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Abstract—Refactoring is a systematic process of improving
code quality while preserving the functional behavior of the
software. In recent years, integrated development environments
(IDEs) have added or improved automatic refactoring in their
features, to enhance developers’ productivity and reduce the
likelihood of human errors. With the advancement and increasing
popularity of large language models (LLMs), coding automation
using them has gained enormous attention and has shown
to be effective in performing refactorings on the source code
automatically. However, this automation can carry the risk of
introducing errors or hallucinations that may break or alter the
software functionality. The error-proneness and the possibility of
hallucinations in LLMs limit their ability to be fully integrated
into an automated refactoring pipeline (e.g., IDEs) and often
require humans in the loop to verify the performed modifications.
In this position paper, we examine the limitations of existing
LLM-based refactoring techniques. We propose research direc-
tions to address these limitations and improve the quality of
LLM-based code refactoring for reliable software maintenance.

Index Terms—code refactoring, code quality improvement,
large language models, integrated development environments

I. INTRODUCTION

Refactoring is a systematic process aimed at improving code
quality without changing its external functionality [1]–[3]. To
improve developers’ productivity, the refactoring capabilities
are integrated into the integrated development environments
(IDEs) to ease refactoring operations. Therefore, developers
can automatically perform refactoring without altering the
code manually. In recent years, LLMs have been applied for
automating various programming tasks (e.g., code repairing
and generation) traditionally performed by developers to save
time and mitigate human errors. LLMs have also demonstrated
remarkable potential in generating and refactoring code for
improved quality [4]. Despite this potential, the refactorings
generated by LLMs suffer from the following limitations:

(1) Difficulty in integrating LLMs into IDEs and their
limited contextual awareness. IDEs are commonly used
for software development and offer features such as syntax
highlighting, code suggestions, and refactoring aids. However,
the integration of LLMs into IDEs for refactoring purposes
presents unique challenges. Although LLMs can automate
refactoring tasks, they lack the contextual understanding and
user-specific adaptability that tools integrated within IDEs are
designed to offer. This misalignment can lead to frustration
for developers, as LLM-generated changes may conflict with

project-specific conventions or fail to address the nuanced
goals of the refactoring process. Furthermore, LLMs require
significant computational resources [5], which can impact the
responsiveness of the IDE and disrupt developers’ workflows.
Therefore, the seamless interaction between LLMs and IDE
workflows, such as incremental refactoring or live debugging,
remains an area with significant potential for improvement.

(2) Challenging to handle hallucinations in automated
refactorings by LLMs. Refactorings often introduce errors or
“hallucinations” — modifications that appear syntactically cor-
rect but lead to incorrect, suboptimal, or unexpected behavior
when integrated into the codebase [6]. The hallucinations arise
due to the LLM’s tendency to make contextually inappropriate
changes, particularly when the full scope of the code is un-
available or the refactoring requires a semantic understanding
of the underlying program logic. Moreover, hallucinations in
LLM-based refactorings can be traced back to deficiencies
in the training data. LLMs are trained on vast datasets, but
high-quality refactoring examples are underrepresented. This
gap in the training data leads to LLMs making contextually
inappropriate modifications that are not best practices or fail
to meet the intended objectives of refactoring.

(3) Lack of an understanding of the purposes behind
the refactoring process. Human developers refactor code
to achieve specific purposes, such as removing code smells,
improving readability, or adhering to design principles. LLMs
operate without an explicit rationale for their modifications,
often leading to changes that are misaligned with the goal
of a project. For instance, an LLM may focus on simpli-
fying code structure without addressing underlying technical
debts, or it may improve readability while introducing new
performance issues. In our previous work [7], we observe that
StarCoder2 [8] demonstrates superior performance in reducing
cohesion and complexity metrics, achieving greater modularity
and structure. However, developers outperform StarCoder2 in
reducing class coupling, highlighting developers’ advantages
in understanding the complexity of the code. Despite this, Star-
Coder2’s ability to simplify code logic and reduce cyclomatic
complexity makes it valuable for improving code refactoring,
though its lack of explicit purpose alignment limits its broader
applicability in context-dependent refactoring tasks.

