
Empir Software Eng (2017) 22:3088–3116
DOI 10.1007/s10664-017-9507-3

A study of the relation of mobile device attributes
with the user-perceived quality of Android apps

Ehsan Noei1 ·Mark D. Syer2 ·Ying Zou1 ·
Ahmed E. Hassan2 · Iman Keivanloo1

Published online: 13 March 2017
© Springer Science+Business Media New York 2017

Abstract The number of mobile applications (apps) and mobile devices has increased con-
siderably over the past few years. Online app markets, such as the Google Play Store, use a
star-rating mechanism to quantify the user-perceived quality of mobile apps. Users may rate
apps on a five point (star) scale where a five star-rating is the highest rating. Having consid-
ered the importance of a high star-rating to the success of an app, recent studies continue to
explore the relationship between the app attributes, such as User Interface (UI) complexity,
and the user-perceived quality. However, the user-perceived quality reflects the users’ expe-
rience using an app on a particular mobile device. Hence, the user-perceived quality of an
app is not solely determined by app attributes. In this paper, we study the relation of both
device attributes and app attributes with the user-perceived quality of Android apps from the
Google Play Store. We study 20 device attributes, such as the CPU and the display size, and
13 app attributes, such as code size and UI complexity. Our study is based on data from 30
types of Android mobile devices and 280 Android apps. We use linear mixed effect mod-

Communicated by: Lin Tan

� Ehsan Noei
e.noei@queensu.ca

Mark D. Syer
mdsyer@cs.queensu.ca

Ying Zou
ying.zou@queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

Iman Keivanloo
iman.keivanloo@queensu.ca

1 Department of Electrical and Computer Engineering, Queen’s University, Kingston, Canada

2 School of Computing, Queen’s University, Kingston, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9507-3&domain=pdf
http://orcid.org/0000-0001-7192-4604
mailto:e.noei@queensu.ca
mailto:mdsyer@cs.queensu.ca
mailto:ying.zou@queensu.ca
mailto:ahmed@cs.queensu.ca
mailto:iman.keivanloo@queensu.ca

Empir Software Eng (2017) 22:3088–3116 3089

els to identify the device attributes and app attributes with the strongest relationship with
the user-perceived quality. We find that the code size has the strongest relationship with the
user-perceived quality. However, some device attributes, such as the CPU, have stronger
relationships with the user-perceived quality than some app attributes, such as the number of
UI inputs and outputs of an app. Our work helps both device manufacturers and app devel-
opers. Manufacturers can focus on the attributes that have significant relationships with the
user-perceived quality. Moreover, app developers should be careful about the devices for
which they make their apps available because the device attributes have a strong relationship
with the ratings that users give to apps.

Keywords Mobile applications · Software attributes · Device attributes · User-perceived
quality

1 Introduction

The number of mobile devices and mobile applications (apps) has increased by 550 % in the
last four years (Lawson 2009; Stats 2016). Users not only use their mobile devices for phone
calls, but also for entertainment, such as social networking and playing games. Online app
stores, such as the Google Play Store (Google 2015b), use a star-rating mechanism to quan-
tify the user-perceived quality of mobile apps. A user can give a one (i.e., the lowest) to five
(i.e., the highest) star rating to each app. Due to the large number of apps in app stores, users
rely on the rating information when choosing new apps to download (Martin et al. 2015,
to appear; Bavota et al. 2015). Consequently, the published user-perceived quality informa-
tion can affect the revenue of app developers (Costa-Montenegro et al. 2012; Kim et al.
2011). Therefore, it is critical to identify the attributes that have significant relationships
with the user-perceived quality of mobile apps. Knowledge of such attributes helps mobile
device manufacturers to focus on the device attributes that have the strongest relationships
with the user-perceived quality as expressed through app reviews. Such knowledge also
helps developers proactively quantify the expected user-perceived quality of apps prior to
release. Developers can limit the availability of their apps to specific devices to reduce the
risk of receiving low ratings from specific devices. Moreover, developers can prioritize their
app testing efforts by focusing on certain devices (Khalid et al. 2014).

Recent studies mainly focus on the relationships between app attributes and the user-
perceived quality (Martin et al. to appear; Taba et al. 2014; Linares-Vásquez et al. 2013;
Kim et al. 2011). For instance, Taba et al. indicate that the User Interface (UI) complexity
has a significant relationship with the user-perceived quality of apps (Taba et al. 2014).
However, the observed user-perceived quality is the result of users’ experience by running
the apps on various mobile devices (Wasserman 2010). Therefore, we believe that the user-
perceived quality of mobile apps is not determined solely by the app attributes. In this paper,
we study the relationship between the device attributes and the user-perceived quality of
Android apps. We structure our study along the following three research questions:

RQ1) How strong is the relationship between the user-perceived quality of apps and
the devices on which they run?

The level of satisfaction with an app varies based on the device on which an app
runs. Based on a study of data from 30 mobile devices and 280 Android apps, we
find that users of various devices give varying star-ratings to the same set of apps.

3090 Empir Software Eng (2017) 22:3088–3116

RQ2) Which device attributes have the strongest relationship with the user-perceived
quality?

We define 20 device attributes, such as memory capacity, display size, and
battery size. We find that the user-perceived quality of an app has a significant rela-
tionship with several device attributes such as the Central Processing Unit (CPU),
display, and Operating System (OS). For example, we find that users with devices
with more powerful CPUs perceive apps to be of higher quality. Conversely, users
with a newer version of the operating system perceive apps as being of lower
quality.

RQ3) Do device attributes have a stronger relationship with the user-perceived
quality than app attributes?

We define 13 app attributes, such as UI complexity and code size, in addi-
tion to the device attributes of RQ2. We find that app attributes, such as code
size, have significant relationships with the user-perceived quality. However, some
device attributes, such as the CPU, have a significantly stronger relationship with
the user-perceived quality of apps than the majority of the app attributes. Unlike
earlier attempts (e.g., Taba et al. 2014) that only consider the app attributes to judge
the user-perceived quality of apps, we find that both app and device attributes have
statistically significant relationship with the user-perceived quality of apps.

The contributions of this paper include: (a) we show that the user-perceived quality of
mobile apps varies across different devices; (b) we find that device attributes, such as the
CPU, have significant relationships with the user-perceived quality of mobile apps; and (c)
we show that device attributes maintain their strong relationship with the user-perceived
quality of mobile apps even after we control for the app attributes. Both app and device
attributes have significant relationships with the user-perceived quality of mobile apps.
However, some device attributes, such the display resolution, have a greater relationship
with the user-perceived quality in comparison with some app attributes, such as the number
of UI inputs.

Paper Organization The remainder of this paper is organized as follows. Section 2
presents our case study design. Section 3 discusses the details of our research questions and
our findings. Section 4 lists the threats to the validity of this paper. Section 5 discusses prior
related work. Finally, Section 6 concludes the paper.

2 Case Study Design

Figure 1 gives an overview of our case study design. First, we retrieve the user reviews, app
details, Android PacKage (APK) files, and device attributes from the Google Play Store and
the technical device-specific websites, including GSM Arena1 and Phone Arena2. Technical
device-specific websites provide the required information about the device attributes. For
example, the details of device specifications, such as the capacity of RAM, are listed on

1http://www.gsmarena.com/
2http://www.phonearena.com/

http://www.gsmarena.com/
http://www.phonearena.com/

Empir Software Eng (2017) 22:3088–3116 3091

Google

Play Store

Decompiling

APK Files

Reviews

APK Files

of Apps

App

Ratings

Device

Names

Source

Codes

App List

Crawl Apps

Cleaning Data

Analyzing

Reviews

Extracting

Device

Attributes

Extracting App

Attributes

App Ratings

Calculating

User-perceived

Quality
Ratings

UI and Code

Attributes

Source

Codes

Device

Attributes

Locating

Device Details

RQ3

RQ2

RQ1Cleaning Data

Mobile Specific

Web-sites

Device

Names

Fig. 1 An overview of the case study design

such websites. Then we apply various steps of data processing. The outcome of these steps
is the required data for addressing the research questions.

2.1 Data Source

In our study, we consider the star-ratings that are listed in the Google Play Store as the user-
perceived quality. While several mobile app platforms exist (e.g., iOS, BlackBerry 10, and
Windows Phone), Android is by far the largest platform. Furthermore, the Android platform
suffers from device fragmentation, where there are many different devices running many
different versions of Android (Han et al. 2012).

We study the same set of user reviews that were retrieved by Khalid et al. using a
Selenium-based crawler (Khalid et al. 2014; Selenium 2014). Selenium is a web automation
and testing tool. The crawler extracts data, such as app names, reviews, devices that are used
to review the apps, and the numerical star-rating of reviews. Khalid et al. selected 99 apps
for their study (Khalid et al. 2014). However, our dataset extends their dataset to include
593 apps, 595,951 reviews, and 210 devices. This dataset contains reviews from 2009 to
2013. Unfortunately, the Google no longer reveals the name of the device that is associated
with each posted review. Hence, we cannot update this unique dataset.

