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Abstract Online Internet of Things (IoT) communi-
ties allow IoT engineers to publish information about
their projects to a wider audience of users. Despite the
growing adoption of IoT technologies in business, the
popularity of IoT projects remains unexplored. Under-
standing how to improve the popularity of IoT projects
helps project owners attract more users and foster busi-
ness opportunities. In this paper, we explore the im-
portant characteristics of popular IoT projects across
three facets: views count, respects count, and trending
scores. We study over 18,000 IoT projects hosted on
Hackster.io—a large online IoT community. In particu-
lar, we perform a time-series clustering to identify the
evolution of each of the three popularity facets. In ad-
dition, we construct linear mixed-effect models to in-
vestigate the most important factors associated with
the popularity of IoT projects. We provide insights to
online IoT communities to improve the user guidelines
to help (new) IoT engineers make their projects more
eye-catching.
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1 Introduction

The Internet of Things (IoT) is transforming human
life at an unprecedented rate. Users can perform diverse
tasks benefiting from the IoT technology. For instance,
users can remotely control the house temperature using
ToT applications. According to the International Data
Corporation (IDC) [T there will be a market size of $1.1
trillion with billions of devices connected throughout
the IoT ecosystem by 2023. However, the heterogeneity
and immature standardization of IoT systems increase
the complexity of developing IoT systems [T0,[34]. Com-
pared to desktop/server or mobile systems, IoT sys-
tems involve different types of devices, data exchange
protocols, and deployment environments. In addition,
developing IoT projects requires knowledge of different
hardware platforms (e.g., Arduz'noE] Raspberry PiE] and
SparkFunED or cloud platforms (e.g., Amazon Web Ser-
vice (AWS) IoTﬂ and Microsoft Azureﬁ). Furthermore,
IoT practitioners need to acquire knowledge of certain
domains, such as signal processing [11].

Recently, online IoT communities have become pop-
ular among IoT practitioners as an increasing number
of ToT engineers publish their projects online. Online
IoT communities (e.g., Hackster.idi] and Instructable&{ﬂ)
allow IoT practitioners to gain and share knowledge
with each other about the latest IoT technology [51].

1 https://wuw.idc.com/getdoc. jsp?containerId=IDC_
P24793

2 https://www.hackster.io/arduino
https://www.hackster.io/raspberry-pi
https://www.hackster.io/sparkfun
https://aws.amazon.com/iot
https://azure.microsoft.com
https://hackster.io
https://www.instructables.com
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As online IoT communities grow and serve a broader
audience, they allow IoT engineers and professionals to
create business opportunities, especially for those who
have more popular projects than other users. For exam-
ple, the web page of a popular project can serve as an
advertiser for a company that supports that project.
Besides, the owners of popular IoT projects can earn
a reputation whenever one of their projects is viewed,
respected, or featured by the IoT Communityﬂ Such
reputation can be exchanged with products in online
ToT stores[™]

Prior research has studied the factors that share
a significant association with the popularity of open
source software projects in online communities for open
source and mobile applications [12,29,5257]. For exam-
ple, Tian et al. [57] studied the factors that are signifi-
cantly associated with highly rated free Android appli-
cations. Tian et al. observed that the number of promo-
tional images displayed by an app on the Google Play
Store and the size of the app are strongly correlated
with highly rated Android apps [39]. Despite the simi-
larities between IoT communities and open source and
mobile communities (e.g., in terms of online discussions
and user feedback), communities of IoT projects have
unique characteristics and issues are still unexplored.
IoT projects rely heavily on the the hardware in addi-
tion to the software, which denotes that users require
time, effort, and money to obtain and assemble the IoT
devices to replicate a project. In addition, IoT commu-
nities organize contests in which IoT projects compete
to address certain real-world problems. Therefore, it is
important to investigate how active are online IoT com-
munities and understand the factors that help IoT en-
gineers promote their projects to gain more popularity.

In this paper, we study the factors that are associ-
ated with the popularity of IoT projects across three
popularity measures: views count, respects count, and
trending score. The wviews count captures the number
of times a project is viewed by the community users.
The respects count captures the number of thumbs-ups
a project has received from the community users. The
trending score captures the order of a project among
other projects considering the age of the project, views
count, and respects count. Hackster.io maintains a ded-
icated list to allow users to show projects based on
their views count, respects count, or trending. Hence,
it is important for project owners to understand what
makes their projects successful in each of such popu-
larity measures. Moreover, a higher number of views
may indicate that a project has reached more users,

9 http://help.hackster.io/knowledgebase/hackster-free-
store/how-do-i-earn-reputation
10 mttps://www.hackster.io/store

which could be due to the use of advertisements. While
making a project more reachable is important, project
owners still desire to gain a positive user perception.
Hence, in this study, we aim to generate insights into
not only what makes a project more reachable but also
what makes a project more perceivable by the IoT com-
munity users. Previous research by Borges et al. [8] sur-
veyed developers and found that, while the majority
of developers care more about project stars, still over
two-thirds of developers also care about the number of
project watchers and forks. Hence, it is important to
study each of the popularity measures independently
to generate insights into the factors that project own-
ers can tweak to improve their projects with respect to
views, respects, and trending scores.

To investigate the popularity of IoT projects, we
conduct an exploratory study using online communi-
ties. We investigate over 18,000 IoT projects that are
hosted on Hackster.io (referred to as Hackster from now
on). Hackster stands out from other online communities
because it has a large user base (i.e., over 1.6 million
users as of today). Hackster is sponsored by Microsoft,
Intel, Google, and Amazon. In addition, IoT projects
hosted on Hackster can be developed and deployed us-
ing IoT cloud services, such as Amazon AWS and Mi-
crosoft Azure. Such projects comprehend a wide diver-
sity of IoT projects, such as home automation (e.g.,
controlling home surveillance cameras and air condi-
tioners remotely).

Paper organization. The rest of this paper is orga-
nized as follows. Section [3] introduces the experimental
setup of our empirical study. Section [] discusses the
results and findings of our studied RQs. Section [5] dis-
cusses the implications of our findings for project own-
ers and the Hackster community. Section [6] describes
threats to the validity of our results. Section [7] presents
the related literature on IoT technology and the popu-
larity of software projects. Finally, Section |8| concludes
the paper and outlines avenues for future work.

2 Background - the Hackster IoT community

Hackster is an online community dedicated to both (a)
beginners to learn about hardware IoT development
and (b) professionals to share their experiences in ToT
projects and compete for prizes. Hackster is one of the
largest and most active IoT development communities.
As of January 2021, Hackster has over a million com-
munity members, more than 20,000 of them have at
least one published project. Hackster allows the com-
munity users to access the different resources about the
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IoT community, including platformsﬂ communitiesB
topics|[”| projects[M contests [T and community users[™9]

2.1 IoT Platforms

A Hackster platform is a group of products that share
common hardware and software features. A platform
can be a company (e.g., AT&T and Panasonic), a major
hardware component (e.g., Arduino and Raspberry Pi),
an operating system (e.g., Android), or a cloud backend
(e.g., Amazon Web Service). Generic hardware compo-
nents (e.g., resistors and capacitors) have their own web
pages and not considered as platforms. A project may
belong to more than one platform. For example, the
JA.RV.LS.: A Virtual Home Assistanﬂ project (shown
in Figure belongs to the Android, Arduino, Intel,
Unity, in addition to three topics, namely Artificial In-
telligence, Augmented Reality, and Home Automation.

2.2 IoT projects

Hackster hosts over 26,000 IoT projects. Each project
on Hackster maintains a web page containing the infor-
mation and resources related to that project. Figure [I]
shows a snapshot of a sample project hosted on Hack-
ster. We describe the details of projects in the following:

(a) Project team: An IoT project can be owned by
an individual engineer, a team of engineers, or a
company. Each team member of the IoT project
has a personal web page (more details in subsec-
tion . Project owners of each project can be dis-
played without opening the project web page.
Copyright license: A different copyright licensﬁ
may be applied to an IoT project. For example, a
project may be available under the Apache — 2.@
or GLP3+™license.

(¢) Description: Project owners can provide a brief de-
scription of the IoT projects. The description gives
an overall idea about a project, including its domain
and the technology used.

Project difficulty level: An IoT project can be clas-
sified as Beginner, Intermediate, Advanced, or Ezx-
pert. A more difficult project can be harder to use
and replicate.

11

https://www.hackster.

12 https://www.hackster.io/communities

io/platforms

13 mttps://www.hackster.io/topics
14 https://wuww.hackster.io/projects

15 https://www.hackster.io/contests

16 mttps://www.hackster.io/community

17 https://www.hackster.io/blitzkrieg/j-a-r-v-i-s-a-
virtual-home-assistant-d61255

18 https://opensource.org/licenses

19 https://opensource.org/licenses/Apache-2.0

20 https://opensource.org/licenses/gpl-license

(e) Type: The type of a project indicates the level of de-
tail provided by project owners about an IoT project.
Depending on the configuration of the project@ a
project type can be Tutorial, Protip, or Showcase.
The Tutorial projects provide step by step instruc-
tions, code, and schematics related to the design
and implementation of the project. Projects of the
Protip type show how to solve a single problem
with minimal guide. The Showcase projects have
no or partial instructions but usually contain links
to external online resources.

(f) Estimated Time: The time required to reproduce
the necessary steps to reproduce an IoT project.
Such time is estimated by the project owners.

(g) Views count: The number of times a project is viewed
by the Hackster community users.
Things: A set of dedicated lists to show the hard-
ware components, hand tools, software applications,
and cloud services that a project uses. Each compo-
nent may have a link that directs users to an asso-
ciated web page containing more details about the
availability and cost of the component.

(i) Story: A project story is composed of sections that
provide more details about the purpose of the project,
replication steps, and any supplementary materials.

(j) Schematics: Project owners may provide a sketch,
blueprint, or connection schema that helps users to
understand how to assemble the different compo-
nents together.
Code: A project may employ some source code to
program, control, or implement a certain function-
ality of a project. Code may be published as a single
file (e.g., .c or .zip) or uploaded to a remote repos-
itory (e.g., GitHub or GitLab).
(1) Comments: Users can provide feedback or ask ques-
tions to project owners about IoT projects by adding
comments to the project web page. Project owners
can reply to such comments and may update the
web page of the project to address any feedback
given by the community users.

Respects count: The number of thumbs-up that a

project has received from the community users.

Cover image/video: Each project on Hackster has

a static or animated image that gives a high level

picture about the purpose of the project.