(4) Inadequate or unavailable test cases to examine
the logic introduced by LLM-generated refactorings. Test



cases, such as unit tests, are essential to validate if refactored
code maintains functionality. Moreover, test cases are critical
to ensure that LLM-generated refactorings do not introduce
hallucinations and align with the intended functionality of
a project, as LLMs may produce suggestions that are syn-
tactically correct but semantically inappropriate. Test cases
can be automatically generated using frameworks such as
EvoSuite [9]. Existing approaches for automatic test case
generation are often inadequate for comprehensive evaluation.
Many methods focus on generating minimal or basic test cases,
which may not sufficiently cover edge cases. Therefore, the
refactored code can pass simple test cases but may fail under
real-world conditions. With the lack of comprehensive test
cases, verifying the correctness and performance of LLM-
generated refactorings is challenging, and often requires hu-
man evaluation. In our previous work [7], we observe that the
refactorings generated by StarCoder2 [8] pass 28.36% of the
unit tests at pass@1 setting, improving to 57.15% at pass@5.
The pass@ evaluates the effectiveness of the refactoring gen-
erated by considering that at least one of the top-k generated
solutions passes all test cases. This improvement highlights
the importance of regenerating refactorings multiple times to
increase test pass rates but also underscores the challenges of
achieving the same level of reliability as human developers.

Paper Organization. The remainder of this paper is struc-
tured as follows. Section II summarizes existing work on au-
tomatic refactoring, testing, and automated refactoring repair,
highlighting their limitations and relevance to LLM integration
in IDEs. Section III outlines the potential research directions
for addressing the limitations of LLM-based refactoring. Fi-
nally, Section IV concludes the paper by summarizing our
contributions and outlining future research directions.

II. EXISTING WORK

In this section, we review existing work on automatic refac-
toring, testing, and automatic refactoring repair, and explore
the challenges and opportunities of LLM-based refactoring and
the integration of LLM-based refactoring into IDEs.

A. LLM Integration in IDEs

Integrated development environments (IDEs), such as Intel-
liJ IDEA [10] and Visual Studio [11] have incorporated AI-
driven tools such as GitHub Copilot [12] to assist developers in
code suggestions. However, AI-driven tools primarily focus on
code completion and generation, offering limited support for
complex refactoring tasks that require a deep understanding
of code semantics, code architecture, and external function-
alities. Recent research has explored the potential of LLMs
in enhancing refactoring capabilities within IDEs [13]. The
EM-Assist plugin for IntelliJ IDEA combines LLM-based
suggestions with static analysis to recommend extract method
refactorings that align more closely with developers’ practices.
In evaluations, EM-Assist successfully replicates developer-
performed refactorings in 53.4% of cases, surpassing the
39.4% recall rate of the previous best-in-class static analysis
tool. Despite the high recall, a human in the loop is still

required to validate the refactorings, as there remains a chance
of incorrect refactorings.

B. Automated Code Refactoring

Automated code refactoring using machine learning and
LLMs has generated significant attention due to their potential
to assist developers in improving code quality and reducing
technical debts. Early approaches, such as JRefactory [14]
and Eclipse’s Refactoring Engine [15], rely on static and rule-
based tools to apply common refactorings, such as renaming
methods or extracting code fragments. While effective for
straightforward tasks, these tools require substantial manual
intervention to handle high-level or context-specific refactor-
ings, limiting their scalability for real-world projects. Recent
advancements in LLMs, such as Codex [16], GPT-4 [17],
and StarCoder [8], [18], have introduced more flexible and
context-aware solutions for automated refactoring. Previous
studies [19] demonstrate the capabilities of the LLMs in code
generation and refactoring tasks, showcasing their ability to
generate human-like code and structural changes. However,
these studies also highlight critical shortcomings, particularly
in preserving semantic correctness and ensuring the refactor-
ings pass rigorous quality checks, using unit tests.

