean-
ingful words. We decompose words using special characters,
such as “ ” and “-”, and capital cases if applicable. Suffix
containing numbers is removed (e.g., car1 is normalized to
car). Moreover, we use WordNet to remove non-English
words. Stop words (e.g., “a”, “the” and “is”) are removed and
word stemming is performed.

4

We discover services using Lucene5, a text search engine.
We index services with Lucene to organize services struc-
turally in the repository. Lucene combines Boolean Model
(BM) and Vector Space Model (VSM) [15] to perform
searching with queries, and derives a score for each service
denoting the relevance to the query. We use a task descrip-
tion, parameters of tasks and a constraint description as a
query. A query can contain a few keywords, such as “buy
iPhone”. A relevant service may not contain the keywords
extracted from the query. To increase the chance of identifying
relevant services, we expand keywords in queries to include
semantically related concepts (words) using ConceptNet [13].
ConceptNet is a large knowledge base that connects concepts
using semantic relations. ConceptNet records similarity scores
between concepts to represent the validity of the relations. We
choose four categories of relations, i.e., part (i.e., “PartOf”,
“DerivedFrom” and “MemberOf”), superior (i.e., “HasA”),
synonym (i.e., “RelatedTo” and “Synonym”) and instance (i.e.,
“IsA”), to expand keywords.

• Part represents a “part of” relation. For example, wing is
a part of bird.

• Superior denotes that a concept is superior to another.
For example, bird is superior to wing.

• Synonym represents that two concepts are semantically
related. For example, iphone is a synonym of ipod.

• Instance shows that a concept is a specific instance of
another. For example, iphone is an instance of telephone.

Figure 7 shows an example of the expanded concepts for
the keyword “iphone”. All the retrieved concepts are included

iphone:
telephone, smartphone, camera phone, blackberry,
multimedia, wireless, communication, combination, ipod,
knockoff, computer, high-end, melafonino

Fig. 7: Expanded concepts for the keyword “iphone” using ConceptNet

in the queries to search for services. We represent concepts
as weighted vectors to denote the importance of a concept
in a service. The weights for the concepts are the similarity
scores between concepts and query keywords. We calculate
three scores to match services with tasks using Lucene:

• Task score: A similarity score between a task and the
overall description of a service.

• Parameter score: A similarity score between parameters
of a task and the parameter description of a service.

• Constraint score: A similarity score between constraints
for a task and the overall description of a service.

We derive a synthetic score using Equation (1). Given a task,
we retrieve top 10 services, since Silverstein et al. [22] find
that end-users typically only go through the first 10 results.

SyntheticScore = S

task

+ S

parameter

+ S

constraint

(1)
Where S

task

is Task Score; S
parameter

is Parameter Score and
S

constraint

is Constraint Score.
2) Selecting Services: A large amount of functionally

similar services can be returned for a task. For example,

5http://lucene.apache.org

executing a Kayak hotel6 service can return a large amount
of hotels. Our framework recommends the hotel services to
meet end-users’ constraints. We use JDK 8.0, HTTPClient
version 4.57 and Axis28 to invoke services. HTTPClient is
employed to invoke RESTful services and Axis2 is used to
execute SOAP-based services.

Collect Attribute
Values

Weighted Sum
Attribute Values Select Services

Candidate
Services

Paths of
Services

Fig. 8: An overview of our service selection process

Figure 8 shows steps of our process of selecting services.
Several candidate services with the same functionality can
contain different non-functional attribute values (e.g., different
prices and user ratings) [29]. To select a service that meets
end-user’s satisfaction, the non-functional attributes of services
need to be considered. We collect attribute values from each
service and compute an overall score using the weighted sum
approach described as follows:

• Scaling. Some attributes can be negatively related to end-
user’s satisfaction. For instance, end-users prefer services
with a lower price. We scale the attribute values to a range
from 0 to 1 using the approach described by [29]. The
higher is the value, the better is the quality.

• Weighted Summing. We use the following equation to
derive a score:

Score(S
i

) =
nX

j=1

ScaledV alue

i,j

⇥ !

j

(2)

Where n is the total number of attributes; !
j

is the weight
for the jth attribute. !

j

2 [0, 1],
P

n

j=1 !j

= 1.
Our service selection process identifies paths of services

that follow the order of tasks specified in the task model.
We randomly generate weights in a service selection process.
Given a number of candidate services for a task, we select
the service with the maximum weighted sum score. The
value of an attribute for a path of services is a sum of
the attribute values of services in the path. For example,
the price of planning a trip is a sum of the price of an
admission ticket, a hotel and a flight ticket. If an attribute
value violates an end-user specified constraint (e.g., price <

500), we discard the path. We perform the service selection
process for multiple runs independently with different weight
settings to recommend several paths to end-users.

