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a b s t r a c t 

Application Programming Interfaces (APIs) facilitate pragmatic reuse and improve the productivity of soft- 

ware development. An API usage pattern documents a set of method calls from multiple API classes to 

achieve a reusable functionality. Existing approaches often use frequent-sequence mining to extract API 

usage patterns. However, as reported by earlier studies, frequent-sequence mining may not produce a 

complete set of usage patterns. In this paper, we explore the possibility of mining API usage patterns 

without relying on frequent-pattern mining. Our approach represents the source code as a network of ob- 

ject usages where an object usage is a set of method calls invoked on a single API class. We automatically 

extract usage patterns by clustering the data based on the co-existence relations between object usages. 

We conduct an empirical study using a corpus of 11,510 Android applications. The results demonstrate 

that our approach can effectively mine API usage patterns with high completeness and low redundancy. 

We observe 18% and 38% improvement on F-measure and response time respectively comparing to usage 

pattern extraction using frequent-sequence mining. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

In recent years, the market of mobile applications has experi-

nced a tremendous success ( VisionMobile, 2013 ). The existence of

pplication Programming Interfaces (APIs) is one of the important

actors contributing to the success of app development economy

 Linares-Vásquez et al., 2013 ). Quite often, developers encounter

nfamiliar or complex APIs that need to be combined and pro-

rammed in a certain way ( Scaffidi, 2005 ). Earlier studies ( Acharya

t al., 2007; Bruch et al., 2008 ) show that API usage patterns are

seful resources for developers in programming with unfamiliar

PIs. 

An API usage pattern is a sequence of method calls required

o implement a functionality where participant methods be-

ong to multiple API classes ( Zhong et al., 2009 ). For example,

f we want to read the input data from a remote device us-

ng BluetoothSocket class, the usage pattern P b ( Fig. 1 )

ives us a complete picture of the solution. At first, we have

o create a Blu e toothSocket to connect to a device by

alling the createRfcommSocketToServiceRecord() 
ethod of BluetoothDevice API. Next, we have to

all BluetoothSocket.connect() method to estab- 

ish a connection to the remote device. Once the socket

s established, we can open the IO stream by calling
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luetoothSocket.getInputStream() method, and then 

ead the input stream data using InputStream.read(). Fi-

ally, we close the socket by calling the close() method of

luetoothSocket API. In such scenarios, a usage pattern, such

s P b in Fig. 1 , helps developers in programming with unfamiliar

PIs. A usage pattern provides a blueprint that shows the required

teps and the relevant APIs and method calls. 

Due to the lack of documentation, API usage pattern recom-

endation systems have been devised to support developers to

earn how to use APIs ( Acharya et al., 2007; Bajracharya et al.,

006; Buse and Weimer, 2012 ). A recommendation system mines

 list of usage patterns that potentially answer developer’s queries.

iven a query which consists of an API name ( e.g., API class or

ethod name), the mining process exploits a corpus of source

ode to automatically extract the potential usage patterns for the

uery. Moreover, a full-fledged recommendation system ranks the

xtracted usage patterns based on certain criteria, such as the pop-

larity of the patterns within the corpus ( Wang et al., 2013 ) or the

elevance between the context of the patterns and a query ( Zhong

t al., 2009 ). 

Since APIs might be designed to accomplish different function-

lities ( Mendez et al., 2013 ), an ideal mining process should iden-

ify at least one usage pattern for each functionality of an API

 Grahne and Zhu, 2003 ). As noted by Grahne and Zhu (2003) , there

re two major threats to the success of an automatic API usage pat-

ern extraction method: (1) Incompleteness and (2) redundancy in

he recommended result set. Incompleteness means that a mining

pproach might not be able to mine all possible usage patterns for
tion for software development, The Journal of Systems and Soft- 
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Fig. 1. Methods presenting the usages of BluetoothSocket class and extracted API usage patterns. 
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an API. Redundancy occurs when several similar API usage patterns

for a single functionality are reported. Redundancy incurs more ef-

forts for developers to find the API usage patterns of interest in the

result set. 

Earlier studies show that frequent-sequence mining ( Wang and

Han, 2004 ) are useful for mining API usage patterns. In such ap-

proaches, a support threshold, as part of the configuration of the

frequent-sequence mining, is used to specify the minimum num-

ber of times that a set of methods are used together in order to

be considered as a usage pattern. A low support threshold can

achieve more completeness since more usage patterns are discov-

ered; however, it may result in high redundancy ( Wang and Han,

2004 ). A high support threshold can reduce redundancy but lead

to low completeness since it may overlook some of the usage pat-

terns. In practice, the threshold value helps balance the trade-off

between incompleteness and redundancy. 

An imbalanced usage occurs when one of the usage patterns

of an API is considerably more frequent in a corpus than the

other usage patterns. This characteristic reduces the chance of the

other API usage patterns to survive from the support threshold of

a frequent-sequence miner. Hence, it negatively affects the com-

pleteness of the result set ( Wang et al., 2013 ). An earlier study by

Mendez et al., (2013) reports that imbalanced usage is common in
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
ava ecosystem. Similarly, our preliminary study on 11,510 Android

pplications shows the majority of API classes used in Android mo-

ile application development experience imbalanced usage. Hence,

xisting approaches using frequent-sequence mining might not be

uitable for mining API usage patterns from Android applications. 

In this paper, we aim to automatically extract usage patterns

ithout using frequent-sequence mining. The usage pattern mining

rocess in our approach avoids being affected by the imbalanced

sage behavior observed in Java ecosystem ( Mendez et al., 2013 ).

ence, we expect to improve the completeness of the result set. 

Given an API method as a query, our approach automati-

ally recommends a set of relevant API usage patterns. Our ap-

roach is based on the concept of object usage ( Monperrus and

ezini, 2012 ), which captures method calls invoked only on an

bject of a single API class. For example, the method calls belong-

ng to mmDevice object of class BluetoothDevice in method

etInformation() shown in Fig. 1 can be summarized as

n object usage, denoted as O 2 listed in Table 1 . In this ap-

roach, an API usage pattern can be modeled as a set of ob-

ect usages. For example, the underlying API usage pattern of

ethod GetInformation() is P a as shown in Fig. 1 , and can

e represented as a set of object usages { O 1 , O 2 , O 3 } as listed in

able 1 . 
tion for software development, The Journal of Systems and Soft- 
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Table 1 

Object usages extracted from method GetInformation () in Fig. 1 . 

Objectusage API class Participating methods 

O 1 Bluetooth adapter • cancelDiscovery() 

O 2 Bluetooth device • createRfcommSocket 

ToServiceRecord() 
• getAddress() 
• getName() 

O 3 Bluetooth socket • close() 
• connect() 
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Fig. 2. A possible output of an API usage pattern mining system for query = 

{ BluetoothSocket, connect}. 
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We extract the object usages that match with the API described

n a query, and capture their co-existence relations with other

bject usages within the same methods in the corpus. Then, we

odel the extracted object usages and their co-existence relations

ith others as a network. Finally, we identify API usage patterns

y clustering similar object usages in the network. 

This paper makes the following contributions: 

• It proposes an approach to improve the mining of less fre-

quently used API usage patterns. Our approach studies the co-

existence relations among object usages and represents the re-

lationship using a network. To reduce the redundancy of result-

ing usage patterns, we identify a representative object usage

from each cluster where object usages are internally similar. 
• It evaluates our approach using a corpus of 11,510 Android

applications crawled from Google Play. The evaluation results

show that our approach can effectively mine API usage patterns

with high completeness and low redundancy. We observe an

improvement of 18% and 38% on F-measure and response time

respectively comparing to a frequent-sequence miner. 