(o) Channels: The different channels (e.g.,
ties, platforms, and topics) that a project is con-
nected to. Such channels allow like-minded people to
learn and keep up-to-date with the favorite projects
and share ideas together.

communi-

21 http://help.hackster.io/knowledgebase/posting-
a-project/whats-the-difference-between-a-protip-a-
showcase-and-a-tutorial
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Figure 1: An example of a project web page on Hackster showing the characteristics of IoT projects , including
(a) development team (b) copyright license, (c) description, (d) difficulty level, (e) type, (f) estimated replication
time, (g) view count, (h) things (i.e., hardware components, hand tools, and services), (i) story (i.e., details
about projects), (j) schematics (e.g., blueprints), (k) source code, (1) user comments, (m) respects count, (n) cover
image/video, (0) associated channels, and (p) associated tags

(o) Tags: Tags are used to describe the purposes, do-
mains, or technologies of a project. Projects can be
grouped and accessed by their tags on Hackster.

2.3 IoT community members

Every user on Hackster maintains an own page that
shows the personal and professional profile. Each web
page contains information about the projects, followers,
followings, tools, platforms, awards, and channels of the
community users. In addition, users can add short bi-
ographies about themselves to show their interests and
skills. Hackster maintains a history of all activitied™|
performed by the community users.

2.4 TIoT Contests

Hackster hosts sponsored contests to allow community
members to share their projects for a chance to win

22 https://wuw.hackster.io/dixon415/activity

prizes. Contests are open for any projects. Each con-
test maintains an own web page that shows the sub-
mission requirements, participating members, submit-
ted projects, prizes, and winners.

2.5 Hackster listing of projects

Hackster allows users to navigate IoT projects of inter-
est by (1) platforms, (2) topics, and (3) products. In
addition, users can filter projects based on the project
types and difficulty levels. Users can also navigate the
featured projects in the community, which are selected
by the Hackster team. A project filtration option may
lead to hundreds of projects, which are split into pages.
At present, Hackster shows only 20 projects per page
and users can navigate the rest projects one page af-
ter another. Therefore, Hackster enables users to sort
the projects, where the projects that are shown in the
first page are (i) most recently added, (ii) last updated,
(iii) most viewed (referred to as popular), (iv) most re-
spected, or (v) trending. Each page of projects shows
a list of project frames, where each frame contains the
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project cover image/video, title, development team, views

count, and respects count. In addition, the project de-
scription of each project is shown when hovering over a
project frame.

3 Experimental Setup

This section presents the experimental setup of our em-
pirical study. We explain how we collect and prepare the
data for our studied RQs.

3.1 Data Collection

Figure [2 gives an overview of our study, which is based
on data collected from Hackster. We develop a crawler
that collects data related to 19,083 IoT projects hosted
on Hackster. Out of these projects, we select the projects
that are active on January 31, 2020. Additionally, we
exclude (a) the older versions of projects in the case of
duplicates, (b) projects that do not have project own-
ers, and (c) the projects of which project owners are no
longer members of Hackster. As a result, our dataset
contains 18,299 IoT projects from 206 platforms.

Hackster does not preserve historical data about
how projects gain popularity over time. Therefore, we
run our crawler once every day to monitor the changes
to the popularity measures of the studied IoT projects.
We kept the crawler running for six months (from Au-
gust 1, 2019 to January 81, 2020). In this particular
analysis, we only include the projects that were pub-
lished before August 31, 2019 and remained active un-
til January 31, 2020. We use this selection criterion
to make sure that all projects have the required data
points (i.e., daily views, respects, and trending scores)
for the entire period. In total, we obtain the daily views
count, respects count, and trending scores of the se-
lected projects for 183 days.

In addition, we collect meta-information about the
projects, including descriptive characteristics, hardware
information, project owners, and user feedback. Consid-
ering that an IoT project can be associated with multi-
ple platforms (e.g., hardware or service providers), we
create an independent record for a project and each
particular platform associated with the project. For ex-
ample, a project that is associated with 4 platforms has
4 records in our dataset, each with a different platform.
In addition, we collect the number of projects and the
number of members of each platform and assign them
to each replicated record in the dataset. As a result, our
dataset contains 26, 596 records.

3.2 Data Processing

In this subsection, we explain how we process the data
of the selected IoT projects. First, we show how we com-
pute the three popularity measures (i.e., the dependent

variables) of the projects. Next, we discuss the factors
computed in our study to model our dependent vari-
ables. For each computed factor, we aggregate it to the
project level when necessary.

3.2.1 Computing popularity measures

Hackster ranks the hosted IoT projects according to (a)
the project m’ewsﬁ (b) the project respectsE and (c)
the project trending scoresﬁ Hackster uses the term
popular to sort IoT projects according to the number
of views. However, prior studies have considered various
measures to assess the popularity of GitHub projects
and mobile applications, such as the number of down-
loads [3], stars [9], watchers [49], forks [0], and rat-
ings [39]. As reported by previous studies, a higher num-
ber of views may not always indicate that a project is
well-perceived by the community. For example, the Ar-
duino Thermometeﬂ project is one of the most highly
viewed IoT projects on Hackster (with over 378,000
views). However, the Arduino Thermometer project has
received just above 120 respects (i.e., 0.3% of the views
count). Conversely, although the Christmas Gift Boﬂ
project has 4,200 views, it is highly ranked in terms
of the number of respects, with over 600 respects (i.e.,
14% of the views count).

We perform a Pearson’s correlation test [31] between
the popularity measures, to verify to what extent such
measures are correlated. We observe that the number
of views and respects are not highly correlated (i.e.,
Pearson’s coefficient of 0.38). In particular, the median
views count of the studied projects is 1,000, whereas
the median respects count is six. Such a gap may indi-
cate that out of 1,000 users viewing the same project,
only six of them will give the project a thumbs-up. In
addition, we observe that the views count and respects
count have relatively lower correlations with the project
trending score (i.e., Pearson’s coefficients of 0.23 and
0.31). Moreover, a higher number of views may indi-
cate that a project has reached more users, which could
be due to the use of advertisements. While making a
project more reachable is important, project owners
still desire to gain a positive user perception. Therefore,
it is important to understand the factors that have re-
lationships with each of the three popularity measures
of IoT projects. To this end, we rank the IoT projects
by sorting them in a descending order using each of the
popularity measures.

23 https://wuw.hackster.io/projects?sort=popular

24 https://www.hackster.io/projects?sort=respected
25 https://www.hackster.io/projects?sort=trending

26 https://wuw.hackster.io/TheGadgetBoy/ds18b20—
digital-temperature-sensor-and-arduino-9cc806

27 https://wuw.hackster.io/31000/christmas-gift-box-
0ffi7e
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Figure 2: Overview of our study

3.2.2 Computing Independent Variables

This step is concerned with the selection of the factors
that are used as independent variables in our models.
We use those variables to model and explain our de-
pendent variables. In Table [T} we present four groups
of factors for which we study the relationship with the
popularity of IoT projects: Project Description (i.e.,
21 factors), code & Hardware (i.e., 12 factors), Project
owner(s) (15 factors), and Comments (i.e., 9 factors).
Hackster provides guideline@ to help project owners
publish their projects. The guidelines contain direc-
tions on how to use seven factors, namely cover image,
difficulty, tags, team, hardware, story, schematics, and
code. We use all the aforementioned factors as indepen-
dent variables in our models. We describe each factor
in the last column of Table [l We explain below how
we compute the factors in the following:

Project Description factors: We compute 21 fac-
tors that we extract from the project web pages on
Hackster. Out of these factors, only the name, cover
image/video, brief description, and project owners
are shown on the web pages that list the projects@
More details about projects (e.g., type, channels,
tags, and license) can be shown inside the specific
project web page. In addition, Hackster curates a
set of projects and marks them as featured projects.
These projects can be browsed by users using a ded-
icated list on Hackster. We identify the projects
that are selected as featured projects and investi-
gate whether the popularity of IoT projects is asso-
ciated with the decision of being featured projects.
Moreover, we identify the projects that participate
in the Hackster online contests and have won any of
the contests. Project owners may have control over
the majority of the factors under the Project De-
scription group, and therefore the popularity of IoT
projects can be improved by considering such fac-
tors. Hackster provides guidelines to project owners

28 https://www.hackster.io/guidelines
29 https://www.hackster.io/projects/?page=1

on how to use these factors properly. Providing pre-
cise, descriptive, and attractive project details can
help projects to gain more popularity.

Hardware factors: We compute 12 factors that
we extract from the Things sectiorﬂ of the project
web page. These factors represent measurements re-
lated to the technical details of the project, includ-
ing the required software, hardware, and hand tools.
It is important for project owners to publish ev-
ery particular detail of the hardware used in their
projects so that users can reproduce the project.
We count the number of hardware components re-
quired to reproduce the project. We also count the
total quantity of hardware components. For exam-
ple, a project may require 3 sensors and 2 cam-
eras. Hence, the number of hardware components is
2 (i.e., a sensor and a camera) and the number is 5
pieces. Considering that hardware components can
be purchased from different online hardware suppli-
ers (e.g., Amazon or eBay), we compute the num-
ber of unique hardware suppliers and the most com-
mon suppliers within every project. For every sup-
plier, we extract only the domain name of the web-
site (i.e., we eliminate the country-based versions
and sub-pages of the website). For example, from
‘https://www.amazon.ca/camera’, we extract only
‘amazon’ as an online hardware supplier. Project
owners can control the factors of this group by list-
ing every particular hardware component required
to complete the project. In addition, project own-
ers can provide users with the best alternatives to
purchase the hardware. Using proper hardware com-
ponents (in terms of reliability, cost, and purchase
alternatives) can be associated with project popu-
larity.