We extract the technical details of each device type from the GSM Arena and Phone
Arena websites. Both websites contain technical articles and details about many of the
industry’s mobile devices. When the details of a particular device are not available through
GSM Arena, we check the Phone Arena website to get the device details.

3092 Empir Software Eng (2017) 22:3088–3116

2.2 Data Processing

In this section, we discuss our data processing steps, such as the cleaning of the crawled
data, and the extraction of app and device attributes.

2.2.1 Decompiling APK Files

Android apps are primarily written in the Java programming language using the Android
Software Development Kit (SDK). To publish an Android app on an online app store (e.g.,
Google Play Store), the app has to be compiled into a single APK file. An APK file contains
all the content that is required for both the installation and execution of an app. An APK file
contains a manifest file, a meta-information directory, a Dalvik EXecutable (DEX) file, and
a resource directory. The manifest file describes app-level meta-information, such as the title
of the app or the permission list. The compiled source code of the app is stored in a DEX
file. A DEX file represents the compiled code of Java classes using an intermediate language
similar to Java bytecode. Unlike Java bytecode, DEX files are compiled to be consumed by
Dalvik, which is a register-based virtual machine that is provided by the Android platform.

To extract the source code and the required information from APK files, we use
(Dex2jar 2016) and Java Decompiler (Dex2ja 2016). To calculate the various app attributes,
we decompile the DEX files into Java classes. Then, we use a Java Decompiler to convert
the Java classes to Java source code. Finally, we use the decompiled Java files to measure the
app attributes, such as the number of lines of code (LOC) and the number of methods. In our
study, we use off-the-shelf decompilers to decompile APK files. The decompilers have some
limitations, such as problems in dealing with variables, literals, and types (Miecznikowski
and Hendren 2002). Therefore, we remove the apps that failed to decompile from our initial
dataset.

2.2.2 Cleaning Dataset

Our initial dataset contains 595,951 reviews, 210 devices, and 596 apps. The Google Play
Store only allows us to download the latest version of an app (Google 2015b). There are 194
apps for which we had not downloaded their APK files previously, and their older versions
are no longer available. Therefore, we remove these 194 apps from our study. Moreover, we
remove 22 apps that do not declare their UI using XML files from our study. We believe
that the UI is an important factor in the user-perceived quality of apps because users have
direct interaction with the UIs of the apps. Furthermore, we removed 100 paid apps from
our dataset because we would need to pay to get access to their APK. We focus on free to
download apps and not paid apps to reduce the influence of other confounding factors, such
as the variance of user expectations based on the cost of an app (Harbach et al. 2014).

We also remove the devices whose attributes are not publicly available on the Internet.
In addition, we choose the devices that have the most apps in common. To avoid skewing
our findings due to apps with few reviews, we consider the largest subset of apps that have
at least five reviews for each device in our dataset. We end up with 30 mobile devices, 280
Android apps, and 150,373 reviews in our dataset.

2.2.3 Extracting App Attributes

We describe the attributes of apps along three aspects: (a) source code, (b) user interface, and
(c) miscellaneous. Source code attributes are classically- and extensively-studied attributes

Empir Software Eng (2017) 22:3088–3116 3093

in software quality literature (i.e., number of methods, lines of code, McCabe’s cyclomatic
complexity and weighted method per class). Such attributes are used as control variables
and are known to be correlated to the number of defects in an app (a measure of source
code quality that may impact user-perceived quality). User interface attributes measure the
complexity of the user interface (e.g., number of inputs) and are known to be correlated
with the user-perceived quality of apps (Taba et al. 2014). User-reviews, such as “Nice user
interface - creative & comprehensive! Great for school closure info too!” and “This app has
everything in a great user interface!”, also suggest that the complexity of the user interface
has a relationship with user-perceived quality.

Source Code For each app, we count the number of methods and LOC in the decompiled
Java files. LOC is a software attribute that is used to measure the size of a program. Larger
programs in terms of lines of code may be harder to maintain (Li and Henry 1993). As a
result, the size of an app might impact its user-perceived quality. We measure the number
of methods as another attribute that captures the code size (Johnson and Foote 1988).

We calculate the complexity of each app using two measures: (a) McCabe’s cyclomatic
complexity (McCabe 1976), and (b) Weighted Method per Class (WMC) (Chidamber and
Kemerer 1994). After calculating the McCabe’s cyclomatic complexity for each method,
we count the number of methods with a cyclomatic complexity value of more than ten.
Coppick and Cheatham note that methods with cyclomatic complexity values of less than
ten are considered simple while methods with cyclomatic complexity values of more than
ten indicate more complex code (Coppick and Cheatham 1992). To find the WMC of each
app, we measure the weighted average of the WMCs of each class of the app.

User Interface App components are the fundamental building blocks of an Android app.
There are four types of app UI components: (a) activities, (b) services, (c) content providers,
and (d) broadcast receivers (Google 2015a). An activity represents a single-screen UI. A ser-
vice is to perform functions for remote processes or to perform long-running operations. A
content provider manages a shared set of app data. A broadcast receiver is a component that
responds to broadcast announcements (Google 2015a). Users interact with activities only.
There are two ways to define a UI layout for an activity: (a) declaring UI design elements
in an XML file; and (b) instantiating UI layout elements in the source code. Similar to ear-
lier studies (e.g., Taba et al. 2014) on UI attributes of Android apps, we study the apps that
follow the best practices for UI implementation approach as suggested by Google (2015c).
With the best practices for UI implementation, developers need to declare the layouts of
apps in XML files. We can then measure the UI complexity using static analysis (Nielson
et al. 1999). We parse the XML files to calculate a set of UI attributes, as proposed by
(Taba et al. 2014), including the number of inputs, outputs, and activities. We use the input
and output tags that are listed in Table 1, to identify inputs and output elements in a UI
page (Taba et al. 2014). As the XML files are represented in a tree-like data structure, we
are interested in examining the relationship between the main characteristics of the UI trees
and the user-perceived quality. Hence, we extracted the total number of leaves, nodes, and
the layout depth of the UI trees of each app (Cormen et al. 2009).

Miscellaneous We consider the size of the APK files of an app since the size metric cap-
tures the overall complexity and richness of an app. An APK file contains various media
and other resources that are associated with an app.

3094 Empir Software Eng (2017) 22:3088–3116

Table 1 Input and output tags

Element Names

Inputs Button, EditText, AutoCompleteTextView, RadioGroup, RadioButton, Toggle-
Button, DatePicker, TimePicker, ImageButton, CheckBox, Spinner

Outputs TextView, ListView, GridView, View, ImageView, ProgressBar, GroupView

We summarize our app attributes in Table 2, where the last column describes each
attribute. Overall, we compute 13 attributes along the three aspects. Table 3 shows a brief
overview and statistics of all of the computed app attributes.

2.2.4 Extracting Device Attributes

For each device, we extract information about their body (i.e., physical dimensions), display,
platform, memory, camera, and battery. We extract 38 raw attributes. A raw attribute is
referred to as an attribute without any processing on its value. All the 38 raw attributes are
listed in Table 4. We remove device attributes that have the same value for all of the devices
that we study because this information cannot be used for differentiating between devices.
Furthermore, we focus on the device attributes that capture device abilities instead of other
attributes, such as the current price of a device, since a device that is expensive today would
be cheaper in the future. A user’s experience with an app will remain the same independent
of how much the user paid for the device. We end up with 20 device attributes that are
summarized in Table 5.

We classify the various device attributes as (a) nominal variables that include two or more
categories without considering the ordering among the categories; (b) ordinal variables that
are similar to nominal, while considering the ordering among the variables; or (c) numeric

Table 2 The app attributes

Category Attribute Description

User Interface Number of Leaves The number of leaves in XML layout files.

Number of Nodes The number of nodes in XML layout files.

UI Depth The deepest tree in XML layout files.

Number of Activities The number of activities in the UI.

Number of Inputs The number of inputs in in the UI.

Number of Outputs The number of outputs in the UI.

LOCUI The number of lines of UI code.

Source Code LOC The number of lines of source code.

Number of Methods The number of methods in source code.

WMC The average of weighted method per class.

Low McCabe
The number of methods with a cyclomatic

complexity equal or less than 10.

High McCabe The number of methods with a cyclomatic

complexity more than 10.

Miscellaneous APK Size The size of the downloadable APK

installation file.