Organization of the rest of the paper. Section 2 describes

he related concepts and challenges in mining API usage pat-

erns. Section 3 provides the details of our approach. Section 4 ex-

lains case study design. Section 5 presents our case study results.

ection 6 discusses threats to validity. Finally, related work and

onclusion are presented in Sections 7 and 8 . 

. Definitions 

In this section, we describe the basic concepts related to our

esearch that are usage pattern and object usage. Furthermore, we

laborate on the threats to the success of mining and recommend-

ng API usage patterns using an example. 

.1. Usage pattern 

It is common for an API class to be used in different con-

exts to realize various functionalities ( Wang et al., 2013 ). For ex-

mple, class BluetoothSocket from Bluetooth package of

ndroid development kit can be used to implement three func-

ionalities related to Bluetooth technology. One functionality is

hown in method GetInformation() in Fig. 1 where the in-

ormation of a remote device can be retrieved after establish-

ng a Bluetooth socket connection. Methods ReadInput() and

riteOutput() show the other two functionalities implemented

sing BluetoothSocket, which read or write data via Blue-

ooth channels. As highlighted in the methods listed in Fig. 1 , each

f the three pieces of functionality involves multiple method calls

rom various classes. 

A usage pattern summarizes a sequence of method calls re-

uired to implement a functionality where the method calls be-

ong to multiple API classes ( Zhong et al., 2009 ). Formally, a usage
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
attern can be defined as P = { m a , 1 ∼ m b , 2 ∼ ��� ∼ m n, i } (i
2), where mn, i denotes the i th method call in an implemen-

ation of the certain functionality; the number of the method calls

s at least 2 since the implementation of a functionality needs the

ooperation of different method calls; n refers to an API class that

ethod m n, i belongs to and the number of participant API classes

epends on the functionality. In addition, the sequential rule “∼”

s used to represent the order of usage. For example, the rule A ∼B

etween method calls A and B means that method A is called be-

ore method B in the usage scenario. 

For example, the functionality for reading

ata using BluetoothSocket shown in method

eadInput() ( Fig. 1 ) involves five method calls:

reateRfcommSocke-tToServiceRecord() , connect() , 
etInputStream() , read() and close() , the five method

alls are from three different API classes: BluetoothDevice,
luetoothSocket and InputStream. Similarly, the method

alls involved in the functionalities of getting information and

riting output are highlighted in the corresponding methods

hown in Fig. 1 . Therefore, the three functionalities related to class

luethoothSocket can be summarized as three usage patterns

 a , P b , and P c shown in Fig. 1 . In this graphical presentation, each

ectangle represents a method call involved in a usage pattern. The

ethod name of method call is placed at the bottom following the

lass name at the bottom of the rectangle. 

.2. Object usage 

Object usage is defined as a set of method calls invoked on

 single object of a given API class in a method within a corpus

 Monperrus and Mezini, 2012 ). Formally, an object usage of an API

lass C is defined as a set of method calls, i.e. , O = { m 1 , m 2 , ���,

 n } where m n represents a method call; n is the total number

f method calls invoked on an object of API class C in a method.

bject usage does not consider the sequence of the involved

ethod calls in an object usage. For example, object usage O 2 in

able 1 is extracted from method GetInformation() shown in

ig. 1 . Object usage O 2 corresponds to object mmDevice of class

luetoothDevice . Table 1 shows three object usages extracted

rom method GetInformation() in Fig. 1. 

Being different from a usage pattern that includes method calls

rom multiple API classes, an object usage contains method calls

rom a single API class. Therefore, we can model a usage pattern as

 set of object usages. For example, usage pattern P a in Fig. 1 can

e represented as a set of object usages { O 1 , O 2 , O 3 } as listed in

able 1 . 

.3. Challenges in mining API usage patterns 

In the context of mining and recommending usage patterns, a

uery specifies the search criteria. It contains an API class and a

ethod of the API class. The output of the query is a ranked list of

PI usage patterns relevant to the query ( Zhong et al., 2009 ). For

xample, when a developer searches the method connect() in

luetoothSocket class, i.e., query = { BluetoothSocket, connect } ,
he potential answers are P a , P b , and P c , as shown in Fig. 1. 

A frequent-sequence mining method ( e.g ., ( Wang et al., 2013 ))

xtracts three usage patterns P b ( Fig. 1 ), P c ( Fig. 1 ) and P r ( Fig. 2 )

s the answer to the query { BluetoothSocket , connect }. In this case,

e observe redundancy among the recommended usage patterns.
tion for software development, The Journal of Systems and Soft- 
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Fig. 3. Overview of our API usage pattern recommendation approach based on object usage clustering. 
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Fig. 4. An example for the network created using the co-existence relations 

among object usages in methods GetInformation(), ReadInput(), and 

WriteOutput() shown in Fig. 1 . 
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P r is redundant since the underlying pattern is already covered by

P b and P c in the result set ( Wang et al., 2013 ). Furthermore, usage

pattern P a ( Fig. 1 ) which represents the functionality of fetching

information is not identified by the mining approach. This func-

tionality is less frequent than the two other functionalities cov-

ered by P a and P b . Failure to identify a known usage pattern re-

duces the completeness of the result set since each functionality

related to BluetoothSocket class should be covered by at least

one of the mined usage patterns ( Wang et al., 2013 ). We conjec-

ture that an approach that does not use frequent-sequence mining

might be able to successfully extracts P a even if P a is less com-

mon than P b and P c due to the imbalanced usage behavior ( Mendez

et al., 2013 ). 

3. The proposed approach 

Fig. 3 illustrates an overview of our approach. The approach

contains two processing phases. The first phase focuses on the pro-

cessing of the corpus, and is performed offline. The second phase

occurs at run-time when a query is issued by a developer. The

run-time process contains two major steps: clustering similar ob-

ject usages and recommending API usage patterns. Specifically, we

extract object usages from the methods in the corpus. If the ob-

ject usages come from the same method, we consider such object

usages have co-existence relations. To identify API usage patterns,

we use two clustering algorithms to group the object usages based

on co-existence relations or method call similarity. To avoid having

redundant answers in the final result set, we select a representa-

tive answer from each cluster of object usages. The representative

object usages are mapped to API usage patterns which would be

recommended to developers. We discuss the details of each phase

in the following subsections. 

3.1. Modeling co-existence relations 

We analyze the corpus to capture the co-existence relations

among object usages within the same method. We further model

the object usages and their co-existence relations as a network,

i.e., G = ( V, E ) , where V is a set of object usages, and E is a set of

links that represent the co-existence relations between object us-

ages. Each link is labeled with a weight. The weight of a link rep-

resents the number of times that co-existence relations occur be-

tween object usages. The network can be built using static analysis

on the methods in a corpus. Similar to the approach proposed by

Monperrus and Mezini (2012) , we analyze the methods to extract

method calls on objects to identify object usages. Fig. 4 shows an

example of such network if we assume the corpus is built from the

three methods related to BluetoothSocket class as discussed in

Section 2 . Object usages O 1 , O 2 and O 3 are extracted from method

GetInformation() and are listed in Table 1 . Object usages O 4 ,

O 5 and O 6 are extracted from method ReadInput() . The ob-

ject usages extracted from method WriteOutput() are denoted
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
y O 4 , O 7 , and O 8 . The weight of links is labelled in the sample

etwork shown in Fig. 4 , each weight is 1 since the related object

sages co-occur only once in our sample data. 