Project owner(s) factors: We compute 15 factors
that we extract from the web pages of the project

30 https://wuw.hackster.io/gbarbarov/open-led-race-
a0331la#things
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Table 1: Dimensions of factors used as independent variables in our linear mixed-effects models

Factor Data type Description
Platform Factor The platform (e.g., hardware or cloud services) that the project belongs to
Number of platform projects Factor The number of projects that belong to the platform of each project
Number of platform members Factor The number of project owners who are members of the platform of each project
Listed in the featured projects Numeric The page number where the project is listed in the featured projects, if any.
Project type Factor The type of the project (e.g., TUTORIAL, PROTIP, WIP, or SHOWCASE)
Project cover Factor The main cover (i.e., image or video) used to demonstrate the project
#  Project age Numeric The number of days since the project was published online
*§ Last modified Numeric The number of days since the project was modified
Z Difficulty level Factor The difficulty level of the project (e.g. Easy, Intermediate, Advanced, or Expert)
% Copyright license Factor The license to distribute a project (e.g. GPL3+, Apache2.0, MIT, CDDL1.0, etc.)
E Number of project owners Numeric The number of team members who developed the project
DCmJ Number of tags Numeric The number of tags (e.g., robotics, automation, or security) associated to a project
2 Number of channels Numeric The number of channels (e.g., communities and topics) a project is connected to
‘% Number of contests Numeric The number of contests the project submitted to
& Won a contest Factor Whether the project has won one or more contests
Description length Numeric The number of characters used to describe the project
Number of videos Numeric The number of (YouTube) videos used in the project page
Number of images Numeric The number of images used in the project page
Number of story sections Numeric The number of sections used to explain how the project works
Length of story Numeric The number of words used to explain the project story
Number of links in story Numeric The number of links used in the project story
Number of schematics Numeric The number of documents used to show the sketches/blueprints of the project
Hardware components Numeric The number of (unique) hardware components the project is composed of
Quantity of hardware components Numeric The total quantity of hardware components needed to complete the project
Hand & fabrication tools Numeric The number of hand tools required to fabricate the project
#  Number of purchase links Numeric The number of links used to purchase the hardware components and tools
% Number of unique hardware suppliers Numeric The number of unique suppliers of hardware components
“E Most common hardware supplier Factor The most common supplier (e.g., Amazon or eBay) to purchase hardware
§ Vendors per hardware components Numeric The maximum number of vendors to purchase a particular hardware component
F% Estimated time Numeric The time (in seconds) required to reproduce all the necessary steps of the project
T Estimated cost mentioned Factor Whether the hardware cost is indicated in the project description or story
Tools without links to purchase Numeric The number of tools that do not have purchase links
Hardware-controlling code Factor Whether the project code is available as a file or on a repository (e.g., GitHub)
Software applications & services Numeric The number of software programs required by the project
Length of project owner’s biography Numeric The average (mean) number of words in project owner biography (ies)
Personal Web page available Factor Whether the project owner(s) of the project have a link to a personal Web page
Geographical location Factor The country where the project owner(s) of the project reside
” Project owner’s projects Numeric The unique number of projects published by the project owner(s) of the project
§ Project owner’s followers Numeric The unique number of users who follow the project owner(s) of the project
E Project owner’s followings Numeric The unique number of users followed by the project owner(s) of the project
@ Project owner’s skills Numeric The unique number of skills of the Project owner(s) of the project
E Project owner’s tools Numeric The unique number of tools used by the project owner(s) of the project
% Project owner’s channels Numeric The unique number of channels the project owner(s) are connected to
g Project owner’s communities Numeric The unique number of communities the project owner(s) are members of
E Project owner’s contests Numeric The unique number of contests the project owner(s) participated in
& Project owner’s awards Numeric The unique number of awards the project owner(s) obtained
Project owner’s respects Numeric The total number of respects the project owner(s) give to other projects
Project owner’s comments Numeric The total number of comments by the project owner(s) to other projects or posts
Project owner’s likes Numeric The total number of likes the project owner(s) give to other users’ posts
Number of comments Numeric The number of user comments raised in the project page
Number of replies Numeric The number of replies to user comments
g Ratio of replies to comments Numeric The ratio of replies to user comments
E Number of project owner’s replies Numeric The number of replies provided by the project’s project owner(s)
G Ratio of project owner’s replies to comments  Numeric The ratio of the project owner’s replies to user comments raised
%} Ratio of project owner’s replies to replies Numeric The ratio of the project owner’s replies to user replies
é Number of positive comments Numeric The number of comments that contain positive feedback from users
Number of neutral comments Numeric The number of comments that contain neutral feedback from users

Number of negative comments Numeric The number of comments that contain negative feedback from users
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ownersﬂ Project owner(s) factors are related to
the technical and social details of project owners.
This group includes the activities and interactions
of project owners with the other parties of the Hack-
ster community. For those projects that have mul-
tiple owners, we aggregate the computed values by
considering all project owners. For example, we take
the unique number of followers and skills of all project
owners. Project owners have the ability to change
or update the information related to the project
owner(s) factors. Maintaining well-descriptive infor-
mation about project owners and building more con-
nections with the community may have an associa-
tion with the popularity of a project.

Feedback factors: We compute 9 factors that we
extract from the Comments sectionf? of the web
pages of projects. Comments allow users to discuss
with the project owners about any concerns or ques-
tions related to the published project. The num-
ber of comments depends on other users to post
comments. Project owners may reply to the posted
comments and address any raised concerns. We dis-
tinguish user comments from owner replies to in-
vestigate which metrics are more associated with
the popularity of a project. Comments posted on a
project web page can be positive (e.g., praise), neg-
ative (e.g., critique), or neutral (e.g., a question). To
distinguish between the different sentimental types
of comments, we apply sentiment analyses [56] using
the SentiStrength-SE tool [26]. We compute a senti-
ment score for each comment to identify whether it
is positive, negative, or neutral. The SentiStrength-
SE tool assigns a score to each comment that ranges
from —5 (the lowest) to +5 (the highest). According
to the SentiStrength-SE tool, (a) sentiment scores of
—1 or +1 indicate a neutral comment, (b) sentiment
scores of {+2,+3,+4, 45} indicate a positive com-
ment, and (c) sentiment scores of {—5, —4, —3, —2}
indicate a negative comment. We use the gener-
ated scores of all comments of a project to compute
the number of positive, negative, and neutral com-
ments. Receiving constructive feedback from com-
munity users and maintaining consistent responses
to user comments may help a project to be popular.

8.2.3 Correlation and Redundancy Analysis

Regression models can be adversely affected by the ex-
istence of highly correlated and redundant independent

31 https://www.hackster.io/anthony-ngu
32 https://www.hackster.io/saifalikabi/digital-logic-
board-03fd26#comments

variables [I7]. Therefore, we perform correlation and re-
dundancy analyses for the independent variables used
in our models. We follow the guidelines that are pro-
vided by Harrell [24] to train regression models.

Correlation Analysis: In this step, we employ the
Spearman rank p hierarchical clustering analysis [47]
to remove highly correlated variables in each of the
subject projects. Hierarchical clustering is a pairwise
analysis and helps detect variables that have positive
or negative relationships and thus a single variable can
be sufficient to represent another variable To this end,
we use the varclus function from the rmﬂ R pack-
age. For each pair of independent variables within all
clusters that have a correlation of |p| > 0.7, we re-
move one variable and keep the other variable in the
models. According to the principle of parsimony in re-
gression modeling, simple explanatory variables should
be preferred over complex variables [6I]. Given that
our explanatory variables are equally simple (e.g., in
terms of computation), we keep the variables that are
more informative [22]. In our case, we keep variables
that convey more information about the IoT projects
or the project owners. For example, the Hardware items
needed factor is highly correlated with Quantity of hard-
ware components, the Number of purchase links, and
Number of unique hardware suppliers. Therefore, we
keep the Hardware items needed variable, since it is
more descriptive than the other three variables. Simi-
larly, the Project owner’s tools is highly correlated with
the Project owner’s channels. Therefore, we keep the
Project owner’s channels, since the channels that a project
owner belongs to can better describe the connections of
a project owner than the tools that a project owner
uses.

In Figure [3] we show the dendrogram of the hi-
erarchical clustering of independent variables for the
subject projects. In this dendrogram, we observe six
clusters of highly correlated variables ( |p| > 0.7). We
distinguish each cluster of highly correlated variables
with a different color. In Table [2] we present the highly
correlated variables and the variable we select in each
cluster. After removing the Developer’s projects vari-
able, we find that the Developer’s followers variable be-
comes highly correlated with the Developer’s comments
variable (i.e., an additional cluster). For this resulting
cluster, we remove the Developer’s comments variable
and keep the Dewveloper’s followers variable.

Redundancy Analysis: In this step, we perform a
redundancy analysis on the remaining 44 independent
variables (i.e., those that survive the correlation analy-
sis step). Redundant variables can distort the relation-

33 https://cran.r-project.org/web/packages/rms/rms.pdf
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Figure 3: The hierarchical clustering of independent variables in the studied projects. We use color codes to

distinguish variables of highly correlated clusters from each other (i.e., colors have no special meaning).

Table 2: Selected variables of the highly correlated variables in the projects

Selected variable

Cluster of highly correlated variables

Project owner’s channels

Project owner’s tools

Project owner’s channels

Project owner’s followers

Project owner’s projects

Project owner’s followers

Number of platform projects

Number of platform projects

o

Number of platform members

Hardware components

Hardware components

Quantity of hardware components

Number of purchase links

Number of unique hardware suppliers

Number of all replies

Number of project owner replies

Number of project owner replies

Ratio of replies to comments

5

Ratio of project owner replies to comments

Ratio of project owner replies to replies

Number of all comments

Number of positive comments

Number of positive comments

6

Number of neutral comments
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ship between the dependent variable and the other in-
dependent variables [24]. To this end, we use the redun
function from the rms R package, which performs a
parametric additive model to detect the variables that
can be predicted from all the other variables. If an inde-
pendent variable can be predicted by other independent
variables with an R? > 0.9, we discard such a vari-
able [24]. Our redundancy analysis reveals no further
redundant variables in our dataset.

4 Experimental Results

In this section, we discuss the motivation, the approach,
and the findings of our research questions.

4.1 RQ;: How active is the online community of
IoT projects?

Motivation. Online IoT communities, such as Hack-
ster, host thousands of hardware projects published from
a wide range of technologies. Such projects are listed in
a series of ranked web pages. Projects that are displayed
at the beginning of the list are more likely to be se-
lected by the community users to browse. Therefore, un-
derstanding the evolution of the popularity of projects
helps project owners to understand the odds of rising
and falling in popularity over time. It is also important
to explore whether project views and respects maintain
a different evolution. As such, project owners can take
a wiser decision when publishing new projects or trying
to gain popularity for currently published projects. In
this RQ, we investigate the evolution patterns of the
three popularity measures of IoT projects (i.e., views
count, respects count, and trending scores).

Approach. To gain a better understanding of IoT projects

in our dataset, we analyze the popularity of the studied
IoT projects (a) over time, (b) per platform, and (c) per
tag. We perform the following analyses:

e We use time series clustering [35] to infer the evolu-
tion of the three popularity measures of IoT projects.
We use a moving average to smooth the fluctuating
values of daily views, respects, and trending scores.
In our time series clustering, we use the following:

Optimum number of clusters. We use the gap
statistic approach [568] to estimate the optimum num-
ber of clusters. The gap statistic uses the output of
a clustering algorithm (e.g., k-means [36]) and com-
pares it with the change in a within-cluster disper-
sion. The procedure tries different numbers of clus-
ters to maximize the gap statistic value. We apply
the gap statistics algorithm using the clusGap func-

tion in the clusteﬂ R package. We use a range of
numbers of clusters, k, between 2 and 50. Then, we
select the smallest k£ number of clusters at which the
rate of increase of the gap statistic begins to decline.
As a result, we obtain the following optimum num-
bers of clusters: five clusters of daily views, seven
clusters of daily respects, and three clusters of daily
trending scores.