Empir Software Eng (2017) 22:3088–3116 3095

Table 3 Overview of the app attributes

Category Attribute Maximum Minimum Mean Median

User Interface LOCUI 4,222 4 605 371

UI Leaves 4,222 2 605 160

UI Nodes 1,846 1 264 183

UI Depth 17 1 6 6

Activity 495 1 49 34

Input 769 1 52 22

Output 1,375 1 152 79

Source code LOC 607,458 315 140,541 137,598

Code Method 54,444 40 12,162 11,692

WMC 37 3 16 16

Low McCabe 47,573 34 12,528 9,915

High McCabe 1,661 0 380 315

Miscellaneous APK Size 52,139 73 9,478 7,790

variables that can be expressed with real numbers. We also split the device attributes that
consist of two properties into two different attributes. For instance, we split the device
size into the height of the device and the width of the device. For boolean attributes, such
as supporting OS upgrades or not, we convert them to nominal variables of 0 and 1. For
attributes, such as GPU and CPU, we present them in order of computation power, based on
the information that is available on the hardware review websites (e.g., GSM Arena).

2.2.5 Calculating the User-perceived Quality

To identify the user-perceived quality of an app, we use the star-ratings that are given by
the users of each app. Table 6 provides an overview of our data. The columns in Table 6

Table 4 List of raw device attributes

Attributes

2G network support 3G network support SIM support

Announcement date Status of availability Dimensions

Weight Size of display Multitouch display

Display colors Display protection Loudspeaker

3.5mm jack Vibration Internal RAM

GPRS support Hot-spot support EDGE support

WLAN support Bluetooth support NFC

USB support Primary camera details Video recording support

Secondary camera support OS version Upgradable OS

CPU GPU Accelerometer support

Compass support Messaging features Browser features

GPS Java support Battery

Standby Talk time

3096 Empir Software Eng (2017) 22:3088–3116

Table 5 The device attributes

Category Attribute Description

Body Dimension DeviceHeight Height of a device in centimeters.

DeviceWidth Width of a device in centimeters.

DeviceThickness Thickness of a device.

Display Colors DisplayColors Range of colors that are supported

by the screen.

Size DisplayInch Display size in inches.

Resolution ScreenWidth Display width in pixels.

ScreenHeight Display height in pixels.

DisplayPPI Pixels per inch is a measurement

of the pixel density (resolution).

Platform OS OSVersion Initial Android version.

OSUpgradeable Indicates whether any OS upgrade

is announced by manufacturers

after the initial release.

CPU CPU How powerful the CPU is.

GPU GPU How powerful the GPU is.

Memory Intenal RAM InternalRAM Capacity of the internal RAM.

Internal ROM InternalROM Capacity of the internal ROM.

Camera Camera CameraMegaPixel Resolution of the primary camera

in megapixels.

Video Resolution of recording video.

Battery Battery Size Battery Battery size in ampere-hour.

Talk time Talktime The officially-quoted longest time

that a single battery charge lasts

when a user is constantly talking

on a device.

Standby Time Standby The officially-quoted longest time

that a single battery charge lasts

when a device is constantly

connected to the GSM network,

but is not in active use.

Date Release Date Announced The announcement date of device.

show the number of reviews per device as well as the mean, median, standard deviation, and
skewness of the star-ratings, respectively.

3 Approach and Results

This section presents the approach and results of our three research questions. For each
research question, we present the motivation behind the question, our analysis approach
and a discussion of our findings.

Empir Software Eng (2017) 22:3088–3116 3097

Table 6 The number, mean, median, standard deviation (SD) and skew (Sk) of the user-perceived quality of
each device (sorted by the number of reviews)

Device #Reviews Mean Median SD Sk

Galaxy S3 22,022 3.4 4.0 1.5 −0.4

Galaxy S2 18,898 3.3 4.0 1.5 −0.4

Galaxy S 13,417 3.2 3.0 1.5 −0.3

Nexus 7 6,322 3.3 4.0 1.5 −0.3

Galaxy Nexus 5,764 3.0 3.0 1.5 −0.1

Droid RAZR 6,892 3.2 3.0 1.5 −0.2

Evo 4G 7,121 3.1 3.0 1.5 −0.1

Optimus One 6,503 3.3 4.0 1.5 −0.3

Galaxy Note 4,776 3.4 4.0 1.5 −0.5

Galaxy Y 5,224 3.6 4.0 1.4 −0.7

Droid X 4,670 3.0 3.0 1.5 0.0

Desire HD 4,211 3.2 3.0 1.5 −0.2

Galaxy Ace 4,390 3.4 4.0 1.5 −0.5

One X 2,889 3.3 4.0 1.5 −0.3

Sensation 4G 2,824 3.2 3.0 1.5 −0.2

EVO 3D 2,582 3.2 3.0 1.5 −0.2

Droid Bionic 2,946 2.8 3.0 1.6 0.2

Nexus S 2,175 3.1 3.0 1.5 −0.1

Desire 2,715 3.1 3.0 1.5 −0.1

Thunderbolt 2,312 3.1 3.0 1.5 −0.1

Galaxy Tab 10.1 2,067 3.3 4.0 1.5 −0.4

Droid 2,699 3.0 3.0 1.4 0.1

Droid Incredible 2,459 3.0 3.0 1.5 0.0

Galaxy Tab 10.1 2,338 3.4 4.0 1.5 −0.5

Droid X2 2,048 3.0 3.0 1.5 0.0

myTouch 4G 1,913 3.2 3.0 1.5 −0.3

Wildfire S 2,169 3.3 4.0 1.5 −0.3

Galaxy Mini 2,171 3.5 4.0 1.4 −0.6

Droid II 1,991 3.0 3.0 1.5 0.0

Incredible 2 1,865 3.1 3.0 1.5 −0.1

RQ1) How strong is the relationship between the user-perceived quality
of apps and the devices on which they run?

Motivation Users can express the user-perceived quality of an Android app through the
star-rating mechanism on a scale of one to five (Google 2015d). For example, a five star-
rating means that a user believes that the app is of the highest quality. Earlier studies (e.g.,
Taba et al. 2014) report that app attributes have significant relationships with the user-
perceived quality. In this research question, we explore if the user-perceived quality of an
app is associated with the devices of the users who rated the app.

3098 Empir Software Eng (2017) 22:3088–3116

G
a
la
x
y
 S
3

G
a
la
x
y
 S
2

G
a
la
x
y
 S

N
e
x
u
s
 7

G
a
la
x
y
 N
e
x
u
s

D
r
o
id
 R
A
Z
R

E
v
o
 4
G

O
p
ti
m
u
s
 O
n
e

G
a
la
x
y
 N
o
te

G
a
la
x
y
 Y

D
r
o
id
 X

D
e
s
ir
e
 H
D

G
a
la
x
y
 A
c
e

O
n
e
 X

S
e
n
s
a
ti
o
n
 4
G

E
V
O
 3
D

D
r
o
id
 B
io
n
ic

N
e
x
u
s
 S

D
e
s
ir
e

T
h
u
n
d
e
r
b
o
lt

G
a
la
x
y
 T
a
b
 1
0
.1

D
r
o
id

D
r
o
id
 I
n
c
r
e
d
ib
le

G
a
la
x
y
 T
a
b

D
r
o
id
 X
2

m
y
T
o
u
c
h
 4
G

W
il
d
fi
r
e
 S

G
a
la
x
y
 M
in
i

D
r
o
id
 I
I

In
c
r
e
d
ib
le
 2

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

N
u
m
b
e
r
 o
f
R
e
v
ie
w
s

Fig. 2 A boxplot showing the number of reviews for each device

Approach To address this research question, we measure the user-perceived quality as
observed by the users of the 30 mobile devices in our dataset. Figure 2 shows the distribu-
tion of the number of reviews per app for each device. As shown in Fig. 2, the Galaxy S
series devices have more reviews per app than other devices in our dataset. Other devices
have a smaller number of reviews per app. We compare the ratings of the same set of apps
as rated by the owners of each device type. As a null hypothesis, we suppose that the dis-
tributions of ratings for the same set of apps running on different devices are the same. We
use the Kruskal-Wallis test to check this hypothesis. The Kruskal-Wallis is a non-parametric
method for testing whether samples originate from the same distribution. The test does not
assume a normal distribution of the residuals as it is a non-parametric method. The Kruskal-
Wallis extends the Mann-Whitney U test to test more than two groups (Kruskal and Wallis
1952). Hence, it shows whether different device types have the same distribution of ratings
given the same set of apps. We can reject the null hypothesis if the observed p-value is less
than 0.05. Hence, we would say that the differences in the app ratings for each device are
significant and that users perceive different levels of quality for the same set of apps among
at least one device type. We also use Dunn’s test (Dunn 1964) to compare the user-perceived
quality of each pair of devices and determine how many pairs of devices have statistically
significant differences in the distributions of their user ratings. Finally, we draw boxplots to
examine the distribution of the user-perceived quality for each device.