.2. Clustering similar object usages 

In our approach, object usages are eventually mapped to API

sage patterns. The redundancy in the object usages can lead to

he redundancy in the final results of API usage patterns. In this

ection, we discuss the process of clustering similar object usages

o solve the redundancy issue. 

Given a query, we first extract the relevant object usages that

ontain the API method specified in the query. For example, when

 query is the method connect() in class BluetoothSocket
s discussed in Section 2 , i.e., query = { BluetoothSocket, connect } ,
ur approach finds all object usages that contain the method

onnect() in class BluetoothSocket . Therefore, we can ex-

ract a (sub)social network that contains a set of candidate object

sages and their co-existence relations with others. 

However, the candidate object usages suffer from the redun-

ancy issue ( Mendez et al., 2013 ), which eventually leads to re-

undancy in the final result set of API usage patterns. For exam-

le, as shown in Fig. 5 , there are 9 candidate object usages rele-

ant to the query, { BluetoothSocket , connect }. If we include one us-

ge pattern for each candidate object usage, we will achieve about

7% duplication in the result according to the duplication measure

sed in Wang et al. study ( Wang et al., 2013 ) since there are just

 common usage patterns for BluetoothSocket class shown in Fig. 1 .

o address this concern and decrease the duplication ratio in the

esult set, we apply clustering on the candidate object usages to

dentify similar object usages. There exist two forms of similar-

ty between object usages: co-existence relations and method call

imilarity ( Mendez et al., 2013 ). Therefore, our approach uses two

lustering techniques to summarize the similar object usages from

he two similarity points of view. 

In the following subsections, we describe the details of our two

lustering approaches. 
tion for software development, The Journal of Systems and Soft- 
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O6

O4 O9O7 O5

O1 O3 O8

O2

No. Object Usage

O1 connect(),getInputStream()
O2 connect()
O3 connect(),getOutputStream()
O4 close(),connect(),getInputStream()
O5 close(),connect(),getRemoteDevice()
O6 close(),connect(),getInputStream(),getOutputStream()
O7 connect(),getInputStream(),getOutputStream()
O8 close(),connect()
O9 close(),connect(),getOutputStream()

object-usage
subset 

cluster  

Fig. 5. An example object usage map for BluetoothSocket class. 
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.2.1. Clustering similar object usages based on co-existence relations 

As pointed out by Newman and Girvan (2004) , a network has

ommunity structure if the nodes can be grouped into subgroups

here the nodes are densely connected internally. In our approach,

e identify similar object usages by partitioning object usages into

ommunities. We use a modularity measure, as denoted by M, to

etect communities within a network of object usages. Modular-

ty M measures whether the number of intra- community links is

ore than that of inter-community. Therefore, a high modularity

alue indicates a good partition of object usages into communities

n a network ( Clauset et al., 2004 ). 

 = 

∑ 

( e ii − a i 
2 ) (1) 

Let e ij be a fraction of inter-community links that connect object

sages in community C i to object usages in community C j ; let a i =
 

j e i j, and a i represents the fraction of intra-community links that

onnect object usages within community C i . In our study, the weight

f the links between object usages is used to compute e ij . 

It is not feasible in practice to search exhaustively all possi-

le partitions of nodes to find the best one for a large network

 Newman, 2004 ). Similar to a greedy optimization algorithm pro-

osed by Clauset et al., (2004) to tackle such complex problem, we

se a greedy optimization algorithm listed in Algorithm 1 to de-

ect communities among object usages in the network. In an initial

tate, each object usage is a sole member of one community. We

ttempt to join communities in pairs by observing the impact of

he joining activity on the modularity value, i.e . changes of M, �M.

e aim to join two communities when joining the two communi-

ies can achieve the greatest increase in the modularity value. In

he initial state, we compute the initial values of modularity using

q. (1) , and the initial values in �M matrix are computed using Eq.

2 ). We select the largest modularity change value, �M ij , from �M

atrix, and merge the corresponding communities C i and C j . Then,

e update matrix �M . We repeat the process until the maximum

odularity is achieved. Using the greedy algorithm, our approach

roduces the optimal community partition ( Clauset et al., 2004 ). 

M i j = 

{
1 / 2 m − k i k j / ( 2 m ) 

2 i f C i , C j connected 
0 otherwise. 

(2) 
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
here m is the weight of links between object usages in a network;

nd k i and k j are the number of incident links on C i and C j respec-

ively. 

Following our running example on the BluetoothSocket 
PI, we apply Algorithm 1 to detect communities on the ob-

ect usage network which contains the object usages relevant

o the query { BluetoothSocket , connect } listed at the bottom of

ig. 5 and also includes other object usages having co-existence re-

ations with the nine object usages. We obtain three clusters (com-

unities) for object usages related to the query as: object usages

 1 , O 4 , O 6 and O 7 , object usages O 2 , O 5 and O 8 , and object usages

 3 and O 9 . 

.2.2. Clustering similar object usages based on method-call 

imilarity 

Object usages of a specific API class can be subsets of each

ther or share a large number of method calls with each other

 Mendez et al., 2013 ). Object usage map is proposed by Mendez

t al., (2013) to represent the subset relations among object us-

ges. In an object usage map, each node is an object usage and

he edges correspond to a subset relation between two object us-

ges. More specifically, if all the methods in an object usage O x are

ontained in an object usage O y , there is an arrow from O x to O y .

t al. Fig. 5 shows an object usage map for the object usages rel-

vant to the query { BluetoothSocket , connect }. As shown in Fig. 5 ,

ost of the relevant object usages are partially similar to each

ther. For example, O 3 is a subset of O 7 and O 9 since all methods

ncluded in O 3 are occurred in O 7 and O 9 . 

Due to the complexity of the graph, it is not trivial to group

imilar object usages ( Mendez et al., 2013 ). Quite often, there could

e hundreds of nodes in an object usage map related to a single

PI, e.g., the File API in Java has 2166 usages ( Mendez et al.,

013 ). To reduce the redundancy of object usages, we strive for

rouping similar object usages together using hierarchical cluster-

ng on the object usage map. 

To apply hierarchical clustering, each object usage is initially

reated as a separate cluster. Then the pairs of clusters that have

he minimum inter-cluster distances are selected to be merged.

e calculate the inter-cluster distances using the complete linkage

echnique ( Han and Kamber, 2006 ), i.e., the distance between two

lusters is taken from the maximum distance between any pairs

f object usages in the two clusters. The distance among any pairs

f object usages is computed using Euclidean metric. We represent

ach object usage as a vector, i.e ., V o = m 1 , m 2 , . . . , m i , . . . , m n ,

here m i represents a method; and n is the total number of meth-

ds in an API class. m i is set to 1 when the object usage con-

ains the method m i ; otherwise, m i is set to 0. Then, the Euclidean

istance between two object usages O a and O b can be calculated

s D ( O a , O b ) = 

√ ∑ n 
i =1 ( m 

a 
i 

− m 

b 
i 
) 

2 
, where m 

x 
i 

is the i th item in ob-

ect usage vector x . 