Distance function. We use the Dynamic Time
Warping (DTW) method [6] to measure the simi-
larity (i.e., distance) between two time-series vec-
tors of a certain popularity measure. DTW aligns
two time series (e.g., daily views of IoT projects)
in a way that the differences between the two time
series are minimized. Equation [1|shows the distance
of the warping path between two time series:

Dy Wi
== - 1

= 1)
DTW builds a warping path W = {wy, wa, ..., wx}
where x denotes the number of points in W and
max(m,n) <k <m-+n—1 [35].

diStDTW =

Partitional clustering. We use the Partitioning
Around Medoids (PAM) (also known as k-medoids)
to partition time-series popularity measures into n
clusters, where each cluster contains at least one
object and each object belongs to one cluster. PAM
chooses data points as centers (i.e., medoids) with
arbitrary distances. We use DTW as the distance
function and the optimum number of clusters iden-
tified using the gap statistic.

e We analyze projects that are published on the same
day to investigate whether they have gained simi-
lar popularity after a while. We use boxplots [65] to
show (a) the distribution of projects published daily
on Hackster and (b) the popularity distributions of
projects published on the same day. Boxplots are
visual representations of the minimum, lower quan-
tile, median, upper quantile, and maximum of the
members in each group of values.

o We use the WordClouﬂ R package to visualize
the frequency of all projects that use the platforms
and tags on Hackster. The larger the size of a plat-
form or tag in the cloud, the more the frequency of
projects that use such a platform or tag. In addition,
we identify the types of projects (e.g., health, gam-
ing, or tracking) in each of the generated clusters
of projects. Tags assigned to each project may not

34 https://cran.r-project.org/web/packages/cluster/

cluster.pdf
35 https://cran.r-project.org/web/packages/wordcloud/
wordcloud.pdf
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only refer to the type of such a project, but also the
technology or tool employed by that project (e.g.,
bluetooth, sms, and data collection). Hence, when vi-
sualizing word clouds and profiling clusters, we elim-
inate the tags that are too generic and do not reflect
the type of project.

Findings. We observe an increasing trend of pub-
lishing IoT projects on Hackster with a median
of 11 projects published everyday. Figure {4 shows
boxplots that represent, for each month, the distribu-
tion of the number of projects published everyday dur-
ing the period between May 2013 and February 2020.
For example, by looking at the projects that are pub-
lished on August 21, 2018, we observe that there were
147 projects published, which is the maximum num-
ber of project publications throughout the entire pe-
riod. In Figure [5| we show box plots representing the
distributions of the views count, respects count, and
trends of the projects published on August 21, 2018.
We observe that the projects do not gain similar popu-
larity throughout the three-month period. Such results
research to investigate the factors that may have an as-
sociation with the popularity of IoT projects.

IoT projects are viewed by the community users
in five different patterns. Figure [6] shows the cen-
troids of the five identified clusters of daily views of IoT
projects. In Table[3] we present the profiles of the daily
views clusters (extracted from the word clouds attached
in the Appendix), in addition to the frequency (i.e., the
number and percentage of projects) of each cluster. We
observe that the majority (i.e., 41%) of projects gain
a reasonably rising number of views during the early
period (e.g., the first month) of publication (see Clus-
ter #5 in which projects target health, nutrition, and
occasions, such as halloween and christmas). However,
the number of views starts to decline for the next few
months but rises again at later stages. There are 16%
of the projects that maintain a linearly increasing num-
ber of views over time (see Clusters #1 & #2 in which
projects use computer vision techniques to track the
health of plants). However, about two-thirds of such
projects may start losing views at later stages. Finally,
the views of 28% of the projects follow a declining pat-
tern over time (see Cluster #3 in which projects target
kids’ health and gifts). Although the types of projects
in Cluster #3 are somewhat similar to those projects of
Cluster #5, we observe a difference in the platforms of
such projects, i.e., the majority of projects of Cluster
#5 use Arduino and RaspberryPi boards, whereas the
majority of projects of Cluster #5 use RaspberryPi and
Particle. Our findings indicate that updating the infor-

mation of projects after publication can help projects
gain a steady number of views.

Two-thirds of the projects receive no respects
from the IoT community users. Figure [7] shows
the centroids of the seven identified clusters of daily
respects of IoT projects. In Table we present the
profiles of the daily respects clusters (extracted from
the word clouds attached in the Appendix), in addi-
tion to the frequency (i.e., the number and percentage
of projects) of each cluster. We observe that the ma-
jority (i.e., 66% percent) of the projects have received
zero respects from the community users (See Cluster #1
in which projects mainly focus on tracking the health
of kids and plants). Such a result may indicate that
viewing a project may not necessarily indicate that the
project is well perceived by the community users. In
addition, we observe that projects may experience an
early spike of respects (Cluster #2 with 18% of the
projects that provide solutions for kids entertainment
and health tracking) or a late spike of respects (Cluster
#7 with 5% of the projects that use drones to monitor
crops). There are almost no projects that have received
a steady rise of respects. Projects that fall under Cluster
#5, representing 6% of the projects that have a poten-
tial of receiving a late-rising number of respects. Those
projects cover different types of activities, including en-
tertainment, health, and agriculture. Still, rising of such
projects is subject to a sudden decline afterwards.
Projects are mainly top-trending at the early st-
ages of their publication. Figure [§ shows the cen-
troids of the 3 identified clusters of daily trending pages
of the studied projects. In Table [3| we present the pro-
files of the trending clusters (extracted from the word
clouds attached in the Appendix), in addition to the
frequency (i.e., the number and percentage of projects)
of each cluster. As Figure 8| depicts, almost all projects
do not maintain a high trending score all the time. How-
ever, the trending scores do not fall at the same rate.
The majority (i.e., Cluster #3 with 58% of the projects)
of kids health and gifts projects maintain a linear de-
crease in the trending score, which leads projects to be
listed at later pages among all Hackster projects. 42%
of the projects (i.e., Cluster #1 and #2, which com-
pose of projects that mainly track the health of plants)
experience an early (i.e., in the first 25-40 days of pub-
lication) fast decrease in the trending score. Yet, half
of those projects maintain a steady trending score for
the rest of the day, whereas trending scores of the other
half of projects continue to decrease at a slow pace.

Featured projects are updated frequently on Hack-
ster (almost daily). Figure [0] shows the number of
featured projects over time. Hackster features certain
IoT projects on dedicated web pages. The selection of
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Figure 4: The distribution of projects published daily between May 2013 and February 2020
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Figure 5: The distributions of the views count, respects count, and trending pages of the projects published on

August 21, 2018

such projects is conducted by the Hackster community
organizers, but the selection criteria are not disclosed.
We observe that the pages of featured projects are al-
ways increasing by a factor of 0 — 6 projects every day.
In addition, we observe that the featured projects re-
main featured and never reconsidered for removal from
the featured set of projects.

The majority of IoT projects are associated with
the Arduino, RaspberryPi, SparkFun, and Adaf-
ruit platofrms. Figure shows a word cloud that
demonstrates the frequency of projects that use the 206
platforms in our dataset. Over 25% of the projects use
the Arduino platform, followed by RaspberryPi, which is
used by about 15% of the projects. In addition, we ob-
serve that 17% of the projects that use Arduino also use
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SparkFun or Adafruit or both of them. Similarly, 19%
of the projects that use RaspberryPi also use Microsoft,
SparkFun, Adafruit or a combination of them. Further-
more, we observe that the projects in our dataset use a
median of 3 platforms.

The robotics and led tags are the most fre-
quently assigned to IoT projects. Figure [10b|shows

a word cloud that demonstrates the frequency of tags
assigned to the projects in our dataset. Our dataset
contains 2,001 tags that are related to IoT technology.
We show in Figure [I0D] 200 tags with the most number
of projects that use them. The number of projects that
use the robotics and led tags is 1,113 and 1, 053, respec-
tively. We observe that the projects in our dataset use
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Table 3: Summary of the clusters of daily views, respects, and trending scores. The types of projects are summarized
using the platforms and tags word clouds in the Appendix.

Cluster Pattern # %  Profile
1 Rising - Late Falling 2,929  16%  Arduino/SparkFun : health, tracking, kids, drones, garden

" 2 Rising 1,777 10%  Arduino/SparkFun : tracking, health, solar, computer vision, healthcare

5 3 Falling 5,082  28%  Arduino/RaspberryPi : health, garden, kids, halloween, machine learning

s 4 Maintaining - Late Rising 942 5%  Arduino/SparkFun : computer vision, home security, tracking, garden, health
5  Early Rising - Falling - Later Rising 7,569 41%  RaspberryPi/Particle : health, food and drinks, kids, halloween, christmas
1 Zero-Maintaining 12,091 66% RaspberryPi/Arduino : health, kids, food and drinks, garden, tracking
2 Early Spike 3,368  18%  Arduino/SparkFun : health, tracking, computer vision, kids, halloween

*{’Vj 3 Rising 198 1%  Arduino/SparkFun : home security, machine learning, drones, solar, pets

qé 4 Sudden Collapse 79 ~0% Arduino/SparkFun : tracking, transportation, kids, drones, energy efficiency

é 5 Late Rising 1,018 6%  Arduino/SparkFun : machine learning, drones, garden, entertainment, healthcare
6  Early Falling 689 4%  Arduino/RaspberryPi : garden, computer vision, energy efficiency, real time, health
7  Late Spike 856 5%  Arduino/SparkFun : health, drones, tracking, computer vision, irrigation

Y 1 Early Fast Falling - Recovering 4,064  22%  Arduino/RaspberryPi : tracking, health, drones, solar, garden

ﬁ 2 Early Fast Falling - Slow Falling 3,712 20%  Arduino/SparkFun : health, tracking, garden, kids, machine learning

é 3 Fast Falling 10,523 58%  RaspberryPi/SparkFun : health, kids, halloween, garden, christmas
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Figure 9: The number of featured projects over time

IoT projects are increasingly published every day.
The view and respect rates of IoT projects can vary
dramatically over time. The Arduino and Raspber-
ryPi hardware platforms are commonly used by a
large number of IoT projects. There are 20% of IoT
projects that do not follow the community guidelines
(e.g., assign more tags than required, i.e., three).