Findings The user-perceived quality of the same set of apps changes per device. The
results of the Kruskal-Wallis test show that the distribution of the user-perceived quality
for the same set of apps of at least one device is significantly different with a p-value of
less than 2.2e-16 across the 30 devices. By using Dunn’s test on the distribution of user-
perceived quality across each pair of devices, we find that 81 % of the device pairs show
a statistically significantly different distribution of user-perceived quality across the same
set of apps. In addition, by calculating the Cliff’s delta effect size (Cliff 1993), we find that

Empir Software Eng (2017) 22:3088–3116 3099

G
a
la
x
y
 S
3

G
a
la
x
y
 N
o
te

G
a
la
x
y
 Y

G
a
la
x
y
 M
in
i

G
a
la
x
y
 A
c
e

G
a
la
x
y
 S
2

G
a
la
x
y
 S

N
e
x
u
s
 7

D
r
o
id
 R
A
Z
R

E
v
o
 4
G

O
p
ti
m
u
s
 O
n
e

D
e
s
ir
e
 H
D

O
n
e
 X

E
V
O
 3
D

N
e
x
u
s
 S

G
a
la
x
y
 T
a
b
 1
0
.1

G
a
la
x
y
 T
a
b

m
y
T
o
u
c
h
 4
G

W
il
d
fi
r
e
 S

D
r
o
id
 I
I

In
c
r
e
d
ib
le
 2

G
a
la
x
y
 N
e
x
u
s

D
r
o
id
 X

S
e
n
s
a
ti
o
n
 4
G

D
e
s
ir
e

T
h
u
n
d
e
r
b
o
lt

D
r
o
id
 I
n
c
r
e
d
ib
le

D
r
o
id
 X
2

D
r
o
id

D
r
o
id
 B
io
n
ic

1
2

3
4

5

U
s
e
r
−
p
e
r
c
e
iv
e
d
 Q
u
a
li
ty
 o
f
A
p
p
s

Fig. 3 A boxplot showing the user-perceived quality of apps per device

42 % of the device pairs show at least a small (effect size) difference. Figure 3 shows that
the distributions of the user-perceived quality vary across devices. Hence, we conclude that
not only do the apps themselves play a crucial role in the user-perceived quality (Taba et al.
2014), but also that the devices on which the apps are running play a significant role in the
user-perceived quality.

RQ2) Which device attributes have the strongest relationship with the
user-perceived quality?

Motivation Our findings in RQ1 motivate us to investigate the relationships between the
mobile devices and the user-perceived quality. In the first research question, we found that
users of some devices perceive apps to be of higher quality compared to users of other
devices for the same set of apps. However, a mobile device has several device attributes
(e.g., CPU, internal RAM, and screen size). In this research question, we investigate whether
different device attributes have statistically significant relationships with the user-perceived
quality. Our goal is to find the device attributes that have a significant relationship with the
user-perceived quality. The outcome of this research question helps both manufacturers and
mobile app developers. Mobile device manufacturers can figure out the device attributes
that have the most significant relationships with the user-perceived quality as estimated by
their users. For instance, manufacturers can decide whether it is better to allocate more
resources to advance the screen resolution or the battery capacity for their next generation
devices. In addition, mobile app developers can understand the device attributes that have

3100 Empir Software Eng (2017) 22:3088–3116

the most significant relationships with the user-perceived quality. Based on such knowledge,
app developers might determine the devices for which they would like to make their app
available, since the Google Play Store permits developers to limit an app to specific device
types.

Approach We study the relationships between the user-perceived quality of an app and
20 device attributes, such as the display size and the internal RAM. We build a linear
mixed effect model to study the device attributes that have the most significant relationships
with user-perceived quality. The independent variables of our model are the various device
attributes, and the dependent variable is the app rating. Table 5 shows the complete list of
the device attributes that we study including a brief description of these attributes. We also
normalize the independent variables so we can safely compare the coefficients.

Model Construction We identify the correlated variables since having correlated vari-
ables negatively affects the stability of our models and prevents us from understanding
the full impact of each variable (i.e., attribute) (Harrell 2001). We use variable cluster-
ing analysis to build a hierarchical overview of the correlations between the explanatory
variables (Harrell 2015). For sub-hierarchies of explanatory variables with correlation
|ρ| > 0.7, we select only one variable from the sub-hierarchy for inclusion in our model.
We pick the most simple and straightforward attribute. Figure 4 shows the hierarchical clus-
tering of variables according to Spearman’s |ρ|. The Spearman correlation evaluates the
monotonic relationship between the continuous or ordinal variables. In Fig. 4, the hori-
zontal line shows the threshold from which the variables are highly correlated with each
other. From each sub-hierarchy of correlated variables, we select a representative indepen-
dent variable to build our final model. We select the attributes that are simplest and easiest

A
n
n
o
u
n
c
e
d

O
S
V
e
r
s
io
n

C
P
U

In
te
r
n
a
lR
A
M

S
c
r
e
e
n
W
id
th

S
c
r
e
e
n
H
e
ig
h
t

D
is
p
la
y
In
c
h

D
e
v
ic
e
H
e
ig
h
t

D
e
v
ic
e
W
id
th

B
a
tt
e
r
y

V
id
e
o

D
e
v
ic
e
T
h
ic
k
n
e
s
s

In
te
r
n
a
lR
O
M G
P
U

T
a
lk
ti
m
e C
a
m
e
ra
M
e
g
a
P
ix
e
l

D
is
p
la
y
C
o
lo
r
s

D
is
p
la
y
P
P
I

O
S
U
p
g
ra
d
a
b
le

S
ta
n
d
b
y

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

S
p
e
a
r
m
a
n

ρ

Fig. 4 Hierarchical clustering of device attributes according to Spearman’s |ρ|

Empir Software Eng (2017) 22:3088–3116 3101

to compute and interpret. We select the following variables after the correlation analy-
sis: OSVersion, CPU, DisplayInch, InternalROM, GPU, CameraMegaPixel, DisplayColors,
DisplayPPI, OSUpgradable, and Standby.

Model Building We use a mixed effects model to investigate the relationships between the
device attributes and the user-perceived quality of apps. A mixed effects model is a model
that contains both fixed effects variables and random effects variables (Faraway 2005).
Fixed effects variables are variables with constant coefficients and intercepts for every sin-
gle observation while random effects variables vary across individual observations. Mixed
effects models explain the relationships between a dependent variable and independent
variables that are grouped according to one or more grouping factors. The models assume
different intercepts for each group (Zuur et al. 2009).

Equation 1 shows a general equation for a mixed effects model with a grouping factor
g. In Eq. 1, Yg denotes the dependent variable; Xi represents the independent variables;
βi +θ1g and βi show the coefficients of each Xi ; εg indicates the errors; β0 demonstrates the
constant intercept; and θ0g shows the intercepts that vary across each group. If θ1g equals
zero, then only the intercepts can vary; if θ0g equals zero, then only the coefficients can
vary; and if both θ0g and θ1g equal zero, then the model would become a fixed effects linear
model (as is commonly used is empirical software engineering research (Martin et al. to appear)).

Yg = β0 + θ0g +
m∑

i=1

βiXi +
n∑

i=m

(βi + θ1g)Xi + εg (1)

We use mixed effects models, by letting the independent variables have constant coeffi-
cients (i.e., the independent variables are fixed effects), but have variable intercepts (i.e.,
the intercept is a random effect). We group our independent variables according to each
device and app. In other words, we build a mixed effects model with ratings as the depen-
dent variable, the 20 device attributes as the independent variables, and we add a random
effect for every app and device type. Equation 2 shows the equation of our model. In Eq. 2,
Yg denotes the user-perceived quality of apps; Xi represents the independent variables; βi

show the coefficients of each Xi ; and θg shows the intercepts that vary across each app and
device type.

Yg = β0 + θg +
n∑

i=1

βiXi + εg (2)

In contrast, traditional linear models are fixed effects models that have one or more fixed
effects and an error ε (Draper et al. 1966). In mixed models, we can add one or more random
effects. Mobile apps may behave differently on devices with similar device attributes. Like-
wise, mobile apps with the same app attributes may not behave similarly on the same mobile
devices. Hence, we model the individual differences by assuming different random inter-
cepts for each app and device. We can assign a different intercept for each app and device,
and the mixed model can estimate these intercepts (Winter 2013). The random effects give
structure to the error ε. In the case of our model, we add a random effect for each app and
device type.