Recent studies provide additional insights into the chal-
lenges and opportunities in LLM-based refactoring. AlOmar
et al. [20] analyze 17,913 ChatGPT prompts and responses
related to refactoring, revealing that developers often make
generic refactoring requests, while ChatGPT typically specifies
the intended improvements. The study highlights that devel-
opers prefer using explicit textual descriptions of refactoring
needs alongside code fragments, with 41.9% of interactions
following this pattern. The work emphasizes the importance
of refining prompts to guide LLMs toward more context-
aware and effective refactorings. Liu et al. [21] empirically
evaluate the refactoring capabilities of ChatGPT and Gemini
on a dataset of 180 real-world refactorings from 20 projects.
ChatGPT identifies 15.6% of the refactoring opportunities
initially, but explaining specific subcategories in the prompts
increases its success rate to 86.7%. ChatGPT recommends 176
solutions, with 63.6% being as good as or better than those
by human experts. However, 13 solutions introduce syntax
errors or alter functionality. To mitigate such risks, the study
proposes the RefactoringMirror tactic, which re-applies LLM-
generated refactorings using tested engines. The accuracy of
reapplication achieves 94.3%, successfully avoiding all buggy
refactorings.

C. Testing LLM-generated Code

Frameworks, such as LLM4TDD [22] integrate LLMs into
Test-Driven Development (TDD) and enable LLMs to generate
code based on test cases. The TDD approaches can improve
code quality. However, the TDD approach depends on highly
structured prompts and high-quality tests. Therefore, the TDD
approach lacks robustness when handling unstructured or
context-dependent code refactoring tasks. The TDD approach
could be used to generate refactorings by inputting the test



case into the prompt and asking LLM to generate a refactoring
that can pass the test case. Moreover, mutation testing has
also been extensively used to evaluate test suite quality and
identify subtle flaws in automatically generated refactorings.
For example, Papadakis et al. [23] explores the integration
of mutation testing with refactoring tools to reveal behav-
ioral changes introduced by automated refactorings. These
studies [22], [23] underscore the importance of evaluating
the downstream effects of refactorings but do not propose
solutions for correcting code (e.g., refactorings) that fail tests.

D. Automated Refactoring Repair

Previous studies [4], [24], [25] show that LLMs can propose
meaningful structural changes, but they often introduce bugs
or fail to account for the broader context of the codebase.
This could be problematic for large projects where changes in
one part of the code can have cascading effects elsewhere.
Automated Program Repairing (APR) systems [26], [27],
have provided techniques for identifying and fixing bugs by
generating minimal changes that pass test cases. While APR
focuses on repairing faults, its methodologies can be applied to
automated refactoring correction, which involves continuous
code enhancement and validating them against test cases,
enabling the refinement of refactoring suggestions based on
the results of each iteration. In this context, approaches such as
those by Shirafuji [4] aim to enhance refactoring suggestions
by leveraging few-shot prompting to provide the model with
additional information. However, the generalizability of these
methods is limited by their reliance on the context of the
provided prompts and do not dynamically adapt based on real
test scenarios.

III. FUTURE RESEARCH DIRECTIONS

In this section, we discuss the possible future research
directions to address the limitations of LLM-generated refac-
torings, discussed in Section I. To improve the automation and
integration of LLMs into IDEs, future research directions can
focus on providing developers with reliable and contextually
appropriate refactoring recommendations for code quality im-
provement. A comprehensive framework is needed to focus
on integrating automated test generation, refining training
datasets, enhancing contextual understanding, and mitigating
hallucinations. Below, we discuss the key research directions
and propose some initial solutions.

Tighter integration of automated test generation can
improve LLM-based refactoring reliability. To address the
limitation of IDEs’ inability to validate the functional correct-
ness of the generated code, it is essential to build a tighter
integration of automated test generation with refactoring
processes. By integrating LLM-based refactoring tools with
frameworks like EvoSuite [9] or Randoop [28], developers
can automatically generate unit tests for modified code when
there is no existing test case available. These tests can ensure
that the generated refactorings not only preserve functionality
but also enhance code quality. An important research direction
involves enhancing the integration of automated test generation

with LLM-based refactoring. These mechanisms can assess the
correctness and effectiveness of refactorings on code quality
in real-time, providing feedback to developers. Examples of
such mechanisms include:

• Static analysis tools that detect potential issues in the
refactored code before execution.