Date

4.2 RQo: What are the most important factors
to model the popularity of IoT projects?

Motivation. Studying the factors that are associated
with the popularity of IoT projects is important be-
cause it helps (new) IoT engineers to better work on an
IoT project before or after publication. By understand-
ing the factors that have an association with the popu-

a median of 2 tags. This result indicates that the ma-
jority of projects strictly follow the guidelines provided
by Hackster, which encourages projects owners to use a
maximum of three tags. However, over 3,000 (i.e., 20%)
of the projects still assign more than three tags.

larity of IoT projects, project owners can attract more
users and foster new business opportunities. Therefore,
in this RQ, we aim to understand the important factors
to model the popularity of IoT projects while control-
ling the age and platforms of projects.
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Figure 10: Word clouds of IoT platforms and tags on Hackster

Approach. To control the potential variation of the
platforms and publication dates of the studied projects,
we fit linear mixed-effects regression models to study
the three popularity measures of IoT projects. We build
three separate linear mixed-effects models to under-
stand the factors that are strongly associated with each
popularity measure of the project. Mixed-effects models
allow assigning (and estimating) a different intercept
for each project [63] to control the variance between
projects in terms of age and platforms. Considering that
we aim to study the relationships between the popular-
ity of IoT projects and the factors listed in Table [T} we
particularly use the generalized mixed-effects models
for linear regression. Generalized mixed-effects models
are statistical regression models that contain both fixed
and random effects [19]. Fixed effects are variables with
constant coefficients and intercepts for every individual
observation. Random effects are variables that are used
to control the variances between observations across dif-
ferent groups (i.e., project platforms and ages). Our lin-
ear mixed-effects models assume a different intercept for
each group [32]. Traditional regression models, in con-
trast, use fixed effects only, which disregards the vari-
ances of the popularity of IoT projects across different
platforms and ages.

Equation [2] shows the equation of the linear mixed-
effects model. In Eq. |2|, Y, denotes a project popularity
measure; (9 demonstrates the constant intercept; X;
represents the independent variables; (§; represents the
coeflicients of each X;; €, indicates the errors; and 6,
represents the intercepts that vary across each platform

and age. We use the 1mer function in the 1me4 R package
to use linear mixed-effects models.

Yy =PBo+0,+ > BiXi+eq

i=1

(2)

Significant independent variables are marked with
asterisks in the output of the mixed-effects models us-
ing the ANOVA test [44]. An independent variable is sig-
nificant if it has Pr(< [x?|) < 0.05. Pr(< |x?|) is the
p-value that is associated with the y2-statistical test.
The x? (Chi-Squared) values show whether a model is
statistically different from the same model in the ab-
sence of a given independent variable according to the
degrees of freedom in the model. The higher the x?, the
higher the explanatory power of an independent vari-
able. We use upward () and downward (\,) arrows to
indicate whether an independent variable has a direct
or inverse relationship, respectively, with the dependent
variables (i.e., the project popularity measures).

We compute the number of Events Per Variable
(EPV) or our dataset to assess the risk of overfitting
our models [42]. EPV values represent the ratio of the
number of records in our dataset to the degrees of free-
dom (i.e., the number of independent variables plus the
number of levels in the categorical variables). A dataset
with an EPV above 10 is less likely to run into an over-
fitting problem [42].

We evaluate the performance of the models using
the marginal and conditional R? values:

e The marginal R? is a measure of the goodness-of-fit
of our mixed-effects models. It represents the pro-
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portion of the total variance explained by the fixed
effects [37]. Higher values of the marginal R? in-
dicate that fixed effects can properly explain the
dependent variable.

e The conditional R? is another goodness-of-fit mea-
sure of the linear mixed-effects models. It represents
the proportion of the variance explained by both
fixed and random effects [37]. Higher values of the
conditional R? indicate that the proportion of the
variance that is explained by both fixed and random
effects is higher than the proportion of the variance
that is explained by fixed effects only. A high differ-
ence between the values of conditional and marginal
R? suggests that the random effects significantly
help to explain the dependent variable.

We use the values of the estimated coefficients of in-
dependent variables generated by the three models to
measure the extent to which independent and depen-
dent variables are correlated. The estimated coefficients
can be positive or negative. A negative coefficient indi-
cates that the variable has a direct relationship with
project popularity. A positive coefficient indicates that
the variable has an inverse relationship with project
popularity. We use the +ve or —wve sign of the esti-
mated coefficient of each variable to produce upward
and downward arrows, respectively. The upward and
downward arrows represent a direct or inverse relation-
ship, respectively, between an independent variable and
project popularity. We use the odds ratios [2] to mea-
sure the association of the dependent variable with the
presence/absence of a binary independent variable (or
the increase/decrease of a continuous independent vari-
able) while holding the other variables at a fixed value.
For example, odds ratios can explain how project pop-
ularity differs between projects that have larger team
sizes and projects that have smaller team sizes. We com-
pute the odds ratios by taking the exponentiation of the
estimated coefficients obtained from the model for each
independent variable. For categorical independent vari-
ables, the odds ratio of each categorical level is com-
puted over the reference level. For example, the odds
ratio of the Difficulty factor is computed over the ref-
erence level of Difficulty (i.e., the ‘Fasy’ level).

Findings. Table [f shows the performance of the linear
mixed-effects models in terms of marginal R? and con-
ditional R? values. Our results indicate that the models
maintain a better performance with the use of the Plat-
form and Age of projects as random intercepts. Our
models have a low risk of overfitting, since the EPV
value computed for our dataset is 50. We observe that
the respects model obtains the highest goodness-of-fit
among the other two models (i.e., an R? of 0.63). We

Table 4: Performance of the linear mixed-effects models

Model Marginal R? Conditional R?
Views model 0.26 0.56
Respects model 0.53 0.63
Trending model 0.34 0.60

also observe that the respects model is not very sensi-
tive to the variance of the project Platform and Age
as compared to the views and trending models (i.e.,
the conditional R? of the respects model improves by
10%). Nevertheless, the random intercepts improve the
performance of the views and trending models by 30%
and 26%, respectively.

Table |5 shows the variable importance results ob-
tained from fitting the three linear mixed-effect mod-
els. Variables are descendingly sorted by the x? values
of the Views model. For each independent variable, we
show its estimated coefficient, its x2 value, the p-value
(represented by Pr(< x?)), its significance to model the
popularity of IoT projects, and whether each indepen-
dent variable has a direct upward or inverse downward
association with the project popularity.

Project Description

The number of channels and tags of an IoT
project have a significant association with the
popularity of the project. Project owners can
associate their projects to several channels in the
Hackster community. Channels can either be plat-
forms that are used by the project or other com-
munity channels (e.g., Women in Hardware). Users
who join the Hackster community can identify the
channels that they belong to. Hence, whenever a
project related to one of the channels is published,
all users can be notified about the project in their
feeds. In addition, users can open their channels at
any time to explore the newly published projects re-
lated to those channels. Similar to the related chan-
nels, project owners can also assign a number of
tags to their projects. We observe that the number
of tags also shares significant importance to model
the popularity of IoT projects. Prior research has
also reported the vital importance of tags in attract-
ing users [60]. Therefore, project owners should con-
sider assigning as many relevant tags and channels
to the projects, since the number of tags and chan-
nels is highly associated with the three popularity
measures of IoT projects.

We observe that featured projects are more
popular than other non-featured projects. The
Hackster team marks certain IoT projects as fea-
tured projects. Our dataset contains 667 projects
(i.e., 4% of the active projects) marked as featured
projects. Users can access the featured IoT projects



On the Popularity of Internet of Things Projects in Online Communities 17

Table 5: Results of the linear mixed-effects model — factors of each group are descendingly sorted by the x? values
of the Views model (bold variables share a common, significant association in all the three models)