In the hierarchical clustering process, it is important to decide

hen the merging process should end, i.e., deciding the number

f final clusters. The selection of the number of clusters should

im to maximize the dissimilarity between object usages in dif-

erent clusters and minimize the number of resulting clusters. We

pply the Gamma quality index ( Guerra et al., 2012 ) to determine

he proper number of clusters for a given set of object usages. The

amma index compares the distance of object usage pairs, and a

omparison is considered as consistent if a distance between a pair

f object usages which do not belong to the same cluster is smaller

han the distance between a pair of object usages belonging to the

ame cluster; otherwise, the comparison is inconsistent. Gamma

uality index is defined in Eq. (3 ). The values of Gamma quality

ndex are between −1 and 1. The maximum value of Gamma index
tion for software development, The Journal of Systems and Soft- 
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Table 2 

A Summary of our Android application corpus. 

Corpus Size 

Android applications 11 ,510 

Extracted call sequences 5625 ,750 

Contained classes 420 ,298 

Extracted object usages 3087 ,133 
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represents an optimal clustering. 

G = 

S + − S −

S + + S −
(3)

where S + is the number of consistent comparisons while S − is the

number of inconsistent comparisons. 

For the example shown in Fig. 5 , Gamma quality index suggests

three as the number of expected clusters for the hierarchical clus-

tering process. As illustrated in Fig. 5 , The three clusters identified

using the hierarchical clustering are marked in the dashed lines,

i.e., object usages O 1 , O 2 , O 3 and O 7 , object usages O 4 , O 6 and O 9 ,

and object usages O 5 and O 8 . 

The two clustering algorithms help us to summarize similar ob-

ject usages into clusters. To reduce the redundancy of resulting us-

age patterns, we select one representative from each cluster iden-

tified by the two clustering algorithms to create the representative

object usage set. As defined by Mendez et al., (2013) , the abun-

dance metric describes the number of times that an object usage

is used in a corpus. The abundance value of an object usage indi-

cates its popularity. The higher the abundance value is, the more

frequently one object usage is used in the corpus. We select the

object usage with the highest abundance value as the represen-

tative of a cluster. Based on the popularities of the object usages

shown in Fig. 5 , object usages O 4 , O 5 , and O 9 are selected as rep-

resentatives for the clusters identified based on co-existence rela-

tions. Object usages O 1 , O 4 , and O 5 are selected as representatives

for the clusters identified based on method-call similarity. There-

fore, object usages O 1 , O 4 , O 5 and O 9 constitutes the representative

object usage set. 

In summary, hierarchical clustering algorithm groups object us-

ages based on the textual method-call similarities. Hierarchical

clustering performs well in reducing the duplication of object us-

ages. However, it may group the object usages dealing with differ-

ent functionalities together ( e.g. , O 4 and O 9 in Fig. 5 ) and may af-

fect the completeness of the final API usage patterns. Community-

based clustering algorithms groups object usages into different

communities that indicate different functionalities. It helps im-

prove the completeness of the final results. Therefore, combining

the two clustering algorithms in our approach can balance the du-

plication and completeness of final results. 

3.3. Recommending API usage patterns 

The representative object usages are intermediate answers since

they are not exactly API usage patterns (the expected form of out-

put from an API usage pattern mining approach). Therefore, in the

last step, we have to map object usages to API usage patterns. We

use the mapping approach suggested by Mishne et al., (2012) to

convert object usages to concrete usage patterns. In this approach,

for each candidate object usage, we search in the corpus of actual

code snippets, and find a real code snippet that uses the object

usage. Furthermore, we extract the call sequence of the identified

code snippet, and use it as the final usage pattern. Then, we add an

API usage pattern to the final result set for each candidate object

usage. 

The higher popularity of one usage pattern has, the more fre-

quently the usage pattern is used. In other words, the more likely

the usage pattern is an expected answer of a developer ( Wang

et al., 2013 ). We should place the usage patterns with higher pop-

ularities at the top of the recommendation list, which can help

developers find the expected answer quickly. Therefore, we rank

the final API usage patterns based on the popularities of the usage

patterns. In our study, the popularity of a usage pattern is repre-

sented by the abundance value of the representative object usage

contained in the usage pattern. 
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
. Case study design 

The goal of the case study is to evaluate the performance of our

pproach in (1) mining usage patterns and (2) ranking usage pat-

erns for Android application development. All the experiments are

onducted on a 2.5 GHz CPU Windows 7 machine with 2GB mem-

ry. In this section, we discuss the details of creating our corpus,

xperiment setup and describe comparison baselines. 

.1. Data gathering 

To evaluate our approach, we create a large-scale corpus of An-

roid applications. Table 2 provides a summary of the corpus. The

orpus contains 11,510 active Android mobile applications cover-

ng 33 different application domains, such as media and education.

he applications are collected from Google Play by downloading

he top applications of each category. 

An Android application is represented as an Android Applica-

ion Package (APK), which contains the compiled code. Since we

ownload Android applications from Google Play, we do not have

ccess to the source code of the applications at large ( Mojica

t al., 2014 ). APKTool ( APKTool ) is a reverse engineering tool to un-

ack the compiled code of Android applications into smali format

 Hoffmann et al., 2013 ), a plain text presentation of the compiled

ode. Each invocation statement in the source code is represented

s a single line starting with the keyword “invoke” in the smali

ode. The invocation line contains the method name, calling vari-

ble, parameters, and return type of a method call. We process the

ata in three steps. First, we unpack APKs using APKTool to repre-

ent the code in smali format. Then, we extract the call sequences

rom each method body in the unpacked smali code files by iden-

ifying the “invoke” keyword. Finally, we generate object usages

rom the extracted call sequences, based on the definition of ob-

ect usage. We extract 3,087,133 unique object usages for 420,298

PI classes, which constitutes our corpus. 

Although the obfuscated code ( Vásquez et al., 2014 ) might exist

n our corpus, the object usage retrieval for a given API query is a

eyword-based matching process, the obfuscated code would not

ppear in the retrieval result. Therefore, the obfuscated code would

ot affect our experimental results. 

.2. Performance evaluation setup 

To evaluate the effectiveness of our approach in terms of min-

ng usage patterns, we need to identify the outcome of an ideal

sage pattern mining approach for a set of API queries. The set of

deal usage patterns constitutes the “gold set” used for evaluation.

n the following, we describe the process of selecting queries, cre-

ting the “gold set”, and baseline approaches. 

.2.1. Selecting queries 

We adopt the automatic framework proposed by Bruch et al.,

2008) to randomly select a set of queries from our corpus. In this

ramework, first a method is randomly selected from the corpus

nd then the method call sequence in the method is extracted. The

ethod call sequence acts as the expected usage pattern. Then, a

uery is automatically generated for the expected usage pattern by
tion for software development, The Journal of Systems and Soft- 
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Table 3 

Mapping Cliff’s delta with Cohen’s standards. 

Cliff’s delta % of Non-overlap Cohen’s d Cohen’s standards 

0 .147 14 .7% 0 .20 small 

0 .330 33 .0% 0 .50 medium 

0 .474 47 .4% 0 .80 large 
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andomly selecting a method call from the expected usage pattern

nd extracting the class and the invoked method in the method

all. The automatic process of selecting queries reduces the sub-

ective judgment in the evaluation ( Bruch et al., 2008 ). 

.2.2. Creating a “gold set”

We use the same approach as Wang et al., (2013) to build

he “gold set” for API queries. First, we randomly select a set of

PI queries from the corpus. For each API query, we automati-

ally extract all the call sequences involving the API mentioned in

he query from the corpus. Finally, we manually identify a set of

epresentative usage patterns among the extracted call sequences

y referring to the documentation ( e.g ., JavaDocs) provided by the

PI owners. The identification process was done with the first au-

hor who has one-year Android application development experi-

nce and then verified by the second author and a non-author cu-

ator independently who both have more than five years Java pro-

ramming experience. The two verifiers agreed with about 90% of

he usage patterns identified by the first author. The majority rule

s used to decide whether placing the remaining usage patterns in

he “gold set” or not. Finally, the identified usage patterns for the

PI queries constitute the “gold set”. 