In mixed effects models, the marginal R2 describes the proportion of variance that is
explained by the fixed variables and the conditional R2 describes the proportion of variance
that is explained by both the fixed and random variables (Nakagawa and Schielzeth 2013).
The marginal R2 of the model is 0.010 in this research question, but the conditional R2

is 0.190. The higher value of the conditional R2 indicates that the proportion of variance
that is explained by the fixed variables is much less than the proportion of variance that is

3102 Empir Software Eng (2017) 22:3088–3116

Table 7 Linear mixed effects model results based on device attributes, sorted by p − value

Attribute Pr(>F) Signif. χ̃2 Estimate Effect

OSVersion 0.0007 *** 27.07 1.410e-01 ± 0.153 ↘
DisplayPPI 0.0035 ** 8.55 7.476e-02 ± 0.026 ↘
CPU 0.0162 * 17.21 7.661e-02 ± 0.126 ↗
Standby 0.0263 * 4.94 3.011e-04 ± 0.001 ↗
CameraMegaPixel 0.0907 + 2.86 1.385e-02 ± 0.008 ↘
InternalROM 0.0915 + 2.85 1.482e-02 ± 0.009 ↘
GPU 0.2865 1.14 1.945e-02 ± 0.018 ↘
DisplayInch 0.4197 0.65 3.020e-02 ± 0.037 ↗
DisplayColors 0.7548 0.56 4.225e-02 ± 0.096 ↗
OSUpgradable 0.9335 0.01 4.075e-03 ± 0.049 ↘

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

explained by both fixed and random variables. This higher value indicates that the modeling
of the random effects significantly helps to explain the user-perceived quality (indicating
that such type of mixed effects modeling is needed for our dataset).

The significant variables are marked with asterisks in the output of the model (Table 7)
using the ANOVA test (Pinheiro et al. 2007). These variables have Pr(> |F |) less than
0.05. Pr(> |F |) is the p-value that is associated with the F-statistic. The upward arrows
indicate the variables with a positive relationship with the user-perceived quality of an app
and the downward arrows indicate the variables with a negative relationship. The values of
the χ̃2 (Chi-Squared) show if a model is statistically different from the same model in the
absence of a given independent variable according to the degrees of freedom in our model.

Findings Device attributes, such as the CPU and the display, have significant rela-
tionships with the user-perceived quality of apps. Table 7 displays the results of our
model. We identify that the OS version, the CPU, the display density (resolution), and the
standby time have significant relationships with the user-perceived quality of an app. The
CPU and the standby time have positive relationships with the user-perceived quality of
apps, while the display density and the OS version have an inverse relationship with the
user-perceived quality. First, we discuss the attributes with a positive relationship with the
user-perceived quality in order of their statistically significant relationship. Second, we dis-
cuss the attributes with a negative relationship with the user-perceived quality in order of
their statistically significant relationship.

Device attributes with a positive relationship with the user-perceived quality
of Apps

Figure 5 shows the values of the attributes that have a positive relationship with the user-
perceived quality of apps. In this figure, we use boxplots to present the star-ratings that
are associated with the values of these attributes. As we can see in Fig. 5a and b, the
reviews that are associated with higher CPU performance (i.e., the CPU’s rank in benchmark
performance tests) and more standby time tend to be associated with higher star-ratings.

We find that powerful CPUs produce a higher user-perceived quality. Typically, the CPU
is responsible for computations on devices, so it is reasonable that the CPU has a significant

Empir Software Eng (2017) 22:3088–3116 3103

1 2 3 4 5

2
4

6
8

1
0

1
2

1
4

Star−rating

C
P
U
 P
e
r
fo
r
m
a
n
c
e
 (
R
a
n
k
)

1 2 3 4 5

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

Star−rating

S
ta
n
d
b
y
 T
im
e
 (
H
o
u
r
)

Fig. 5 A boxplot showing standby time compared to user-perceived quality

effect on the user-perceived quality. As noted in Table 7, CPU relates to the user-perceived
quality with χ̃2 = 17.21 (with 7 degrees of freedom) and p − value = 0.0162.

Standby is an upfront-derived specification that may not directly impact the user-
perceived quality. Standby time quantifies the longest time that a battery charge will last
when the phone is constantly connected to the network but is not in active use. One rea-
son for standby having a positive relationship with the user-perceived quality could be the
energy consumption of apps. One of the main energy consuming features of mobile apps is
network usage (Li et al. 2014; Balasubramanian et al. 2009; Li and Halfond 2014). Li et al.
report that the network is the most energy consuming component among all of the device
components (Li et al. 2014). Moreover, Kaup and Hausheer indicate that the perceived qual-
ity can be affected by the data rates in the networks and the energy consumption (Kaup and
Hausheer 2013). Hence, if an app over-consumes energy, it would create an inconvenient
user experience for the users of devices with low standby time, and we can understand that
the users who can use their phones for a longer time may run the apps with a higher quality
than the users who need to recharge their batteries more often. Some user reviews support
this claim, such as “Why is this app using 7 % of my battery when not in use???” and “It is
ok, but is takes up 18mb, not 4.5mb. Also, it massively drains the battery even when not in
use and the phone is switched off. Uninstalled”.

Device attributes with a negative relationship with the user-perceived quality
of Apps

Table 7 shows that having a higher version of the installed OS has a significant inverse rela-
tionship with the user-perceived quality of apps. Moreover, we can see that the ability of the
device to upgrade to a higher version of the OS has an inverse relationship with the user-
perceived quality of apps too. One of the reasons for this observation can be API updates.
Updating the Android OS requires the apps to update their API usage (Syer et al. 2011).
Hence, new app bugs might emerge. These bugs are likely to impact the user-perceived
quality negatively as McDonnell et al. show that a noticeable amount of apps are out-of-
date (McDonnell et al. 2013). McDonnell et al. also mention that many developers are
not fast enough in adapting new APIs, and they often fail to catch up with the pace of

3104 Empir Software Eng (2017) 22:3088–3116

Android API evolution. As Table 7, OS version relates to the user-perceived quality with
χ̃2 = 27.07 (with 8 degrees of freedom) and p − value = 0.0007. Some user complaints,
such as “...since upgrading to Android 4.2.1, the messages will not update correctly display-
ing the...” and “After upgrade to ice cream sandwich, won’t sync with Android Motorola
bionic...”, support this observation.

The display density has an inverse relationship with the user-perceived quality (i.e., the
higher the density, the lower the user-perceived quality). Android has APIs that allow devel-
opers to precisely control the layout resources of apps for different screen sizes (Google
2015e). To further investigate the relationship between the display density and the user-
perceived quality, we investigate the apps to see whether they have controlled their layout
resources. 75, 81, and 93% of the apps in our dataset have a specific UI declaration for low-
density, medium-density, and high-density screens, respectively. In addition, 63 and 99%
of apps do not have a specific UI declaration for extra-high-density and extra-extra-high-
density screens. Therefore, all the apps are not perfectly compatible with all the devices with
different screen specifications. As examples of user reviews to support this observation, a
user says that “Scrolling and loading are much improved, but please update display size for
larger phones.” and another review states that “...says my resolution isn’t high enough, then
won’t let me tap a single button. Bad app.”.

RQ3) Do device attributes have a stronger relationship with the user-perceived
quality than app attributes?

Motivation In RQ2, we explored the relationship between the device attributes and the
user-perceived quality. However, the user-perceived quality reported by a user reflects his
experience with using a mobile app. Therefore, we cannot ignore the role of the app itself on
the overall user-perceived quality. In this research question, we study and compare the rela-
tionship between both the device and app attributes and the user-perceived quality. We aim
to investigate whether app attributes have more significant relations with the user-perceived
quality than device attributes. The results of this research question may be beneficial to app
developers. They can decide the devices on which they would like to make their app avail-
able. The Google Play Store permits developers to specify the availability of an app for
each specific device (Google 2015b). By limiting an app to specific devices, app developers
can reduce the number of negative reviews, such as reviews from possibly underpowered
devices. The developers can also devote additional resources to testing their apps on certain
devices (Khalid et al. 2014).

Approach We study the relationship between the user-perceived quality and both the
device and app attributes. We include the app attributes, such as the number of UI inputs in
addition to device attributes. We include UI attributes because some device attributes, such
as display size, have an inverse relationship with the user-perceived quality. Moreover, users

Empir Software Eng (2017) 22:3088–3116 3105

W
M
C

U
ID
e
p
th

In
p
u
t

U
IN
o
d
e
s

A
c
ti
v
it
y

O
u
tp
u
t

U
IL
e
a
v
e
s

L
O
C
U
I

O
S
U
p
g
ra
d
a
b
le

S
ta
n
d
b
y

A
P
K
S
iz
e

M
c
C
a
b
e
H
ig
h

L
O
C

C
o
d
e
M
e
th
o
d

M
c
C
a
b
e
L
o
w

A
n
n
o
u
n
c
e
d

O
S
V
e
r
s
io
n

C
P
U

In
te
r
n
a
lR
A
M

S
c
r
e
e
n
W
id
th

S
c
r
e
e
n
H
e
ig
h
t

D
is
p
la
y
In
c
h

D
e
v
ic
e
H
e
ig
h
t

D
e
v
ic
e
W
id
th

B
a
tt
e
r
y

V
id
e
o

D
e
v
ic
e
T
h
ic
k
n
e
s
s

In
te
r
n
a
lR
O
M

G
P
U

T
a
lk
ti
m
e

C
a
m
e
ra
M
e
g
a
P
ix
e
l

D
is
p
la
y
C
o
lo
r
s

D
is
p
la
y
P
P
I

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

S
p
e
a
r
m
a
n

ρ

Fig. 6 Hierarchical clustering of app and device attributes according to the Spearman’s |ρ|

have interaction with the UI elements of apps. Table 2 shows the list of the app attributes
that we study including a brief description of the attributes.