Views model Respects model Trending model

Variable
x? Pr(<x?) Signf* Rel x? Pr(<x?) Signf. Rel x? Pr(<x?) Signf. Rel
Number of channels 247.829 < 2.2e16 Rk 124.300 < 2.2e716 Rk 109.990 < 22716 *Hx oo
Featured project 154.114 < 2.2¢716 HAE Va 428.349 < 2.2¢16 HoAk Va 116.369 < 2.2¢716 Hokk Va
Copyright license 83.609 1.5e~ 11 ol - 111.852 < 2.2¢~16 Hokk - 69.005 6.7¢=09 Hokok -
Difficulty level 56.157  1.9e—1!1 ok 35323  4.0e-07  eex 58.554  B5.8e~12
Number of story sections 33.911 5.8¢709 o N 0.687 0.4073 N 43.663 3.9¢ 11 Hokk V
Project type 32.302 3.6e=05 ook - 32.913 2.7¢=05 ook - 30.127 9.0e=05 ook -
_ Cover (video) 30.480 3.4e~08 HokE N 131.819 < 2.2¢716 Hokk N 54.495 1.6e~13 Hokk e
% ‘Won a contest 23.178 1.5e=06 Rk 10.277 0.0013 R 27.510 1.6e=07 Rk
‘5 Number of links in story 17.753 2.5¢705 HoAE Va 2.975 0.0845 . Va 3.604 0.0576 . Va
é Number of tags 12.391 0.0004 Hoxx Ve 28.763 8.2¢708 HHx e 19.219 1.2¢705 HAx e
§ Number of contests 10.742 0.0010 N 3.464 0.0627 LN\ 31.424 2.1e-08 RN
§ Number of videos 6.809 0.0091 ** Vs 138.952 < 2.2¢16 Hokok e 6.946 0.0084 ** e
a Number of platform projects 4.411 0.0357 * Ve 5.622 0.0177 * Vs 4.850 0.0277 * Va
Description length 2.154 0.1422 N 17.677  2.6e-05  mRE N 0.007 0.9316 ~
Number of schematics 1.783 0.1818 N 2.325 0.1273 N 1.136 0.2864 N\
Number of images 1.003 0.3165 Va 17.663 2.6e~0°% Hokk Va 0.056 0.8128 N
Last modified 0.418 0.5181 Va 203.616 < 2.2¢16 Horx N 188.107 < 2.2e-16 Hokok N
Length of story 0.240 0.6239 ~ 5.295 0.0214 o a 7.150 0.0075 o a
Estimated time 0.105 0.7462 Ve 0.061 0.8045 Ve 1.177 0.2781 e
Most common purchase source 1465.484 < 2.2¢716 Horx - 966.541 < 2.2¢16 Horx - 1308.758 < 2.2¢716 Hokok -
Vendors per hardware component 551.122 < 2.2e16 Hoak Va 87.638 < 2.2e716 HoHx Va 206.974 < 2.2e16 HoHx a
» Hardware-controlling code 20.903 2.9e-05 Hoxx - 39.475 2.7e=09 HHx - 33.888 4.4e-08 HAx -
§ Hardware components 20.167 7.1e-06 Hhk 3.091 0.0787 a 26.894 2.2¢707 Hrk
’E Estimated cost mentioned 16.946 3.8¢705 Rk 0.051 0.8220 N\ 28.475 9.5¢08 Rk
= Hand & fabrication tools 2.857 0.0910 N 1.474 0.2247 N 0.174 0.6762 Va
Tools without links to purchase 2.254 0.1333 N 1.408 0.2354 N 18.690 1.5¢=95 Hokok N
Software applications & services 0.069 0.7925 Vs 30.668 3.1e708 Hrk 0.009 0.9235 Ve
Geographical location 246.199 < 2.2¢16 HoAE - 350.799 < 2.2¢16 Hokk - 265.149 < 2.2¢16 Hokk -
Project owner’s communities 35.555 2.5~ 09 Hork N 0.276 0.5996 N 27.634 1.5e97 HAx N
Project owner’s followers 32.466 1.2¢708 HAE Va 230.030 < 2.2¢"16 HoAE Va 60.915 6.0e~ 15 HoAk Va
Project owner’s likes 29.280 6.3¢08 o Ve 6.176 0.0129 * e 12.770 0.0004 Hokok e
= Number of project owners 25.947 3.5e707 Hokok N 33.361 7.7¢09 Hokok Va 45.031 1.9e— 11 Hokok e
E Personal Web page available 20.099 7.4e06 ¥Re o2 6.480 0.0109 2 10.776 0.0010 ¥* o2
E Project owner’s channels 11.733 0.0006 Hork Va 9.884 0.0017 *x N 6.950 0.0084 *k Va
i Length of project owner’s biography 6.120 0.0134 * N 6.894 0.0086 Hok N 16.015 6.3¢05 ok N
E Project owner’s contests 4.703 0.0301 * N 21.350 3.8¢706 Hax N 0.526 0.4682 N
Project owner’s skills 3.470 0.0625 N 0.731 0.3925 N 0.290 0.5901 N
Project owner’s awards 0.258 0.6116 Ve 25.886 3.6e~07 HoHx N 1.682 0.1947 N
Project owner’s followings 0.139 0.7089 N 11.380 0.0007 RN 2.644 0.1039 N
Project owner’s respects 0.001 0.9704 Vs 0.024 0.8769 Vs 0.022 0.8820 s
‘:é: Number of positive comments 98.318 < 2.2¢716 Rk 2691.746 < 2.2e716 Rk 526.692 < 2.2e16 x4
g Number of project owner’s replies 6.141 0.0132 oo 0.016 0.9006 a 250.055 < 2.2¢716 x4
8 Number of negative comments 0.102 0.7499 s 2.080 0.1492 N 4.890 0.0270 * N\
+Significance codes: 0 “***’ 0.001 “*** 0.01 “*’ 0.05 <> 0.1 “* 1

using a dedicated web page on Hackster. In addition,
the featured projects appear on the feed pages of ev-
ery community user. Therefore, it is important for
project owners to understand the criteria to make
their projects featured, since we observe that fea-
tured projects are likely to be more popular than
other projects. It is also important for Hackster to
highlight such criteria to project owners to allow
them to improve their projects accordingly.

Participating (but not winning) in online con-
tests is likely to have an inverse relationship

with the popularity of IoT projects. Our re-
sults indicate that the more contests a project par-
ticipate in, the less likely for the project to become
popular. On the other hand, winning at least one
contest is most likely to improve the popularity of
the projects. This result indicates that project own-
ers should be more careful about whether to partici-
pate in a contest or not if the chances of winning are
low. For example, the Internet of Toiletries pro, jecﬂ

36 https://www.hackster.io/aros-automatic-reorder-
system/internet-of-toiletries-9d7897
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participated in five contests but did not win any of
them. That project has around 1, 100 views and only
6 respects. Conversely, the WalaBeer Tank project{ﬂ
participated in one contest and won that contest.
That project has around 23, 000 views and only 157
respects.

Hardware

Providing the code required to control the project

hardware has a strong association with project
popularity. The odds of having higher views, re-

spects, and trending scores for projects that share

their code in a remote repository (e.g., GitHub) are

8—11% higher than the odds for projects that do

not share the code. Sharing the code as a single

file on Hackster can also increase the odds of mak-

ing a project highly viewed and trending by 1—-9%.

However, we could not observe any evidence that a

single-file code sharing would increase the number of
respects of projects. These results encourage project

owners to better use remote repositories when shar-

ing the project code with other users.

The more alternatives to purchase hardware,
the more popular are the IoT projects. Our
results indicate that projects that provide more pur-
chase options to hardware components are more pop-
ular than others. In particular, for every vendor
added to purchase a hardware component, the odds
for a project to become more popular increase by
6—20%. This result encourages project owners to
properly choose the hardware components that can
be ordered from different suppliers to give more pur-
chasing flexibility to users.

Project owner(s)

As the number of followers of project own-
ers increases, the popularity of the project
increases. We observe a direct strong association
of project popularity with the number of follow-
ers of project owners. In social media, being fol-
lowed allows your posts and updates to be seen by a
large number of users [14]. Kwak et al. [30] reported
that the popularity of a tweet is correlated with the
popularity of the tweet writer, which both can be
estimated by the number of followers. Therefore,
project owners should work hard to build connec-
tions and gain more followers. This can be achieved
by interacting with projects and posts of other users
in the community.

Project popularity is most likely to increase
if project owners share links to their per-
sonal web pages, write concise biographies,

and interact with posts of other users. Shar-
ing links to social media accounts or personal web
pages is more likely to increase project popularity
than writing lengthy biographies. Our results show
that a lengthy biography containing details that are
unrelated to the IoT technology has an inverse rela-
tionship with project popularity. For example, the
project owner of the ‘Z-Wave Mouse Trap project’ E]
has a 30-word biography, in which he writes about
his hobbies and family members. Such information
is less likely to be associated with project popularity.
In addition, our results indicate that a project may
be popular even if the project owners have no bi-
ography. Moreover, project owners need to be more
actively positive towards the posts of other users,
since we observe that projects are more likely to
be popular if the project owners give more likes to
projects or posts of other users.

User feedback

Positive comments have a significant rela-
tionship with the popularity of IoT projects.
Our results indicate that projects that receive pos-
itive feedback from the IoT community are more
popular than other projects. An increase in the num-
ber of pleasant user comments increases the odds
of making a project highly viewed, respected, and
trending by 13%, 71%, and 31%, respectively. In
addition, negative user feedback is likely to have
a strong inverse association with project trending
scores, but no association with the project views
and respects could be observed.

As project owners constantly reply to the con-
cerns raised by the community users, project
popularity is most likely to increase. We ob-
serve a strong association between both project views
and trending scores and the number of replies pro-
vided by project owners to user comments. However,
we could not observe strong evidence that the replies
of project owners have an association with the re-
spects received by the project. We hypothesize that
such a weak association is a result of the fact that
users might need much more than a reply to change
their opinions about a project (i.e., actual changes
to the project implementation would be more appre-
ciated by users). In addition, our models reveal that
positive comments have a higher association with
project respects. Typically, users who like a project
are less likely to leave negative comments, and re-
plying to such comments is less likely to increase the
project respects. Project owners are more likely to

37 https://www.hackster.io/aros-automatic-reorder-
system/internet-of-toiletries-9d7897

38 https://wuw.hackster.io/eradicatore/z-wave-mouse-
trap-d3bcb6
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reply to those comments that are negative or asking
for clarification, which we observe that such com-
ments have a weak association with the popular-
ity of projects as well. As a result, our regression
model finds no significant evidence that replies to
comments would eventually lead to project respects.

To understand the relationship between replies to
comments and the respects of a project, we perform
a more in-depth analysis on two sample projects.
First, we investigate the ‘Arduino Web Editor’ |
a project with the highest number of respects in
our dataset. We observe that this project has re-
ceived over 100 comments, but the project owner
has responded to only one comment. Second, we in-
vestigate the ‘MATRIX Voice and MATRIX Cre-
ator Running Alexa@ project. Such a project has
a lower number of respects (i.e., less than 20). Yet,
the owners of such a project have replied to 50% of
the user comments. As a result of such cases, our
logistic regression model finds no strong association
between the number of replies to user comments and
the number of respects received by a project.

All groups of factors contribute to the popularity of
IoT projects. The most important factors, such as
project channels and tags, hardware purchasing prac-
tices, profile and followers of project owners, and
positive user feedback, share common associations
with the project views, respects, and trending scores.
However, important factors may have inconsistent
associations with project popularity.

4.3 RQ3: What are the inconsistent associations
between the factors and popularity measures?

Motivation. The results of RQ2 suggest that impor-
tant factors may have disagreeing associations with the
popularity of IoT projects. In this RQ, we aim to under-
stand the factors that may have a significant association
with one or two popularity measures (say views and
trending scores) but have an insignificant association
with the other popularity measure(s) (say respects). In
addition, we discuss the significant factors that may
have a direct relationship with one or two popular-
ity measures but have an inverse relationship with the
other popularity measure(s).

Approach. We perform subsequent analyses on the es-
timated coefficients of the independent variables that

39 https://www.hackster.io/Arduino_Genuino/getting-
started-with-arduino-web-editor-on-various-platforms-
4b3eda

40 https://www.hackster.io/matrix-labs/matrix-voice-
and-matrix-creator-running-alexa-c-version-9b9d8d

have conflicting relationships with project popularity.
We use the x? values and the computed odds ratios of
the variables in the different models to understand the
varying associations with project popularity.

Findings. Intermediate and Advanced projects are
more likely to gain better popularity than Show-
case projects. Analyzing the coefficients of different
difficulty levels shows that sophisticated projects are
more popular (in terms of views, respects, and trend-
ing scores) than other projects. As an exception, the
Ezpert difficulty level is strongly associated with the
project respects only (i.e., there is no strong evidence
that the Ezxpert level is associated with highly viewed
and trending projects). On the other hand, we observe
that Showcase projects are less popular than any other
projects. Conversely, Getting started projects are more
likely to be highly respected than any other projects.
Therefore, project owners should take into considera-
tion that specifying the type and difficulty level of a
project is crucial and should be handled carefully and
not in an ad hoc manner.