IV. CASE STUDY

In this section, we introduce our case study that evaluates
our framework. We first present the setup of our case study.
Then, we discuss the empirical study.

A. Case Study Setup

Collecting How-to instructions. We collect web pages of
How-to instructions from eHow and wikiHow using Google

6www.kayak.com
7https://hc.apache.org/httpcomponents-client-ga/
8http://axis.apache.org/axis2/java/core/

5

Custom Search API9. We extract the content of instructions
using the approach proposed by [25]. We collect 100 different
How-to instructions from 5 domains, i.e., travel (e.g., plan
a trip), E-commerce (e.g., buy clothes), finance (e.g., buy
stocks), education (e.g., apply a university) and job (e.g., find
a job). Each domain has 20 instructions.

Creating a service repository. We create a service repository
with two types of services, i.e., RESTful services [20] and
SOAP-based services. We collect and download 1,400 public
available WSDL files for SOAP-based services. We use Pro-
grammableWeb to manually download 401 RESTful services.
The collected 1801 services fall into 5 domains: travel (595
services), E-commerce (351 services), finance (420 services),
education (206 services) and job (229 services).

User study. We setup a user study to evaluate the effec-
tiveness of our framework. We recruit 14 subjects (i.e., 5
females and 9 males) to participate in our user study. All of
the subjects are graduate students who do not have background
on service composition techniques, but are familiar with on-
line tasks. The subjects typically spend 8-10 hours on-line per
day. We assign each domain with an equal number of subjects
to avoid the skewed user study. For each subject, we give a
face-to-face tutorial on the background knowledge and steps
to conduct the user study. The tutorial lasts about 15 minutes.
We ask a subject to submit a questionnaire10 after the study.
The questionnaire contains a set of single choice questions,
regarding the features and usability of our framework. Each
question has five choices for a subject to choose, i.e., strongly
disagree, disagree, neutral, agree, and strongly agree. We ask
a subject to specify additional five goals in our questionnaire
to be used in RQ3. We also ask a subject for suggestions on
our framework. Each subject takes approximately 1 hour to
finish the user study.

B. Research Questions

RQ 1. Can our framework effectively extract tasks and

constraints from textual descriptions in natural languages?

Motivation. It is critical to accurately extract tasks and con-
straints specified in natural languages in order to understand
end-users’ goals and build task models for service selection.

Approach. We apply our framework on the collected How-
to instructions to extract tasks and constraints. We evaluate
our framework using precision and recall as shown in Equa-
tions (3) and (4). The precision is the ratio of the total number
of correctly retrieved tasks (or constraints) to the total number
of tasks (or constraints) extracted by our framework. The recall
is the ratio of the total number of correctly retrieved tasks (or
constraints) to the total number of tasks (or constraints) in a
How-to instruction. The first author manually evaluated the
results.

Precision =
{relevant items} \ {retrieved items}

{retrieved items} (3)

9https://developers.google.com/custom-search/
10http://goo.gl/forms/Y3yTq2gtmd

Recall =
{relevant items} \ {retrieved items}

{relevant items} (4)

TABLE III: Results for extracting tasks and constraints(P: precision;R: recall)

Domain Tasks Constraints
P(%) R(%) P(%) R(%)

Travel 92 77 89 79
E-commerce 95 81 88 79
Finance 92 74 91 76
Job 93 74 88 72
Education 92 78 88 71

Results. Our framework can effectively identify tasks
and constraints from on-line How-to instructions written
in English. Table III lists the precision and recall for the iden-
tification of tasks and constraints. On average, our framework
can achieve a precision of 93% and a recall of 77% for the
identification of tasks, and a precision of 89% and a recall of
76% for the identification of constraints.

We summarize the main reasons for the misidentified tasks
and constraints: (1) The POS tagger tools can tag a word
erroneously. Therefore, we can not identify phrases correctly.
For example, in “select an online road trip planner”,“select”
should be tagged as a verb. However the tool parses “select”
as a noun. (2) Some action-object pairs of tasks do not
convey intents of sentences. For instance, for “make things
interesting”, “make things” is extracted as a task. However, it
fails to carry any particular meaning. (3) A constraint can
have several meanings. The variety of meanings brings us
difficulties to interpret the semantic meaning of constraints.
For instance, in “write a letter to the bank”, “bank” represents
a location. However, we tag “bank” as “price” since bank has
the semantic meaning of “monetory”.