Model Construction Figure 6 shows the result of the hierarchical clustering of variables
according to Spearman’s |ρ|. Based on Fig. 6, all the UI attributes, such as the number of
inputs and outputs, the number of activities, and the lines of UI code (LOCUI), are corre-
lated with each other. We select the total number of inputs as the representative attribute for
the group that contains UI complexity attributes. From the other groups, we select WMC,
OSUpgradable, Standby, APKSize, LOC, OSVersion, CPU, DisplayInch, InternalROM,
GPU, CameraMegaPixel, DisplayColors, and DisplayPPI.

Model Building To determine the device and app attributes that have statistically sig-
nificant relationships with the user-perceived quality, we build a linear mixed effects
model (Faraway 2005) similar to RQ2, but with independent variables that are a combina-
tion of both the device and app attributes. The marginal R2 of this model is 0.013 and the
conditional R2 is 0.191. The higher value of the conditional R2 indicates that the propor-
tional of variance that is explained by the fixed variables is much less than the proportional
of variance that is explained by both fixed and random variables.

Findings Both the app and the device attributes have significant relationships with
the user-perceived quality of apps. Table 8 shows the mixed effects model. We note that
LOC has a significant relationship with the user-perceived quality. This observation could
be the result of the relationship between the app maintainability and the code size (Li and
Henry 1993; Albrecht and Gaffney Jr 1983). We find that LOC has a relationship with the
user-perceived quality with χ̃2 = 36.90 and p − value = 4.892e − 5.

We also note that the WMC has a significant relationship with the user-perceived quality.
One possible explanation for this observation could be that a larger development effort is
required to maintain complex apps (Banker et al. 1993; Bandi et al. 2003).

3106 Empir Software Eng (2017) 22:3088–3116

Table 8 Linear mixed effects model results based on both device and app attributes, sorted by p − value

Category Attribute Pr(>F) Signif. χ̃2 Estimate Effect

App LOC 1.326e-09 *** 36.90 3.343e-02 ± 0.0050 ↘
WMC 4.892e-05 *** 16.51 1.129e-02 ± 0.0003 ↘
Input 0.0205 * 5.37 2.150e-02 ± 0.0093 ↗
APKSize 0.2710 1.21 5.619e-03 ± 0.0051 ↗

Device OSVersion 0.0005 *** 27.78 1.406e-01 ± 0.1253 ↘
DisplayPPI 0.0025 ** 9.13 7.688e-02 ± 0.0254 ↘
CPU 0.0136 * 17.73 7.638e-02 ± 0.1258 ↗
Standby 0.0276 * 4.86 2.971e-04 ± 0.0001 ↗
CameraMegaPixel 0.0778 + 3.11 1.438e-02 ± 0.0008 ↘
InternalROM 0.0829 + 3.00 1.516e-02 ± 0.0087 ↘
GPU 0.2876 1.13 1.932e-02 ± 0.0182 ↘
DisplayInch 0.4301 0.62 2.939e-02 ± 0.0372 ↗
DisplayColors 0.7300 0.63 4.632e-02 ± 0.0952 ↗
OSUpgradable 0.9071 0.01 5.666e-03 ± 0.0486 ↘

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Figure 6 shows the correlated attributes. From the app category, we find that all the UI
attributes are correlated with each other. The APKSize and LOC are correlated, but not
highly, because an APK file contains all the content that is required for both the installation
and the execution of an app. An APK file also includes all the resources of an app such
as graphical images. From the device category, we find that the internal RAM is highly
correlated with the CPU, which in turn has a positive relationship with the user-perceived
quality of apps.

Recalling the observations of RQ2 and the result of this RQ, we can see that DisplayInch
has a positive relationship with the user-perceived quality of apps. On the other hand, we
can see that the number of UI inputs has a significant relationship with the user-perceived
quality of apps. We also explore the relationship between the number of UI inputs and the
display size using a nested mixed effects model (Pinheiro and Bates 2006). The results of
the nested mixed effects model are in line with our findings. Users may perceive apps to be
of higher quality with more number of UI inputs, and having a larger size screen could be
an asset.

We notice that LOC (an app attribute) and OS version (a device attribute) both have sig-
nificant relationships with the user-perceived quality. We find that other device attributes,
such as the CPU and the screen resolution, play a significant role in the user-perceived
quality. In other words, the characteristics of both the apps and the devices on, which
they run, have statistically significant relationships with the user-perceived quality of the
apps.

App developers should be more concerned about both the attributes of their own apps,
and the attributes of the devices that are available in the market. For example, app develop-
ers can make their apps available to the devices that could deliver a higher user-perceived
quality based on the attributes of the devices in the market. Moreover, app testers can
prioritize their testing activities. In addition, mobile device manufacturers should consider

Empir Software Eng (2017) 22:3088–3116 3107

the app attributes that have the most significant relationships with the user-perceived quality
of apps.

4 Threats to Validity

In this section, we discuss the threats that may influence the validity of our findings.

4.1 Construct Validity

Threats to construct validity concern whether theoretical constructs are measured and
interpreted correctly (Shull et al. 2007).

4.1.1 Measuring the User-perceived Quality

Other measures may be used to capture the user-perceived quality. For example, the num-
ber of downloads shows the interest of users in the app. Harman et al. show that there is a
strong relationship between the number of downloads and star-ratings (Harman et al. 2012).
Therefore, we believe that the star-rating is a good measure of user-perceived quality. Nev-
ertheless, future research might consider other measures to operationalize the concept of
user-perceived quality.

4.1.2 Measuring Time and Location Dependent Attributes

The attributes of a particular device may be dependent on the age and location of the device.
For example, the device attributes for battery (e.g., battery size, talk time, and standby time)
degrade over time; as the device ages, the talk time and standby time decreases. Device
attributes for network support (e.g., whether the device supports 2G, 3G, or 4G connectivity)
may not be available in practice if such networks are not accessible from the user’s locations.
In this study, we consider the attributes that are available in a non-controlled empirical
study.

4.1.3 Defining the UI Elements

We follow previous work (e.g., Taba et al 2014) and best practices (Google 2015c) for
defining UI elements. With the best practices for UI implementation, developers need to
declare the layouts of apps in XML files. An XML layout defines a human-readable visual
structure for a user interface. In our initial dataset, only 7 % of the apps do not follow best
practices to declare the UI elements.

3108 Empir Software Eng (2017) 22:3088–3116

4.1.4 Other Possible Attributes

As the first study of its kind that investigates device attributes, we expect that future studies
will examine other (sub)attributes. For example, the manufacturer of a mobile device can
be considered as another attribute in our models. We did explore this attribute in the models
for RQ2 and RQ3. However, we found the manufacturer attribute to be statistically trivial.

4.2 Internal Validity

Threats to internal validity concern our selection of subject systems and analysis meth-
ods (Shull et al. 2007).

4.2.1 Precision of the Device Attributes

We extracted the device attributes as precise as possible. For ordinal attributes, such as CPU,
we carefully ordered them based on the information available on the Internet.

4.2.2 Selecting the Apps

We select a set of apps with at least five reviews for each of the 30 devices from our dataset.
The threshold of five reviews protects our results from being skewed by the set of apps and
devices that have a small number of reviews.

4.2.3 Measuring the App Attributes

The app attributes that we study may correspond to a different version than the one for
which the app rating was intended to. For example, a user may have multiple devices and
has not kept them up to date, or has updated to a newer version, but mentally reviews based
on previous versions. Unfortunately, we cannot find the actual versions of the apps that each
user has reviewed based on those versions of the apps. Future studies should investigate this
issue further.

4.3 External Validity

Threats to external validity concern the possibility of generalizing our results.

4.3.1 Ecosystem

The apps that we study are all from the Google Play Store. Therefore, our results may
not generalize to other ecosystems, such as the iTunes store (Apple 2015). However, the
variances across device attributes in such a store are not as large as the Google Play Store.
Future studies should investigate other ecosystems and stores.