• Test case prioritization approaches to identify existing test
cases for verifying the refactored code.

• Mutation testing to evaluate the robustness of generated
unit tests.

• Symbolic execution to ensure that all paths within the
refactored code adhere to the expected functional behav-
iors.

Such approaches aim to ensure that the generated refactorings
align more closely with project goals and reduce the risk of
introducing errors, thereby improving the overall reliability of
LLM-generated refactorings.

Curating high-quality datasets enhances LLM refac-
toring performance. The quality of LLM-based refactor-
ings is heavily influenced by the training data. Current code
generation models are often trained on general-purpose code
repositories, which may lack the depth and specificity needed
for effective refactoring tasks. To enhance the performance of
generating high-quality code, it is critical to create and curate
datasets that explicitly focus on high-quality refactoring tasks.
These datasets should include:

• Real-world examples of code refactorings with detailed
justifications explaining the rationale behind each change
(e.g., improving readability, reducing code smells, or
optimizing performance).

• Clear patterns that demonstrate best practices and com-
mon mistakes in refactoring.

• Examples tailored to specific domains, such as embedded
systems, machine learning pipelines, or web development
frameworks, to improve domain-specific refactoring capa-
bilities.

These datasets can be used to fine-tune LLMs or serve
as benchmarks for evaluating refactoring tools, ensuring that
LLMs generate more contextually relevant and semantically
accurate suggestions.

Enriched prompts improve contextual understanding in
LLM-based refactorings. Another challenge in LLM-based
refactoring is the lack of sufficient contextual information
provided to the LLM. Current prompts often focus on “how” to
refactor without addressing the “why.” By enriching prompts
with explicit information about the purpose of refactoring,
such as the removal of specific code smells (e.g., long methods
or duplicate code) or the improvement of maintainability and
performance, LLMs can generate more targeted and effective
suggestions. Future research can explore the use of prompting
techniques (e.g., chain-of-thought prompting and few-shot
prompting) to break down refactoring tasks into sequential
steps that align with developers’ intentions. For example, a
prompt might guide the LLMs by identifying a code smell,
suggesting a solution, and providing a justification for the



suggested change. Such approaches can enhance the practical
utility of LLM-based tools in real-world scenarios.

Mitigating hallucinations ensures semantic correctness
in refactorings. LLMs are prone to generating “hallucina-
tions,” for various reasons. For example, the LLMs suggest
changes that are syntactically valid but semantically incorrect
or the generated refactorings are irrelevant to the given context.
Identifying the root causes of hallucinations requires analysis
of failure cases, and conducting targeted interventions. To
mitigate hallucinations in LLM-generated refactorings, model
calibration techniques, such as uncertainty quantification, can
be used to help identify instances where the LLM lacks con-
fidence in its suggestions. Additional validation steps can be
incorporated when necessary. Moreover, implementing post-
processing pipelines, such as rule-based or heuristic filtering
methods, can serve to eliminate contextually irrelevant refac-
toring suggestions before they are presented to developers.
Furthermore, requiring the LLM to generate justifications
alongside its refactorings can enhance its transparency, and
allow developers to assess the validity and rationale of the pro-
posed changes. Developing the aforementioned mechanisms
will improve the semantic correctness of LLM-generated
refactorings, making the generated refactorings align more
closely with developers’ objectives and project requirements.

IV. SUMMARY

In this paper, we discuss the current limitations of LLMs
in refactoring generation and highlight the challenges of in-
tegrating LLM-based refactoring into IDEs. We also explore
the potential research directions to address the challenges. We
envision that LLM-based refactoring tools could be fully auto-
mated, without human intervention, and effectively integrated
into real-world software development workflows, such as those
found in IDEs, if the current limitations are overcome. To
address the limitations of LLM-based refactoring hallucina-
tions, future research can focus on generating comprehensive
test cases. Additionally, future research can focus on training
or fine-tuning refactoring expert LLMs with rich refactoring
datasets. Future work can also use more context-aware and
hallucination-preventative prompts to improve the quality of
LLM-based refactorings. Advancing the identified research
directions on LLM-based refactoring tools can improve de-
velopers’ productivity, code quality, and maintainability in
software systems.
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