The overall evaluation process is performed as follows. Each

uery is executed by our approach. The returned usage patterns

re compared with the usage patterns in the “gold set”. If the pro-

osed approach fails to report any of the known usage patterns in

he “gold set” for a query, the completeness decreases. If the pro-

osed approach reports more than one suggestion for any of the

nown usage patterns in the “gold set”, the redundancy increases.

inally, performance measures are computed based on the com-

arison between the recommended usage patterns and the ones in

he “gold set”. 

.2.3. Baseline approaches 

First, we compare our approach with the baseline approach that

ses frequent-sequence mining to extract API usage patterns. The

aseline approach is implemented as described in UP-Miner ( Wang

t al., 2013 ). We consider UP-Miner as the first baseline approach

ince UP-Miner outperforms its successors in terms of high com-

leteness and low redundancy ( Wang et al., 2013 ). Second, we

ompare our approach with an online usage pattern recommen-

ation engine, Codota ( Codota ). Codota is an online and commer-

ial usage pattern recommendation engine for Android application

evelopment. Codota is based on searching methods crawled from

he Internet, e.g ., StackOverflow, while our approach exploits byte-

ode from Android applications. 

. Case study results 

In this section, we first present our experimental results to

nswer three research questions. For each research question, we

resent the motivation behind the question, analysis approach and

 discussion on our findings. Then, we explore the usefulness of

ur approach by designing a preliminary user study. 

.1. Experimental results 

RQ 1: What is the performance of our approach for mining

PI usage patterns? 

Motivation . A high-quality API usage pattern miner should

chieve high completeness and low redundancy ( Wang et al.,

013 ). In addition, API usage pattern mining systems can be used

s online services, e.g ., Codota.com, so they have to maintain a rea-

onable response time regardless of the size of the underlying data

o be processed. In this research question, we evaluate whether
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
ur approach performs better than the baseline approach that uses

requent-sequence mining. 

Approach. We compare our approach with a representative

requent-sequence-mining based approach ( Wang et al., 2013 ). We

se the baseline and our approach to identify API usage patterns

rom our corpus summarized in Table 2 for queries available in the

gold set” described in Section 4.2.1 ). We compare the outcome

sing completeness, duplication and F-measure measures ( Wang

t al., 2013 ). Completeness measure is defined in Eq. (4 ). The val-

es of the measure range from 0 to 1, a higher value is preferred.

 high completeness ensures a high recall. Duplication measure is

pecified in Eq. (5 ). The values of duplication measure range from 0

nd 1. A lower value is desired. A high completeness and a low du-

lication can ensure that the precision value of the final results is

igh. In addition, we use F-measure to evaluate the overall quality

etween completeness and duplication. The F-measure is described

n Eq. (6 ), and its output ranges between 0 and 1. Higher values of

-measure are preferred. 

ompleteness = 

# unique patterns 

# patterns in G 

(4) 

uplication = 

# duplicated patterns 

# patterns in M 

(5) 

 − measure = 

2 ∗ ( 1 − Duplication ) ∗ Completeness 

( 1 − Duplication ) + Completeness ) 
(6) 

here G re presents a set of usage patterns in the “gold set”; M repre-

ents a set of mined usage patterns to be evaluated; #unique patterns

s the number of usage patterns representing different API function-

lities in the pattern set M; #duplicated patterns is the number of

emaining usage patterns after excluding the unique usage patterns

rom the return usage pattern set. 

We use Wilcoxon rank sum test ( Sheskin, 2007 ) to determine

f the observed difference in the performance of the frequent-

equence-mining based approach and our approach is significant.

ilcoxon rank sum test is a non-parametric test that does not hold

ssumption on the distribution of data. We conduct Wilcoxon rank

um test with 5% confidence level ( i.e ., p -value < 0.05). We calcu-

ate Cliff’s delta as the effect size ( Romano et al., 2006 ) to quan-

ify the importance of the difference between the two approaches.

liff’s delta estimates non-parametric effect sizes. It makes no as-

umptions of a particular distribution ( Romano et al., 2006 ), and

s reported to be more robust and reliable than Cohen’s (1988) .

liff’s delta represents the degree of overlap between two sam-

le distributions ( Romano et al., 2006 ). It ranges from −1 to + 1.

liff’s delta is −1 if all selected values in the first group are larger

han the second group; and Cliff’s delta is + 1 if all selected values

n the first group are smaller than the second group. Cliff’s delta

s zero when two sample distributions are identical ( Cliff, 1993 ).

ohen’s standards ( i.e. , small, medium, and large) are commonly

sed to interpret effect size. Therefore, we map the Cliff’s delta to

ohen’s standards using the percentage of non-overlap ( Romano

t al., 2006 ). The mapping between the Cliff’s delta and Cohen’s

tandards is shown in Table 3 . Cohen (1992) states that a medium

ffect size represents a difference likely to be visible to a careful
tion for software development, The Journal of Systems and Soft- 
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Fig. 6. Performance comparison between the baseline (based on frequent-sequence-mining) and our approach in terms of completeness, duplication, F-measure, and response 

time. 

Table 4 

The summary of the performance comparison between the baseline and our ap- 

proach. 

Metric Approach Mean p -value Cliff’s delta Effect size 

Completeness Baseline 0 .62 0 .0 0 03 0 .67 large 

Our approach 0 .86 

Duplication Baseline 0 .43 0 .3714 −0 .17 small 

Our approach 0 .34 

F-Measure Baseline 0 .56 0 .0 0 09 0 .62 large 

Our approach 0 .74 
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observer, while a large effect is noticeably greater than medium.

We also compare the response time of the two approaches in mil-

liseconds. 

Results. Fig. 6 summarizes the evaluation results of the frequent-

sequence-mining approach and our approach in terms of the four

studied performance measures. Table 4 lists the result of p -values

and Cliff’s delta for the three performance measures related to the

result set quality ( Wang et al., 2013 ). Our approach significantly

outperforms the baseline in terms of completeness, with an av-

erage value of 0.86. The completeness values for 90% of the total

number of queries have been improved by our approach. We also

observe a non-significant improvement comparing to the frequent-

sequence mining baseline from the duplication aspect. Finally, we

observe that our approach can significantly improve the overall

performance by achieving an average value of 0.74 in terms of F-

measure with a large effect size in mining API usage patterns for

Android application development as shown in Table 4 . In addition,

we found that our approach completes the mining process 38%

faster than the baseline approach as shown in Fig. 6. 

In our approach, clustering based on co-existence relations

helps to improve the completeness of the final results, and clus-

tering based on method-call similarities mainly aims to reduce the

duplication of the final results. As shown in Table 4 , the effect size

for the completeness improvement is large while the effect size in

terms of duplication is small. Therefore, the clustering algorithm

based on co-existence relations ( i.e., community-based clustering)

contributes more than clustering based on method-call similari-

ties ( i.e., hierarchical clustering) in achieving better performance

for mining API usage patterns. However, the two clustering algo-

rithms are complementary to each other to achieve significant im-

provement in terms of F-measure. 
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
We observe 18% improvement on F-measure and 38% faster 

response time comparing to a frequent-sequence-mining ap- 

proach in mining API usage patterns for Android application 

development. 