The project copyright license has a significant
relationship with the popularity of IoT projects.
Our results indicate that licensing an IoT project is
strongly associated with project popularity. We show
in Table [0 the estimated coefficients obtained from the
linear mixed-effects models for each copyright license.
We observe that only the MIT, CC BY-NC-SA, and CC
BY-SA licenses share significant importance to model
the popularity of IoT projects among the three popular-
ity measures. The other copyright licenses have differ-
ent associations among the three popularity measures.
For example, the ‘GPL3+’, ‘CC BY-NC’, and ‘CC BY’ li-
censes are significantly associated with the wviews and
trending scores popularity measures, whereas no asso-
ciation could be observed with the project respects. The
respects-based popularity has a distinguished strong as-
sociation with the SHL and CC BY-ND licenses. Similar
to our observation, Sen [48] observed a strong relation-
ship between license types and the popularity of FLOSS
projects. Therefore, project owners should keep the re-
strictions of the available licensing mechanisms in mind
prior to licensing their projects.

Projects with larger team sizes have more re-
spects but less views and trending scores. How-
ever, larger numbers of channels connected to
project owners have a contrary association. Our
results indicate that the odds of giving a thumbs-up to
an IoT project increases by the increase of the number
of development team members. However, larger team
sizes have an inverse association with the number of
views and tending scores of the projects, since users can
give the thumbs-up without even opening the project


https://www.hackster.io/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://www.hackster.io/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://www.hackster.io/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://www.hackster.io/matrix-labs/matrix-voice-and-matrix-creator-running-alexa-c-version-9b9d8d
https://www.hackster.io/matrix-labs/matrix-voice-and-matrix-creator-running-alexa-c-version-9b9d8d
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Table 6: Estimated coefficients obtained from the linear mixed-effects model for each Copyright license
License Views model Respects model Trending scores model
Coef. Pr(<x?) Signf. Rel Coef. Pr(<x?) Signf. Rel Coef. Pr(<x?) Signf. Rel
MIT —0.094 < 0.001 HoHk s 0.068 < 0.001 Hokk ¢ —0.052 0.015 * s
Apache-2.0 —0.116 < 0.001 Hoxk s —0.004 0.881 s —0.020 0.467 s
GPL3+ —0.135 < 0.001 HoHE Va —0.028 0.060 s —0.103 < 0.001 Hokok N
LGPL —0.155 < 0.001 Hoxk s 0.014 0.584 AW —0.078 0.007 *x s
CC BY-NC —0.158 0.001 Hoxk s —0.081 0.032 * s —0.083 0.058 . s
CC BY -0.173 < 0.001 roxk s —0.037 0.162 s —0.102 0.001 HoAok s
CC BY-NC-SA —0.180 < 0.001 HoHk a —0.128 < 0.001 *ok s —0.128 < 0.001 HoAok s
CC BY-SA ~0.139 0.001 ** a ~0.076 0.031 * 0156 <0.001  FRE x
CERN-OHL —0.274 0.002 Hok Va 0.030 0.672 N 0.008 0.923 N
TAPR-OHL —0.269 0.022 * s 0.112 0.241 N 0.016 0.885 AW
CC BY-NC-ND —0.115 0.089 Va 0.141 0.010 * e —0.168 0.008 *x Ve
CCo —0.153 0.098 Ve —0.135 0.074 . Ve —0.069 0.428 Ve
SHL —0.361 0.352 Va 0.667 0.037 * e 0.652 0.073 N
CC BY-ND 0.019 0.870 N 0.355 < 0.001 HoAk N 0.083 0.431 AW
MPL-2.0 0.303 0.114 N 0.130 0.406 e 0.310 0.085 N

page. On the contrary, a project is likely to be viewed
considerably and become trending if the project owners
are connected to a larger number of community chan-
nels. However, the odds of giving a thumbs-up to an IoT
project decreases as the number of channels increases.

Projects are likely to be highly viewed and
trending if more hardware components are used
or an approximate cost of the hardware is indi-
cated. It could be surprising to know that more hard-
ware components can increase the popularity of IoT
projects. However, it is important to note that projects
may not list the exact number of hardware components
required, which can have an inverse relationship with
project popularity. It is also important to note that hav-
ing more hardware components does not always indi-
cate higher costs. For example, a project with 10 hard-
ware components (e.g., capacitors and resistors) may
cost less than a project that requires only 2 hardware
components (e.g., a digital camera and sensor). We were
unable to obtain information about hardware prices due
to the variety of hardware suppliers, quantities, and
currencies. Nevertheless, we observe that projects that
mention an approximate cost of all (or part) of hard-
ware components are 10—12% more popular than other
projects. We do note that we could not observe any ev-
idence that such two factors have a relationship with
the number of respects of IoT projects.

We observe a significant association of 19
suppliers of hardware components with the three
IoT project popularity measures. Projects in our
dataset contain over 470 different hardware suppliers.
176 of these suppliers have significant associations with
at least one popularity measure. In Table[7] we show the
suppliers that share a common significant association
among the three project popularity measures. We ob-
serve that, the more frequent the farnell, seeedstudio,

erlerobotics, or hologram websites are used to pur-
chase hardware components, the more popular are the
projects. However, projects that use xinabox more fre-
quently are less popular than other projects. Despite
such common associations, we observe that some sup-
pliers have conflicting associations with project popu-
larity. For example, highly viewed and trending projects
are associated with using adafruit, amazon, sparkfun,
and microsoft to purchase hardware components. How-
ever, those projects are likely to be less respectful if
such suppliers are selected to purchase hardware com-
ponents from. We hypothesize that the small number
of respects that is associated with the use of such sup-
pliers is most likely due to higher prices or prolonged
delivery processes of such projects.

Licensing a project has a direct relationship with the
number of views and trending scores of IoT projects
but has an inverse relationship with the respects of
IoT projects (e.g., the MIT license). Projects that use
general websites to purchase hardware (e.g., Amazon
or Microsoft) are likely to be highly viewed and trend-
ing (but not respected).

5 Discussion

In this section, we discuss our findings on the important
factors in terms of direct implications for IoT project
owners and Hackster.

5.1 Project owners

Project owners should be aware of the fact that hav-
ing more views is not always enough to indicate that a
project is popular. Highly viewed projects should also
be well-perceived by the community users.
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Table 7: Estimated coefficients obtained from the linear mixed-effects model for each Common Hardware Supplier

Views model Respects model Trending scores model

Hardware supplier

Coef. Pr(<x?) Signf. Rel Coef. Pr(<x?) Signf. Rel Coef. Pr(<x?) Signf. Rel
adafruit —0.247 < 0.001 oK N 0.078 0.025 * AW —0.239 < 0.001 HAK N
amazon —0.314 < 0.001 Rk 2 0.161 0.012 Ny —0.451 < 0.001 Rk
sparkfun —0.319 < 0.001 Hoxx N 0.130 0.005 *x AWV —0.165 0.002 *x v
farnell —0.375 < 0.001 oAk N —0.688 0.001 HoAK N —0.697 0.006 Hox N
seeedstudio —0.394 < 0.001 Hoxx N —0.438 0.040 * e —0.867 < 0.001 o N
modmypi —0.503 < 0.001 HHE N 0.413 0.008 *x ¢ —0.537 0.003 *x N
patternagents —0.637 < 0.001 Rk 0.143 0.001 RN -0.191 < 0.001 R
hologram —0.652 < 0.001 HoAk Ve 2.852 i0.001 HoAk AW 3.662 < 2e—16 HoAk AW
matrix —0.750 < 0.001 oAk N —0.107 0.037 * N —0.563 < 2e—16 HoAK N
aiyprojects 1002 <0001  RRE x 0.103 0.005 N —0.163 <0001  *
erlerobotics —1.002 < 0.001 HxE N —0.931 j0.001 Hokk N —0.831 < 0.001 HoAk N
reference —2.050 < 0.001 oAk Va 0.405 0.003 *x ¢ —0.312 0.050 * s
harborfreight 2.007 < 0.001 RN 0.102 0.012 N —0.289 < 0.001 ¥
lattepanda —0.394 0.009 Hok N —0.170 0.018 * N —0.497 < 0.001 HAK N
bauhaus —1.122 0.005 ** Ve 0.081 0.023 * AW —0.232 < 0.001 ol N
xinabox 0.535 0.001 ** AV 0.356 0.002 *x AW 0.332 0.027 * AW
dexterindustries —0.262 0.032 * Va 0.619 0.043 * ¢ —0.813 0.020 * s
microsoft —0.437 0.022 * N 0.868 j0.001 o AW —0.568 < 0.001 HoAK N
parrot —0.539 0.038 * N —0.195 0.002 Hox N —0.474 < 0.001 HAK N

Profile of the project owner. Project owners are
encouraged to write short (but elegant) biographies,
since we observe that a shorter biography is asso-
ciated with highly popular IoT projects. Instead
of writing much about themselves, project owners
are encouraged to provide links to their personal
pages, since we observe that doing so is associated
with project popularity. In addition, project own-
ers should be more active with the posts and other
channels in the community, since we observe that
project owners who are more involved with the com-
munity (e.g., give respects to other projects/posts)
are associated with popular projects. In addition,
being more active will most likely increase the num-
ber of followers to project owners, which we also ob-
serve that it shares a strong association with project
popularity.

Participation in contests. It is better for project
owners to not participate in contests if the chances
of winning are low, since we observe an inverse rela-
tionship between participating in (but not winning)
a contest with project popularity.

a project featured clear to project owners. It is also
important to describe the trending in the guidelines
to allow project owners to compete for ranking their
project up in the trending-based project listings.

Project cover. The guidelines provided by Hack-
ster are mostly related to improving the page of a
project. The guidelines indicate that the cover pic-
ture of a project should be of high resolution and
should show the end result of the project. Based
on our results, the guidelines should also indicate
that using a short video instead of a cover picture
can help to attract more people to engage with the
project.

Tags & channels. The guidelines of Hackster in-
dicate that tags should be limited to a maximum
of 3 and that project owners should avoid using
tag descriptions (e.g., Arduino or Raspberry Pi).
Nonetheless, our results reveal that as the number
of tags increases, the popularity of a project is likely
to increase. In addition, we observe that connecting
projects to many more related channels is strongly
associated with the project popularity.

5.2 Hackster Code. The current guidelines of Hackster are very

brief when it comes to the code of a project. The
guidelines indicate that the proper language should
be selected for code files and that no placeholders
should be used. According to our results, publishing
the hardware-controlling code in a remote reposi-
tory is strongly associated with project popularity.

Hackster provides project owners with initial guidelines
on how to properly write a page for an IoT project. Our
results can be used to improve the guidelines provided
by Hackster.

Featured & trending projects. Hackster guide-
lines should make the criteria or practices that make
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The guidelines should encourage project owners to
avoid uploading their code as single or zip files and
use code repositories instead.