RQ 2. Are end-users satisfied with our framework for

guiding the service selection?

Motivation. Our framework analyzes user intents in a goal
description and constructs a task model to guide end-users
to select services. We are interested to evaluate end-users’
perceptions of using our framework.

Approach. We conduct a user study to evaluate our frame-
work. We have designed and implemented a prototype of our
framework. To compare with our framework, we developed a
baseline approach. The subjects conducted both approaches.
We did not tell the subjects which is our approach.

In our framework, a subject follows the steps below:
(1) Specify goals: A subject inputs one goal for a given

domain in English. A subject can modify the extracted tasks
if the extracted results do not satisfy the subject’s requirement.

(2) Select on-line How-to instructions: We automatically list
top 10 How-to instructions. A subject chooses a relevant How-
to instruction.

(3) Customize task models: We automatically generate a
task model from a How-to instruction. A subject is allowed
to customize the task model, i.e., merging, deleting or adding
tasks, if he or she wants to.

(4) Select services: we automatically retrieve services for
each task from our service repository using our approach as

6

TABLE IV: Questionnaire results on end-users’ experience about our frame-
work(P:percentage;Number:number of subjects who agree or strongly agree)

Summary Questions P(%) Number
(#/14)

Framework Quality

Usefulness Is our system helpful
for service composition? 93% 13

Time Saving Does our system conserve
time to compose services? 86% 12

Language Processing Quality

Importance
Is it important to extract tasks and
constraints from the goal description? 100% 14

Is it important to automatically
generate a task model? 93% 13

Accuracy

Are the tasks and constraints
extracted from the goal description
by our framework meaningful?

100% 14

Is the task model extracted
by our framework meaningful? 86% 12

Completeness

Do you have complete knowledge
to achieve the goal using the
baseline approach?

43% 6

Does our framework remind
you useful tasks? 86% 12

Does the task model extracted by
our framework cover the complete
knowledge to achieve the goal?

71% 10

described in Section III-B1. A subject selects favorite services
for each task.

In the baseline approach, the subject enters the same goal as
using our framework. A subject needs to manually specify the
needed tasks to achieve the goal. Each task is described using
keywords. We discover services for each task using Lucene
described in Section III-B1 same as our framework. Subjects
choose their desired services for each task.

Results. Our framework is helpful for guiding end-
users in service selection. Table IV shows the questionnaire
results of our user study. Automatic task model identification
relieves end-users from repeatedly composing services for the
same goals. The task models extracted by our framework are
meaningful for the subjects. When conducting the baseline
approach, the subjects typically do not have a comprehensive
knowledge to achieve a goal. Our framework reminds the
subjects with useful tasks. In our framework, we identify tasks
and constraints by properly analyzing end-users’ goals and
on-line How-to instructions in English. Overall, the subjects
agree that our framework is helpful for service composition
and saves subjects’ time.

RQ 3. Can our framework help end-users select desired

sets of services?

Motivation. When selecting multiple services with con-
straints, end-users need put a lot of effort to pay attention on
the constraints. Our framework automatically selects end-user
desired services to satisfy end-users’ constraints.

Approach. We run real scenarios in two widely used do-
mains, i.e., travel and E-commerce, as a proof of concept for
our framework. In each domain, we select 5 goal descriptions
provided by end-users in questionnaires. We apply our frame-
work on each goal description. We identify a task model and
collect available services for each task. A task model has at
least two tasks that have available services to perform service
selection. We collect three kinds of service attribute values,
i.e., price, duration and user rating. We use the approach

TABLE V: Subject issued goal descriptions and results of our service
selection (#S: total number of services; OF: our framework; GS: gold standard;
A: average accuracy)