4.3.2 Paid Versus Free Apps

Our study is performed on free apps. Hence, our results may not generalize to paid apps.
We focus on free to download apps as it reduces the impact of other confounding factors,
such as the variance of user expectations based on the cost of an app (Harbach et al. 2014).

Empir Software Eng (2017) 22:3088–3116 3109

4.3.3 Age of our Dataset

The outdated dataset might affect the generalizability of the results to reviews occurring
after 2013. However, the key message of our work is that there exist some apps where the
user-perceived quality has significant relationships with both the device attributes and the
app attributes.

4.3.4 Type of the Apps

Intuitively, certain types of apps, in particular games which are traditionally hardware tak-
ing, may be more dependent on device attributes. To investigate this issue, we add an
interaction term to allow the coefficients in our model to vary depending on whether we are
modeling the user-perceived quality of a game app or a non-game app. We found that the
interaction terms for GPU and OSVersion are statistically significant. Hence, games might
be more dependent on the GPU and the OSVersion of devices than other apps. However, we
were not able to improve on our model fit. Therefore, we further built two separate models:
(a) one model for game apps, and (b) another model for non-game apps. Again, we were not
able to improve our model fit indicating that a general model of user-perceived quality per-
formed better than more specific models, such as a model that is built only based on game
apps. Our inability to improve on our model fit may be due to (a) some games might be more
dependent on device attributes than other games (e.g., a complex graphics-intensive game,
such as Clash of Clans, compared to a simpler game, such as Sudoku), or (b) user-perceived
quality does not vary by app type.

4.3.5 Discussion of our Findings

For each research question, we dug into the data to provide some context to our findings
(e.g., the maintainability of the large codes). We are not claiming an exhaustive list of
relationships between the suggested causes and the user-perceived quality.

4.4 Reliability

We provide the dataset and the scripts that we used to do the analyses at Noei et al. (2016).

5 Related Work

In this section, we summarize the related work along three research directions: (a) user stud-
ies to determine the attributes that influence the user-perceived quality; (b) empirical studies
to determine the app attributes that have relationships with the user-perceived quality; and
(c) information extraction from reviews, such as generating feature requests from the user
comments.

5.1 User Studies of User-perceived Quality

Researchers have explored the user-perceived quality based on user studies. Ickin et al. focus
on measuring user experience for a set of mobile apps that are used on a daily basis (Ickin
et al. 2012). Ickin et al. observe that factors, such as interface design, app performance,
and user lifestyle, influence the user-perceived quality. Hassenzahl and Tractinsky show the

3110 Empir Software Eng (2017) 22:3088–3116

attributes of the system and the context within which an interaction occurs influence the
user-perceived quality (Hassenzahl and Tractinsky 2006). Korhonen et al. survey the lit-
erature and conclude that the mobile device, user’s task, and social context are the most
significant attributes affecting the user-perceived quality (Korhonen et al. 2010). Our work
is an empirical study based on the data gathered from 280 apps and 30 devices and 150,373
users’ reviews over a four year period, from 2009 to 2013. Our study covers a longer
period in comparison with user studies. Moreover, the results of prior user studies have been
inferred from a limited group of users and a fewer number of apps. Nevertheless, we believe
that there is a need for additional user studies to further investigate many of the observations
in our paper.

5.2 Empirical Studies of App Attributes

Recent empirical studies on mobile apps mainly focus on examining app attributes that
affect the user-perceived quality (Martin et al. to appear). Nevertheless, we study the device
attributes in addition to the app attributes. Taba et al. studied the relationship between UI
complexity and user-perceived quality of Android apps (Taba et al. 2014). They observe
that the UI complexity has a relationship with the user-perceived quality of apps. Linares-
Vásquez et al. find that the low quality APIs affects the ratings of apps (Linares-Vásquez
et al. 2013). Kim et al. discuss how ratings influence the users’ decision to download
apps (Kim et al. 2011). Khalid et al. use mobile app reviews to help determine whether
developers can use a small subset of devices to reduce the cost of testing their apps (Khalid
et al. 2014). Shabtai et al. apply machine learning techniques on Android apps using app
attributes and categorize Android apps into two categories of games and tools (Shabtai et al.
2010). Bavota et al. indicate that the user-perceived quality of an app is related with the fault-
and change-proneness of the APIs used by such an app (Bavota et al. 2015). Syer et al. stud-
ied the defects in source code and the relationship between app attributes and source code
quality (Syer et al. 2013, 2014). However, the authors did not consider the user-perceived
quality. Such work has not studied device and app attributes together to see the relative
contribution of these attributes on modeling the user-perceived quality of apps. One of the
contributions of our work is to show such a comparison between app and device attributes.
Otherwise, we would not know which one aspect (app or device) has a greater contribu-
tion. Our work is the first to ever uncover the impact of device attributes, such as CPU, OS
Version, and screen resolution on the user-perceived quality (even after controlling for app
attributes).

5.3 Information Extraction

Prior work attempts to extract valuable knowledge from reviews using various techniques,
such as natural language processing and latent semantic analysis, to facilitate mobile app
development. Pagano and Maalej study reviews from iOS apps to determine potentials for
the requirements engineering processes (Pagano and Maalej 2013). Iacob and Harrison,
and Galvis Carreño and Winbladh extract feature requests from the user reviews (Iacob
and Harrison 2013; Galvis Carreño and Winbladh 2013). Moran et al. present a solution
to automate the completion of the reproduction steps when reporting a bug (Moran et al.
2015). None of the earlier work has compared the relationship between both app and device
attributes and the user-perceived quality of apps. In this paper, we find that both app and
device attributes have significant relationships with the user-perceived quality, and both are
needed to have a comprehensive understanding about the user-perceived quality of an app.

Empir Software Eng (2017) 22:3088–3116 3111

6 Conclusion

In this paper, we study the relation of the device attributes and app attributes with the user-
perceived quality. Our analysis is based on 30 Android mobile devices, 280 Android apps,
and 150,373 reviews. We find that the user-perceived quality of an app varies across devices.
Device attributes, such as the CPU, display, and OS, have significant relationships with
the user-perceived quality. Nevertheless, having higher specifications for a particular device
attribute, such as a higher display resolution, does not always have a positive relationship
with the user-perceived quality of the apps. Both app and device attributes play an important
role in the user-perceived quality of the apps that we studied.

Like other empirical studies, our study has several limitations (cf. Section 4). Neverthe-
less, we wish to emphasize that we do not claim that our results will necessarily generalize
to all Android mobile devices and all Android apps. Instead, the key message of our work is
that the user-perceived quality of some apps is impacted by both the attributes of the device
on which the apps are being used, and the attributes of the apps. Hence, we recommend
that app developers carefully consider this fact when enabling which devices can down-
load their app through the app market. Furthermore, our results highlight the rather complex
nature of the star-ratings which empirical research has started to explore in-depth in recent
years (Martin et al. to appear). The limited access to information about the model of the
device which submitted a particular app is another bias (Martin et al. 2015) that should
be carefully considered in future studies of mobile app reviews. Future studies should also
explore other aspects and attributes, such as contextual conditions (e.g., the location of
users). We believe that such aspects may also exhibit relationships with the user-perceived
quality of apps.

References

Albrecht AJ, Gaffney Jr JE (1983) Software function, source lines of code, and development effort prediction:
a software science validation. IEEE Trans on Softw Eng 9(6):639–648

Apple (2015) itunes. https://www.apple.com/itunes/
Balasubramanian N, Balasubramanian A, Venkataramani A (2009) Energy consumption in mobile phones:

a measurement study and implications for network applications. In: Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement, ACM, pp 280–293

Bandi RK, Vaishnavi K, Turk DE (2003) Predicting maintenance performance using object-oriented design
complexity metrics. IEEE Trans Softw Eng 29(1):77–87

Banker RD, Datar SM, Kemerer CF, Zweig D (1993) Software complexity and maintenance costs. Commun
ACM 36(11):81–94

Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Penta MD, Oliveto R, Poshyvanyk D (2015) The impact
of api change-and fault-proneness on the user ratings of android apps. IEEE Trans Softw Eng 41(4):384–
407

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494
Coppick JC, Cheatham TJ (1992) Software metrics for object-oriented systems. In: Proceedings of the 1992

ACM annual conference on communications, ACM, pp 317–322
Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT press
Costa-Montenegro E, Barragáns-Martı́nez AB, Rey-López M (2012) Which app? a recommender system of

applications in markets: implementation of the service for monitoring users’ interaction. Expert Syst
Appl 39(10):9367–9375

Dex2jar J (2016) Java decompiler. http://jd.benow.com/
Draper NR, Smith H, Pownell E (1966) Applied regression analysis, vol 3. Wiley, New York
Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252

https://www.apple.com/itunes/
http://jd.benow.com/

3112 Empir Software Eng (2017) 22:3088–3116

Faraway JJ (2005) Extending the linear model with R: generalized linear, mixed effects and nonparametric
regression models. CRC press