RQ 2: Is our approach effective in mining usage patterns for

PIs experiencing imbalanced usage? 

Motivation. Existing approaches for identifying API usage pat-

erns mainly use the frequent-sequence mining technique ( Wang

t al., 2013 ). In such approaches, a support threshold value is

eeded to determine the minimum level of popularity of a pat-

ern ( Wang and Han, 2004 ). Therefore, the mining process may

verlook part of the usage patterns of APIs with imbalanced us-

ge ( Mendez et al., 2013 ). Incomplete result set reduces the chance

or developers to leverage existing code to implement the desired

ieces of functionality ( Wang et al., 2013 ). Our approach does not

se the frequent-sequence mining. Therefore we conjecture that

ur approach outperforms the existing approaches in recommend-

ng API usage patterns for APIs that are experiencing imbalanced

sage ( Mendez et al., 2013 ). 

Approach. In our research context, there exist two forms of

mbalanced usage of APIs: (1) Some APIs are less frequent than

ther APIs; and (2) some usage patterns of a specific API are

ess frequent than the other usage patterns of the same API.

e use abundance and dominance metrics to describe the char-

cteristics of imbalanced usage in APIs ( Mendez et al., 2013 ).

bundance describes the number of times that the object us-

ges containing the API class and method specified in a query

relevant object usages) occur in the corpus. Dominance counts

he amount of the relevant object usage instances that belong

o its dominant object usage ( i.e., the most popular relevant

bject usage). We split the queries used in RQ1 into two groups:

1) A group with high abundance; and (2) a group with low

bundance. If the abundance value of an API is more than

he median, it belongs to the group of high abundance group;

therwise, it is classified into the group of lower abundance.

imilarly, we apply the same criterion to obtain the two groups

ith high or low dominance level. We compare F-measures

 Eq. (6 )) of the frequent-sequence-mining based approach

 Section 4.2.3 ) with our approach to test the following null

ypothesis: 

H 01 : There is no difference between the performance of our approach

and the frequent-sequence-mining based approach in mining

usage patterns for APIs with low abundance. 
tion for software development, The Journal of Systems and Soft- 
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Fig. 7. Performance comparison between the baseline (based on frequent-sequence-mining) and our approach against APIs with different abundance or dominance level. 

Table 5 

A summary of performance comparison between UP-Miner and our approach against 

different API groups. 

API groups Approach Mean p -value Cliff’s delta Effect size 

High abundance Baseline 0 .63 0 .272 0 .30 small 

Our approach 0 .74 

Low abundance Baseline 0 .49 0 .001 0 .86 large 

Our approach 0 .73 

High dominance Baseline 0 .68 0 .023 0 .51 large 

Our approach 0 .77 

Low dominance Baseline 0 .50 0 .009 0 .89 large 

Our approach 0 .74 
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H 02 : H 02 : There is no difference between the performance of our

approach and the frequent-sequence-mining based approach in

mining usage patterns for APIs with high dominance. 

We apply Wilcoxon rank sum test ( Sheskin, 2007 ) with 5% con-

dence level ( i.e., p -value < 0.05) to evaluate if the performance of

he two approaches are significantly different. If there is a statis-

ical significance, we can reject the null hypothesis, and conclude

hat the performances of our approach and UP-Miner are signifi-

antly different in recommending usage patterns for APIs with low

bundance or high dominance. Then we calculate Cliff’s delta as

he effect size ( Romano et al., 2006 ) to quantify the importance of

he difference between the two approaches. Finally, we compare

he F-measure values achieved by our approach and UP-Miner to

ecide the one that performs better in mining less frequently used

sage patterns. 

esults. Figure 7 summarizes the results of the F-measure study

n mining usage patterns for the APIs with different abundance or

ominance levels. In this research question, we are particularly in-

erested in the low abundance and high dominance groups since

hey include the queries related to the APIs with the two forms of

mbalanced usage ( Mendez et al., 2013 ). As shown in Fig. 7 , the F-

easure of our approach is higher than that of frequent-sequence-

ining baseline in answering queries related to APIs with imbal-

nced usage ( i.e. , high or low abundance). As shown in Table 5 , the

-measure improvement can be 24% for APIs with low abundance.

n addition, the p -value of the performance comparison in mining

sage patterns for API with low abundance is significant, so we can

eject the null hypothesis H 01 . Therefore, we conclude that our ap-

roach has better performance (for APIs with low abundance) than

he baseline approach that uses frequent-sequence mining. 

We can also see from Fig. 7 that the F-measure of our ap-

roach is higher than that of the baseline in mining usage pat-

erns for APIs with high or low dominance. The improvement of

-measure for the APIs with two different dominance levels av-

rages 9% and 24% respectively. In addition, as shown in Table 5 ,

he p -values of the performance comparison in mining usage pat-
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
erns for API with high or low dominance are significant, so we

an reject the null hypothesis H 02 . Therefore, we conclude that our

pproach performs better in recommending usage patterns for APIs

ith high dominance comparing to the baseline approach that uses

requent-sequence mining. In addition, based on the Cliff’s delta

alues shown in Table 5 , we can see the F-measure values of the

aseline approach and our approach for APIs with low abundance

r high dominance have few overlaps. 

More than half of the F-measure values of UP-Miner are worse

han that of our approach. Therefore, we can conclude that our

pproach significantly outperforms the frequent-sequence-mining 

ased approach for queries related to imbalanced API usages with

 large effect size. This is due to the fact that usage patterns of

uch less frequently used APIs or the non-dominant usage patterns

f some APIs are more likely to be ignored by a frequent-sequence-

ining based approach. 

We further analyze the experimental result using the ex-

mple API query BluetoothSocket.connect(). Based 

n the identified representative object usages, O 1 ( Fig. 5 ),

 4 ( Fig. 5 ), O 5 ( Fig. 5 ) and O 9 ( Fig. 5 ), for the API query

luetoothSocket.connect(), usage patterns P a ( Fig.

 ), P b ( Fig. 1 ), P c ( Fig. 1 ) and another usage pattern con-

aining both BluetoothSocket.getInputStream() and 

luetoothSocket.getOutputStream (), are recommended 

y our approach. Usage patterns P b ( Fig. 1 ), P c ( Fig. 1 ), and

 r ( Fig. 2 ) are recommended by UP-Miner. We observe that

ur approach recommends more complete API usage patterns

omparing to UP-Miner. The code snippets corresponding to

sage patterns P a and P r are GetInformation()( Fig. 1 )

nd run() ( Fig. 8 ). We can see from Table 6 that all the par-

icipating methods of expected API usage patterns for query

luetoothSocket.connect() have been contained in the

sage pattern P a recommended from our approach while three

ethods of API BluetoothDevice are missing in the usage

attern P r recommended from Codota . The missing method ,
reateRfcommSocketToServiceRecord(), is necessary 

ince it is the method that creates a Bluetooth- Socket ready to

tart a connection to a remote device. 
tion for software development, The Journal of Systems and Soft- 
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Table 6 

Summary of methods contained in API usage patterns P a and P r recommended for query BluetoothSocket.connect() from 

our approach and Codota. 

Participating methods of expected usage pattern 

Usage pattern P a from our 

approach contains or not 

Usage pattern P r from 

UP-Miner contains or not 

BluetoothAdapter . cancelDiscovery() � �

BluetoothDevice. createRfcommSocketToServiceRecord() � X 

BluetoothSocket . connect() � �

BluetoothDevice . getName() � X 

BluetoothDevice. getAddress() � X 

BluetoothSocket . close() � �

Fig. 8. The code snippet corresponding to the usage pattern P r returned by UP- 

Miner for API query: BluetoothSocket.connect(). 