Profiles & activities of project owners. The
current guidelines of Hackster are oblivious to the
actions or profiles of project owners. The guidelines
could be improved by including our empirical ob-
servations regarding the aspects involving project
owners. For example, mentioning that project own-
ers should promptly reply users could improve the
guidelines.

6 Threats to Validity

In this section, we discuss the potential threats to the
validity of our work.

6.1 Construct Validity

Construct threats to validity are concerned with the de-
gree to which our analyses measure what we claim to
analyze [50]. In our study, we rely on the data collected
from Hackster. Mistakenly computed values can have
an influence on our results. However, we carefully fil-
ter and test the data to reduce the possibility of wrong
computations that may impact the analyses in this pa-
per. In addition, some of the factors used as indepen-
dent variables in our models may not be actionable for
project owners (e.g., the project owners have almost no
control over the number of followers). However, we keep
such factors as control variables in our models [40]. Fu-
ture work could deeply investigate our observations and
improve the body of knowledge about the popularity of
IoT projects.

6.2 Internal Validity

Internal threats to validity are concerned with the abil-
ity to draw conclusions on the relation between the
independent and dependent variables [50]. We study
57 factors. However, we are aware that these factors
are not fully comprehensive and using other factors
may affect our results. For example, the response time
of project owners can be another explanatory metric.
However, Hackster presents the response dates with
varying granularity levels, including day, weak, month,
and year; as the dates get older, the granularity in-
creases. For example, 24% of our collected comments
are dated as “a year ago”. Therefore, we could not in-
clude the response time in our study. Future work may
study more factors to explain project popularity better.
In our correlation analysis, deciding which variables to
keep in the linear mixed-effects models may have an

impact on the results of the models. To make our ob-
tained results reproducible, we explicitly define our se-
lections of variables for all possible pairs of highly cor-
related variables. Moreover, activities by Hackster may
influence the popularity of IoT projects. For example,
a project can be labeled as beginners, intermediate, ad-
vanced, or experts by Hackster, and can be featured in
a special page on Hackster. We include such metrics in
our models and find that they are associated with the
popularity of IoT projects. Nevertheless, we have no
control over any other unforeseen activities that might
be performed by Hackster, since we rely on the met-
rics that we collect from the web pages of projects and
project owners.

6.3 External Validity

External threats are concerned with our ability to gen-
eralize our results [50]. Our study is based on 15,007
active projects collected from the Hackster online com-
munity. Therefore, we cannot generalize our conclusions
to IoT projects in other online communities (e.g., In-
structableﬂ. Future work should investigate whether
our observations may hold for projects published in
other online communities.

7 Related Work

In this section, we present the existing work related to
IoT technology and the popularity gained from online
communities.

7.1 IoT studies

Researchers have studied IoT in a wide variety of prob-
lems, i.e., context-aware IoT approaches [415L[1TLI6L27]
33138143, fault-tolerance in IoT services [46L53L[69], ToT
and cloud computing [T0L2TL28[45[67], and IoT service
composition [7,[1518120L23]254T53L59L68] .
Chattopadhyay et al. [II] presented an analytical
method that helps engineers to build IoT applications
without the need to have heavy knowledge of signal
processing or any other specific domains. D’Oca and
Hong [16] proposed a framework with two data mining
techniques (i.e., clustering and associated rules) to iden-
tify the behavior of occupants related to the opening
and closing of windows. The authors found that indoor
air temperature, outdoor air temperature, and the pres-
ence of occupants were the most important factors for
the opening of windows. As for window closing, the in-
door air temperature, and outdoor air temperature are
the most important factors. Regarding fault tolerance

41 https://wuw.instructables.com/
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in ToT services, Su et al. [53] proposed the Strip ap-
proach, which allows the achievement of failover mech-
anisms upon the replacement of IoT devices. The re-
sults of their research show that failures may be recov-
ered within seconds without the need for project owners
and administrators in the process.

Botta et al. [I0] conducted a literature review to
understand the potential applications and challenges
of using IoT and cloud computing together (i.e., the
CloudIo T paradigm). The authors identified several open
issues, such as the need for standardization in both ToT
and cloud computing fields. Finally, with respect to IoT
composition, Tzortzis and Spyrou [59] proposed a semi-
automatic approach that allows project owners to dis-
cover, consume, and interconnect IoT services to create
more complex services. They evaluated their approach
by interconnecting simple IoT-enabled services.

Ustek-Spilda et al. [60] studied how active are so-
cial media (in particular, Twitter) discussions about
the IoT technology in in Europe. The authors found
that users from the same geographical context are more
likely to be connected online than users from differ-
ent geographical contexts. The authors also observed
that IoT-related hashtags (e.g., #healthcare, #hard-
ware, #I0T, and #startups) are highly correlated.

Unlike the aforementioned work, our study focuses
on investigating the factors that share a significant re-
lationship with the popularity of IoT projects rather
than approaches that can improve the IoT technology.

7.2 Popularity studies

Studies in the literature have investigated the factors
that share a significant relationship with the popularity
of software projects on GitHub [11[3l80113L49,62.70]
and mobile applications and data services [3954L[57,
64].

Consentino et al. [I3] summarized the factors that
impact the popularity of GitHub projects. Similarly to
our observations, Consentino et al.noted that proper
documentation and involvement of popular users con-
tribute to the popularity of IoT projects. The impor-
tance of documentation in the popularity of GitHub
projects has also been stressed by Aggarwal et al. [I].
Weber et al. [62] studied a large set of features that
characterize open source projects, including both in-
code features and metadata features. Borges et al. [§]
used multiple linear regression to study the main fac-
tors that have an association with the number of stars
of GitHub projects. These factors include the program-
ming languages, application domains, and new features
of these projects. Sheoran et al. [49] studied the pop-
ularity of GitHub projects in terms of the number of

watchers. Zhu et al. [70] considered the number of forks
as a measure of the popularity of GitHub projects in-
stead of the number of watchers. Alsmadi and Alaz-
zam [3] used the number of downloads as a popularity
indicator of GitHub projects. Borges et al. [9] conducted
a survey on Stack Overflow users to elicit their opinion
about popularity indicators of GitHub projects. The
survey results show that stars are the most useful mea-
sure for the popularity of software projects hosted on
GitHub.

Tian et al. [57] investigated the most important
factors regarding the ratings of free Android applica-
tions. Syer et al. [54] revisited prior empirical findings
in software engineering for 15 popular mobile apps.
The authors found that the number of core develop-
ers in mobile app projects is usually smaller than large
desktop/server applications such as the Apache HTTP
server. Noei et al. [39] studied the trends of Android
mobile apps ranking. The authors found that taking
into consideration the user reviews to improve mobile
apps helps to improve the ranking of a mobile app.
Ye et al. [64] studied the popularity of mobile data ser-
vices and found that online reviews have a strong influ-
ence on the popularity of such services. Tam et al. [55]
studied the factors of continuance intention of users to
use mobile apps and found that satisfaction and per-
formance expectancy highly influence the intentions of
individuals.

In comparison with the aforementioned work, our
study is the first to study the popularity of IoT projects
using four groups of factors, which are the project de-
seription, hardware, project owner(s), and user feedback
factors. Our study is important because IoT projects
have different characteristics from software projects—
IoT projects operate mostly on embedded systems, which
implies a lower level of coding when compared to soft-
ware projects.

Previous studies on the popularity of software and
mobile applications rely heavily on code and process
factors, user reviews, and other social factors. While
some of the factors (e.g., user feedback) used in our
study may have also been used in prior research, we
believe that it is important to investigate whether such
factors share similar or contradicting relationships with
the popularity of IoT projects. In addition, our study
complements previously investigated factors by involv-
ing new factors that particularly capture the charac-
teristics of IoT projects. In particular, we study 12
hardware-related factors, including the number of hard-
ware components, hand tools, project replication time,
and hardware suppliers. Such factors have demonstrated
a strong association with the popularity of IoT projects.
For example, the locations of project owners can influ-
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ence the availability or delivery delay of hardware com-
ponents to users located in other parts of the world.
Such a factor may be associated with the popularity of
IoT projects, since users may be interested in projects
in which hardware can be purchased from local suppli-
ers. Moreover, owners of IoT projects may participate
in online contests and may win prizes. Considering that
contest-winning projects are advertised to other com-
munity users, such a factor appeared to have a direct
relationship with the popularity of IoT projects.

8 Conclusion

Online IoT communities have emerged as a great com-
municative platform for IoT practitioners to discuss
technical issues and promote IoT projects to potential
users for commercial values. Consequently, it is of great
interest for IoT project owners to understand the most
important factors that share a significant relationship
with the popularity of IoT projects. We explore four
groups of factors comprising 57 explanatory factors. We
conduct an exploratory study on 15,007 projects that
are hosted on Hackster. We observe that all the groups
of factors (i.e., Description, Hardware, Project owners,
and Feedback) make a significant contribution to ex-
plain the popularity of IoT projects. Nevertheless, dif-
ferent popularity measures may have different associ-
ations with the factors that describe IoT projects. In
particular, we observe the following:

— Project views evolve differently from project respects.

— There are platforms, such as Arduino and Rasp-
berry Pi, that are widely used by a large number
of projects.

— Assigning more tags and related channels to a project
is most likely to increase project popularity.

— Participation in (but not winning) contests is likely
to have an inverse relationship with the popularity
of ToT projects.

— Projects with a clear estimate of replication costs
are highly viewed and trending in the IoT commu-
nity.

— Using general websites (e.g., Amazon or Microsoft)
to purchase hardware is associated with the high
number of views and trending scores (but not re-
spects) of IoT projects.

— Projects are more popular if their owners are active
in the IoT community, have concise biographies, and
acquire more followers.

— Projects with smaller team sizes are highly viewed
and trending, but less respectful.

— Positive use feedback on a project has a significant
direct association with project popularity.

— Projects are highly viewed and trending if project
owners actively reply to user comments.

Project owners can benefit from our observations to
improve the popularity of their IoT projects to foster
more business opportunities. In addition, Hackster.io
can leverage our findings to improve the information
provided in the guidelines to allow (new) project own-
ers to improve the popularity of IoT projects. In the fu-
ture, we plan to expand our study to investigate more
online communities (e.g., instructables.com) to check
whether our observations may hold. We also aim to
perform a qualitative study to investigate the current
practices that project owners use to improve the popu-
larity of their projects. Moreover, we aim to model fea-
tured projects and contest-winning projects to under-
stand the factors that distinguish these projects from
other projects.
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Figure E. Word clouds of the types of projects (tags) in each cluster of daily trending scores
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