Goal Description #S Time(ms) A
(%)OF GS

Tr
av

el

1
I want to make a round-trip travel
plan between Beijing and Toronto
for 14 days.

396 243 1,711 82%

2 I want to go to Vancouver for 5 days
with a maximum cost of $2000. 171 195 703 67%

3 I want to travel to India with travel
cost less than 2500 dollars. 211 176 974 89%

4 I want to plan a trip to Japan with
price less than $3000. 216 175 843 77%

5 I’m expecting a 10-day trip in USA. 239 188 799 100%

E-
co

m
m

er
ce

6 I want to buy a laptop with 16G ram. 217 107 4,307 71%

7 I want to buy a jacket with price
less than 500 bucks. 137 118 184 89%

8 I want to buy a gift for myself. 171 123 1,541 79%

9 I want to buy a car which is
environmental friendly. 358 112 147 80%

10 Buy a book about stock. 400 126 175 80%

described in Section III-B2 to select services.
To validate our recommended sets of services, we create a

gold standard by conducting an exhaustive search of available
services and generating all the possible paths of executing
services. The gold standard contains the Pareto optimal paths
that satisfy end-users’ constraints. A path is Pareto optimal if-
and-only-if no other paths can make one or more attribute
values higher without worsening any other attributes. We
compare the results from our framework with the results from
the gold standard and compute the accuracy of our framework
using Equation (5). The accuracy is the ratio of the number of
the correctly identified services to the total number of services
in the optimal paths of the gold standard. For each goal
description, we run our approach 10 times to select services
and compute the average execution time and accuracy.

Accuracy =
{#Correctly Identified Services}
{#Services in Gold Standard} (5)

Results. Our framework is more efficient to help end-
users select services. Table V shows that, on average, our
framework can select 252 services using 156 milliseconds
(i.e., 0.156 seconds). To create a gold standard, the average
execution time is 1,138 milliseconds (i.e., 1.138 seconds). The
execution time of a service selection process depends on the
number of tasks and the number of services for each task [29].
Our framework has an average accuracy of 81% to identify
optimal services. Our framework selects a service for a given
task using the weighted sum approach. However, the weighted
sum approach would fail to discover a Pareto optimal service
that is located in the concave areas of the Pareto front [18].
For the scenarios #2, 3, 4, 7 listed in Table V, the identified
paths for executing services can satisfy end-users’ constraints.

V. RELATED WORK

Our work is related to two research areas: natural language
processing and end-user driven service composition.

Natural language processing. Natural language processing
is studied and applied in various aspects, such as information
extraction (IE), question-answer (QA) systems and semantic
parsing. An IE system utilizes natural language processing

7

techniques to extract predefined types of information from
unstructured text [1][3][12][21]. QA systems analyze end-
user questions in natural languages and search for direct
answers from knowledge bases [8][10]. Thomason et al. [23]
and Chen et al. [2] utilize semantic parsing techniques to
translate natural languages to a formal representation form
understood by machines. In our work, we analyze textual
descriptions of tasks in the context of service composition.
Our framework is similar to Upadhyaya et al. [25] who
mine process knowledge to compose services. Unlike their
approach, we allow users to express goals in natural languages
to improve the expressiveness of goal descriptions.

End-user driven service composition. Wang et al. [26]
propose a spreadsheet-like programming model to allow end-
users build applications in Mashup. Maraikar et al. [16] use a
coordination language to compose heterogenous services and
data sources. Hang et al. [5] design a meta-model to assist
end-users in service composition. All of the aforementioned
approaches demand basic programming concepts from end-
users. Approaches, such as Hornung et al. [6] and Hua et
al. [27], use keywords to search for services. However, they
do not identify user intents and extract constraints from end-
user issued queries. Zeng et al. [29] take into account the
constraints, expressed in an expression language, in the service
composition. Different from Zeng et al.’s work, we extract
constraints from natural languages.

VI. CONCLUSION AND FUTURE WORK

To accomplish end-users’ goals, end-users need take a has-
sle to discover relevant web services and compose them based
on end-users’ constraints. To shield the complexity of service
composition, our framework helps end-users without technical
background to compose services. Our framework understands
user intents by automatically mining tasks and constraints from
end-users’ goals. We incorporate the constraints specified in
end-users’ goals to select services. Our case studies show that
our framework can achieve a high precision and a high recall
to identify tasks and constraints from textual descriptions in
natural languages. Our framework is effective in identifying
optimal services for end-users. The results of our user study
demonstrate that the recruited end-users in our study find our
framework highly useful.

In future work, we plan to enhance the automation level
of our framework. We can automatically retrieve How-to
instructions based on the selection history. We can also remove
infrequently performed tasks for task models. Moreover, we
would like to perform a larger case study including more How-
to instructions and evaluators to remove possible bias.

REFERENCES

[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni,
“Open information extraction for the web,” in IJCAI, vol. 7, 2007, pp.
2670–2676.