Algorithm 1 Detecting communities in an object usage network. 

Input: The object usage network G(V, E) 

Output: The community membership of object usages V 

Initial state: Each object usage represents one community 

1 calculate the initial value of modularity using Eq. (1 ) 

2 for each object usage i in V do 

3 for each object usage j in V do 

4 compute �M ij using Eq. (2 ) 

5 end loop 

6 end loop 

7 select the maximum �M 

max 
i j 

8 while �M 

max 
i j 

> 0 do 

9 join corresponding communities C i and C j 
10 increment M by �M 

max 
i j 

11 update the matrix �M based on joining activity 

12 select new �M 

max 
i j 

from updated �M matrix 

13 end loop 
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Although the missing methods might occur in a code snippet in

the repository , UP-Miner extracts an API usage pattern based on

the frequent-itemset mining which considers popularity, therefore,

the final answer recommended by UP-Miner is incomplete. The ad-

vantage of our approach is due to the fact that we recommend API

usage patterns based on the co-existence relations between object

usages instead of only the popularity of API usage patterns. 

Our approach can achieve better performance than the 

frequent-sequence-mining based approach in answering 

queries related to APIs with imbalanced usage. 
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
RQ 3: Can our approach effectively rank API usage patterns? 

Motivation. It is challenging to properly rank the mined API us-

ge patterns for a query ( Bruch et al., 2008 ). A successful ranking

hould place the expected API usage pattern at the top of the result

ist before the other API usage patterns. A proper ranking of the

ined usage patterns can save developers’ time since developers

o not need to review a large amount of suggested answers before

nding the expected answer within the ranked result list ( Wang

t al., 2013 ). Hence, we evaluate the performance of our approach

n ranking the mined usage patterns. 

Approach. We adopt the automated evaluation process ( Bruch

t al., 2008 ) described in Section 4 . B. 2) to evaluate our approach.

he evaluation uses a set of 100 randomly selected queries and the

orresponding expected answers generated by the automated pro-

ess. We compare the ranking performance of our approach with

ur baseline, Codota, which is an online recommendation engine

ith ranking capability. We execute the queries on Codota and

ur approach. We study the quality of ranking using the Normal-

zed Discounted Cumulative Gain (NDCG) measure ( Manning et al.,

008 ). NDCG measures whether highly relevant answers are placed

t the top of the result set. NDCG is defined in Eq. (8 ) where Dis-

ounted Cumulative Gain (DCG) is computed using Eq. (7 ). Ideal

CG (IDCG p ) is the maximum possible DCG, which can be com-

uted following Eq. (7 ) by sorting the API usage patterns in the

esult set based on the relevance to the expected answer. We use

accard coefficient ( Jaccard, 1901 ) to compute the relevancy used

n NDCG definition as re l i = 

P e ∩ P i 
P e ∪ P i 

, which compares the similarity

etween the methods in expected answer, P e , and the i th mined

sage pattern, P i . 

C G p = 

p ∑ 

i =1 

2 

[ re l i +1 ] − 1 

log 2 ( i + 1 ) 
(7)

DC G p = 

DC G p 

IDC G p 
(8)

he re rel i is the relevance of the result at position i to the expected

nswer; p is the total number of the result list. 

We apply Wilcoxon rank sum test ( Sheskin, 2007 ) with 5% con-

dence level ( i.e., p -value < 0.05) and compute Cliff’s delta to eval-

ate the ranking quality differences of our approach and Codota. 

esults. The result of NDCG is summarized in Fig. 9 . The ranking

uality of our approach is better than Codota with an average of

.59% improvement onNDCG, from 87.37% in Codota to 90.96% in

ur approach. 61% queries have better NDCG values from our ap-

roach than Codota. Based on the p -values (0.01), we can conclude

hat our approach can significantly outperform Codota in terms of

anking quality. 

Our approach can effectively rank API usage patterns by 3.59% 

improvement on NDCG comparing to Codota. 
tion for software development, The Journal of Systems and Soft- 
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Fig. 9. NDCG distribution comparison. 
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.2. Preliminary user study 

We conducted a small survey of three developers from the in-

ustry to investigate whether the API usage patterns recommended

y our approach can help their programming tasks. All the three

evelopers have more than five-year programming experience. Be-

ore participating the survey, they all received a 30-minutes’ train-

ng on the usage of API usage patterns and the general idea of

ur code recommendation approach. First, we randomly selected

0 API queries from the ones used for RQ1 and RQ2. Then, we

sked developers to independently examine the API usage patterns

ecommended for the 10 API queries in terms of completeness and

uplication and give scores on the usefulness of the recommended

nswers. The scores are given using typical five-level Likert items

strongly agree - 5, agree - 4, neutral - 3, disagree - 2, and strongly

isagree - 1). The average scores for the 10 queries examined by

he three developers are 4.3, 4.1 and 3.9, respectively. 

We also conducted an initial interview with the three develop-

rs and asked them to provide detailed feedback on our API usage

attern recommendation. We asked the following questions during

he interview. 

(1) Is the API usage pattern recommendation approach useful to

your programming tasks? 

If the answer to question (1) is yes, then answer the questions

2)–(5). 

(1) Why is the approach useful? 

(2) How is the approach useful? 

(3) In what circumstance is the approach most useful? 

(4) Any suggestions for the further improvement on the ap-

proach? 

If the answer to question (1) is no, then answer the questions

6)–(7). 

(1) Why do you think the approach is not useful? 

(2) How should the approach be further improved? 

All of the three developers gave positive comments on the use-

ulness of our approach. We have summarized their answers to the

nterview questions. The detailed feedback is shown as follows. 

a. Why is the approach useful? 

(1) The proposed approach is complementary to the existing

API documentation to understand API usage. 
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
(2) The approach can help the developers effectively and ef-

ficiently (re)use APIs to improve development productivity

and quality. 

b. How is the approach useful? 

(1) The approach can place the desired usage patterns at the

top of the ranked result list so that developers can easily

find it. 

(2) The usage pattern recommendation approach can provide

code examples for each recommended usage pattern. The

code examples show the detailed context of the API usage.

It helps the developers easily understand the API usages. 

(3) The complete API usage pattern recommendations show

how an API method should be used in different contexts to

complete different programming tasks. 

c. In what circumstances is the approach most useful? 

(1) The approach is really helpful in learning how the API

should be used, especially for some less commonly-used

APIs. 

(2) The approach can recommend more complete API usage pat-

terns for frequently-used APIs. 

(3) The redundancy of the API usage patterns recommended for

the frequently-used APIs is low. 

d. How can the approach be improved further? 

(1) The approach should be further evaluated by applying it

in recommending API usage patterns for different program-

ming languages. 

(2) The approach used to reduce the similarity of identified API

usage patterns is not intuitive, and more techniques could

be further explored to make the approach easier to adopt. 

(3) The approach can only recommend API usage patterns used

in a single method body. In the future, recommending API

usage patterns used across different methods might need to

be studied. 

Based on the results of the small-scale, preliminary user study, 

we can draw an initial conclusion that the API usage patterns 

recommended by our approach can help developers with their 

programming tasks. 

. Threats to validity 

In this section, we analyze the threats to validity of our study

ollowing the guidelines provided by Robert (2002) . 