[2] D. L. Chen and R. J. Mooney, “Learning to interpret natural language
navigation instructions from observations,” in Proc. 25th AAAI Conf.
Artificial Intell., 2011, pp. 859–865.

[3] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates, “Unsupervised named-entity
extraction from the web: An experimental study,” Artificial Intell., vol.
165, no. 1, pp. 91–134, 2005.

[4] C. Fellbaum, WordNet. Wiley Online Library, 1998.
[5] F. Hang and L. Zhao, “Developing a meta-model to support end-user in

composition,” in Int’l. Conf. Web Services, pp. 471–478.
[6] T. Hornung, A. Koschmider, and G. Lausen, “Recommendation based

process modeling support: Method and user experience,” in Conceptual
Modeling. Springer, 2008, pp. 265–278.

[7] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fou-
quet, “Mashup of metalanguages and its implementation in the kermeta
language workbench,” Software & Systems Modeling, vol. 14, no. 2, pp.
905–920, 2015.

[8] B. Katz, “From sentence processing to information access on the world
wide web,” in AAAI Spring Symp. Natural Language Process. for the
World Wide Web, vol. 1, 1997, p. 997.

[9] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Proc.
41st Annual Meeting on Assoc. for Computational Linguistics-Volume
1, 2003, pp. 423–430.

[10] C. Kwok, O. Etzioni, and D. S. Weld, “Scaling question answering to
the web,” ACM Trans. Inform. Syst., vol. 19, no. 3, pp. 242–262, 2001.

[11] T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman, “Active
objects: Actions for entity-centric search,” in Proc. 21st Int’l. Conf.
WWW, 2012, pp. 589–598.

[12] B. Liu, C. W. Chin, and H. T. Ng, “Mining topic-specific concepts and
definitions on the web,” in Proc. 12th Int’l. Conf. WWW. ACM, 2003,
pp. 251–260.

[13] H. Liu and P. Singh, “Conceptnet practical commonsense reasoning tool-
kit,” BT technology J., vol. 22, no. 4, pp. 211–226, 2004.

[14] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards service composition
based on mashup,” in IEEE Congress on Services, 2007, pp. 332–339.

[15] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-
mation retrieval. Cambridge university press Cambridge, 2008.

[16] Z. Maraikar, A. Lazovik, and F. Arbab, “Building mashups for the en-
terprise with sabre,” in Service-Oriented Computing–ICSOC. Springer,
2008, pp. 70–83.

[17] M. Matera, M. Picozzi, M. Pini, and M. Tonazzo, “Peudom: A mashup
platform for the end user development of common information spaces,”
in Web Engineering. Springer, 2013, pp. 494–497.

[18] A. Moustafa and M. Zhang, “Multi-objective service composition using
reinforcement learning,” in Service-Oriented Computing. Springer,
2013, pp. 298–312.

[19] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[20] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,
Inc., 2008.

[21] M. Shamsfard and A. A. Barforoush, “Learning ontologies from natural
language texts,” Int’l. J. of human-computer studies, vol. 60, no. 1, pp.
17–63, 2004.

[22] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis of
a very large web search engine query log,” in SIGIR Forum, vol. 33,
no. 1. ACM, 1999, pp. 6–12.

[23] J. Thomason, S. Zhang, R. Mooney, and P. Stone, “Learning to interpret
natural language commands through human-robot dialog,” in Proc. 2015
Int’l. Joint Conf. Artificial Intell. (IJCAI), 2011, pp. 859–865.

[24] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in Proc. Conf.
North American Chapter of the Assoc. Computational Linguistics on
Human Language Technology-Volume 1, 2003, pp. 173–180.

[25] B. Upadhyaya, Y. Zou, S. Wang, and J. Ng, “Automatically composing
services by mining process knowledge from the web,” in Service-
Oriented Computing. Springer, 2013, pp. 267–282.

[26] G. Wang, S. Yang, and Y. Han, “Mashroom: end-user mashup program-
ming using nested tables,” in Proc. 18th Int’l. Conf. WWW. ACM,
2009, pp. 861–870.

[27] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul, “Ontology-driven
service composition for end-users,” Service Oriented Computing and
Application, vol. 5, no. 3, pp. 159–181, 2011.

[28] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding mashup
development,” IEEE Internet Computing, vol. 12, no. 5, pp. 44–52, 2008.

[29] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, 2004.

8