Threats to construct validity concern whether the setup and

easurement in the study reflect real-world situations. For our

tudy, the construct validity threats mainly come from the estab-

ishment of the “gold set” for API queries. We build the “gold set”

anually based on our programming knowledge. The subjective

nowledge about the Android programming may affect the estab-

ishment of the “gold set”, which will further affect the values of

valuation metrics. To reduce the subjectivity of build the “gold

et”, we use the same setup as earlier studies ( Wang et al., 2013;

hummalapenta and Xie, 2007 ) on API usage pattern mining by in-

luding three curators having one-year Android application devel-

pment experience or more than five years of Java programming

xperience. Furthermore, whenever it is possible, i.e ., RQ3, we use

 completely automatic approach to evaluate the performance to

educe the subjectivity. 

Threats to internal validity concern the uncontrolled factors

hat may affect the experiment result. In our experiment, the main

hreat to internal validity is the implementation of two clustering

lgorithms. We use a greedy algorithm to detect communities in

 network of object usages as a practical solution to handle our

arge-scale data. For hierarchical clustering, we use Gamma quality
tion for software development, The Journal of Systems and Soft- 
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index to determine the best number of clusters. Gamma quality

index can be used to generate the clusters with the maximum dis-

tance between any pairs of object usages from different clusters.

The result can be varied if we use different methods in our work. 

Threats to conclusion validity concern the relation between

the treatment and the outcome. We have used a non-parametric

test that does not hold assumption on the distribution of data. It is

possible that some of expected API usage patterns cannot be found

in the corpus of Codota. In our study, we only consider the queries

supported by Codota. 

Threats to external validity concern whether our experimental

results can be generalized for other situations. The main threat to

external validity in our study is the representativeness of our API

queries. In our experiment (RQ1, 2, and 3), we used 120 queries in

total, which covers different aspects of API usage, such as database

operation, socket communication, cookie management. The size of

our query set is comparable to similar studies on code search and

recommendation, e.g., ( Wang et al., 2013; Thummalapenta and Xie,

2007 ). 

Threats to reliability validity concern the possibility of repli-

cating this study. We provide the necessary details needed to repli-

cate our work. Replication package is publicly available ( Replication

package ). 

7. Related work 

In recent years, researchers have conducted various studies

( Wang et al., 2011; McMillan et al., 2012; Reiss, 2009; Holmes and

Murphy, 2005 ) on code search and recommendation. Such studies

aim to find the relevant code snippets for a given query. In our

study, we focus on a different problem of code search which rec-

ommends API usage patterns. In this section, we review the studies

related to mining API usage patterns. 

Most of the existing usage pattern mining approaches use the

frequent-sequence mining technique to identify usage patterns.

MAPO ( Zhong et al., 2009 ) developed by Xie and Pei has estab-

lished a framework for mining API usage patterns automatically

from open source repositories. It uses existing code search en-

gines and the Bitmap algorithm to mine frequent-sequences. MAPO

can produce a large number of redundant sequences ( Wang et al.,

2013 ). Nguyen et al., (2009) introduce GrouMiner, a graph-based

approach for mining usage patterns of multiple objects. GrouMiner

represents object usages in a scenario as a directed graph and then

detects the (sub)graph that frequently appears in the set of object

usage graphs. Acharya et al., (2007) propose a framework to ex-

tract API usage-scenarios from control-flow-sensitive static traces

related to the APIs of interest and then summarize different usage

scenarios as frequent partial orders to be considered as the API

patterns. The aforementioned work uses frequent-sequence min-

ing techniques which may overlook infrequent usage patterns and

therefore affects the completeness of the result set. Our approach

does not rely on frequent-sequence mining to identify API usage

patterns. 

To solve the problem of the frequent-sequence mining tech-

nique, existing studies, such as ( Dong et al., 2007; Yun et al., 2003;

Szathmary et al., 2010; Hipp et al., 20 0 0 ), propose approaches to

mine infrequent itemsets. Dong e t al., (2007) aim to get more val-

ued negative association rules by discovering infrequent itemsets.

They assign various minimum supports to itemsets with differ-

ent lengths in order to discover both infrequent itemsets and fre-

quent itemsets. Similarly, to mine association rules from signifi-

cant rare data, Yun et al., (2003) use relative support values in-

stead of defined support values in the process of itemset mining.

Szathmary et al., (2010) use an algorithm called Apriori-Rare to re-

tain rare itemsets instead of pruning them. However, it would gen-

erate explosive number of output itemsets. Hipp et al., (20 0 0) in-
Please cite this article as: H. Niu et al., API usage pattern recommenda

ware (2016), http://dx.doi.org/10.1016/j.jss.2016.07.026 
roduce two approaches to determine support values in the pro-

ess of itemset mining. Different from the existing approaches

 Dong et al., 2007; Yun et al., 2003; Szathmary et al., 2010; Hipp

t al., 20 0 0 ), our approach is a graph-based approach instead of

n itemset mining-based approach which requires a support value

s the essential configuration. It is hard to determine the support

alue in practices. Our approach does not need to tune the support

alue. 

The existing studies ( Dong et al., 2007; Yun et al., 2003; Sza-

hmary et al., 2010; Hipp et al., 20 0 0 ) attempt to include a sup-

ort value to solve the problem of the frequent-sequences min-

ng technique, but they have not been applied in the area of code

earch. Up-Miner ( Wang et al., 2013 ) is one of the representatives

f the existing techniques, which addresses the problem of the

requent-sequences mining technique in the area of code search.

P-Miner applies BIDE ( Wang and Han, 2004 ) algorithm which

ses the frequent-sequence mining technique to search for popular

all sequences. UP-Miner includes a two-step clustering strategy to

educe the redundancy and increase the coverage of the returned

sage patterns. We compare the performance of our approach with

p-Miner. 

Moritz et al., (2013) implement an interactive code search tool

hich does not use the itemset mining-based approach. It requires

he developers to continuously select the API methods related to

pecific tasks. Our approach only requires developers to specify an

nitial API query, and then returns different usage patterns for the

uery. 

. Conclusion 

In this paper, we have proposed an approach to mine and

ecommend API usage patterns. We extract the co-existence re-

ations among object usages within same methods in our corpus

nd model the object usages and their relations using a network.

hen, we apply two clustering techniques to balance the tradeoff

etween the completeness and redundancy on the recommended

PI usage patterns for a query. We conducted an empirical study

sing a large-scale corpus consisting of 11,510 Android applications.

ur case study shows that our approach outperforms the state

f the art frequent-sequences-mining based approaches. Our ap-

roach can mine API usage patterns that achieve high complete-

ess and low redundancy. Specifically, we show that our approach

utperforms the baseline in mining less frequently used API usage

atterns. In addition, the ranking quality of our approach is better

han Codota which is an online commercial usage pattern recom-

endation service for Android development. 

The API usage patterns recommended by our approach can sup-

ort developers in programming with unfamiliar APIs, especially

he APIs that are experiencing imbalance usage ( Mendez et al.,

013 ). Since the clustering techniques used in our approach is not

pecific to Android dataset, in the future, we plan to replicate our

tudy to recommend API usage patterns of different programming

anguages using other open-source software projects. We will ex-

lore other techniques, such as ( Yun et al., 2003; Szathmary et al.,

010 ) that have been applied to address the infrequent-itemset

ining problem in data mining area, and apply them in the code

earch area. Moreover, we plan to conduct a more comprehensive

ser study by inviting a larger developers to participate in the user

tudy. 
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