Galvis Carreño LV, Winbladh K (2013) Analysis of user comments: an approach for software requirements
evolution. In: Proceedings of the 35th international conference on software engineering, IEEE, ICSE
’13, pp 582–591

Google (2015a) Application fundamentals. http://developer.android.com/guide/components/fundamentals.
html/

Google (2015b) Google play store. http://play.google.com/
Google (2015c) Layouts. http://developer.android.com/intl/ru/guide/topics/ui/declaring-layout.html/
Google (2015d) See your app’s ratings & reviews. https://support.google.com/googleplay/android-developer/

answer/138230
Google (2015e) Supporting multiple screens. http://developer.android.com/guide/practices/
Han D, Zhang C, Fan X, Hindle A, Wong K, Stroulia E (2012) Understanding android fragmentation with

topic analysis of vendor-specific bugs. In: Proceedings of the 19th working conference on reverse
engineering, IEEE, pp 83–92

Harbach M, Hettig M, Weber S, Smith M (2014) Using personal examples to improve risk communication
for security & privacy decisions. In: Proceedings of the 32nd annual ACM conference on human factors
in computing systems, ACM, pp 2647–2656

Harman M, Jia Y, Zhang Y (2012) App store mining and analysis: Msr for app stores. In: Proceedings of the
9th IEEE working conference on mining software repositories, IEEE, MSR ’12, pp 108–111

Harrell (2015) Harrell. http://cran.r-project.org/web/packages/Hmisc/index.html
Harrell FE (2001) Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression,

and Survival Analysis. Springer
Hassenzahl M, Tractinsky N (2006) User experience - a research agenda. Behav Inform Technol 25(2):91–97
Iacob C, Harrison R (2013) Retrieving and analyzing mobile apps feature requests from online reviews. In:

Proceedings of the 10th working conference on mining software repositories, IEEE, MSR ’13, pp 41–44
Ickin S, Wac K, Fiedler M, Janowski L, Hong JH, Dey AK (2012) Factors influencing quality of experience

of commonly used mobile applications. IEEE Commun Mag 50(4):48–56
Dex2ja J (2016) Java decompiler. http://jd.benow.com/
Johnson RE, Foote B (1988) Designing reusable classes. Object-oriented Program 1(2):22–35
Kaup F, Hausheer D (2013) Optimizing energy consumption and qoe on mobile devices. In: Proceedings of

the 21st IEEE international conference on network protocols, IEEE, pp 1–3
Khalid H, Nagappan M, Shihab E, Hassan AE (2014) Prioritizing the devices to test your app on: a case

study of android game apps. In: Proceedings of the 22nd ACM SIGSOFT international symposium on
the foundations of software engineering, pp 370–379

Kim HW, Lee H, Son J (2011) An exploratory study on the determinants of smartphone app purchase.
In: Proceedings of the 11th international decision science institute and the 16th Asia pacific decision
sciences institute joint meeting

Korhonen H, Arrasvuori J, Väänänen-Vainio-Mattila K (2010) Analysing user experience of personal mobile
products through contextual factors. In: Proceedings of the 9th international conference on mobile and
ubiquitous multimedia, ACM, New York, NY, USA, MUM ’10, pp 11:1–11:10

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc
47(260):583–621

Lawson S (2009) Android market needs more filters, t-mobile says. http://www.pcworld.com/article/161410/
article.html

Li D, Halfond WG (2014) An investigation into energy-saving programming practices for android smart-
phone app development. In: Proceedings of the 3rd international workshop on green and sustainable
software, ACM, pp 46–53

Li D, Hao S, Gui J, Halfond WG (2014) An empirical study of the energy consumption of android applica-
tions. In: Proceedings of the 30th IEEE international conference on software maintenance and evolution,
IEEE, pp 121–130

Li W, Henry S (1993) Object-oriented metrics that predict maintainability. J Syst Softw 23(2):111–122
Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D (2013) Api change

and fault proneness: a threat to the success of android apps. In: Proceedings of the 9th joint meeting
on european software engineering and foundations of software engineering, ACM, ESEC/FSE 2013,
pp 477–487

Martin W, Harman M, Jia Y, Sarro F, Zhang Y (2015) The app sampling problem for app store mining. In:
Proceedings of the 12th working conference on mining software repositories, IEEE, pp 123–133

Martin W, Sarro F, Jia Y, Zhang Y, Harman M (to appear) A survey of app store analysis for software
engineering. IEEE Trans Softw Eng

http://developer.android.com/guide/components/ fundamentals.html/
http://developer.android.com/guide/components/ fundamentals.html/
http://play.google.com/
http://developer.android.com/intl/ru/guide/topics/ui/declaring-layout.html/
https://support.google.com/googleplay/android-developer/answer/138230
https://support.google.com/googleplay/android-developer/answer/138230
http://developer.android.com/guide/practices/
http://cran.r-project.org/web/packages/Hmisc/index.html
http://jd.benow.com/
http://www.pcworld.com/article/161410/article.html
http://www.pcworld.com/article/161410/article.html

Empir Software Eng (2017) 22:3088–3116 3113

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE 2(4):308–320
McDonnell T, Ray B, Kim M (2013) An empirical study of api stability and adoption in the android

ecosystem. In: Proceedings of the 29th IEEE international conference on software maintenance, IEEE,
pp 70–79

Miecznikowski J, Hendren L (2002) Decompiling java bytecode: problems, traps and pitfalls. In: Horspool
R (ed) Proceedings of the compiler construction, lecture notes in computer science, vol 2304. Springer,
Berlin Heidelberg, pp 111-127

Moran K, Linares-Vásquez M, Bernal-Cárdenas C, Poshyvanyk D (2015) Auto-completing bug reports for
android applications. In: Proceedings of the 10th joint meeting on european software engineering and
foundations of software engineering, ACM, New York, NY, USA, ESEC/FSE 2015, pp 673–686

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining r2 from generalized linear
mixed-effects models. Methods Ecol Evol 4(2):133–142

Nielson F, Nielson HR, Hankin C (1999) Principles of Program Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA

Noei E, Syer MD, Zou Y, Hassan AE, Keivanloo I (2016) A study of the relation of mobile device
attributes with the user-perceived quality of android apps, http://sailhome.cs.queensu.ca/replication/
mobile device attributes/

Pagano D, Maalej W (2013) User feedback in the appstore: an empirical study. In: Proceedings of the 21st
IEEE international requirements engineering conference, IEEE, pp 125–134

Pinheiro J, Bates D (2006) Mixed-effects models in S and S-PLUS. Springer Science & Business Media
Pinheiro J, Bates D, DebRoy S, Sarkar D et al. (2007) Linear and nonlinear mixed effects models. R package

version 3:57
Selenium (2014) Selenium - web browser automation. http://seleniumhq.org/
Shabtai A, Fledel Y, Elovici Y (2010) Automated static code analysis for classifying android applica-

tions using machine learning. In: Proceedings of the 2010 international conference on computational
intelligence and security. IEEE, pp 329–333

Shull F, Singer J, Sjøberg DI (2007) Guide to Advanced Empirical Software Engineering. Springer-Verlag
New York, Inc., Secaucus, NJ, USA

Stats A (2016) Number of android applications. http://www.appbrain.com/stats/number-of-android-apps
Syer MD, Adams B, Zou Y, Hassan AE (2011) Exploring the development of micro-apps: a case study on the

blackberry and android platforms. In: Proceedings of the 11th IEEE international working conference
on source code analysis and manipulation, IEEE, pp 55–64

Syer MD, Nagappan M, Hassan AE, Adams B (2013) Revisiting prior empirical findings for mobile apps: an
empirical case study on the 15 most popular open-source android apps. In: Proceedings of the conference
of the center for advanced studies on collaborative research, pp 283–297

Syer MD, Nagappan M, Adams B, Hassan AE (2014) Studying the relationship between source code quality
and mobile platform dependence. Softw Qual 23(3):485–508

Taba SES, Keivanloo I, Zou Y, Ng JW, Ng T (2014) An exploratory study on the relation between user
interface complexity and the perceived quality. In: Proceedings of the 14th international conference on
Web engineering, pp 370–379

Wasserman AI (2010) Software engineering issues for mobile application development. In: Proceedings of
the FSE/SDP workshop on future of software engineering research, ACM, New York, NY, USA, FoSER
’10, pp 397–400

Winter B (2013) A very basic tutorial for performing linear mixed effects analyses. arXiv:13085499
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology

with R. Springer Science & Business Media

http://sailhome.cs.queensu.ca/replication/mobile_device_attributes/
http://sailhome.cs.queensu.ca/replication/mobile_device_attributes/
http://seleniumhq.org/
http://www.appbrain.com/stats/number-of-android-apps
http://arxiv.org/abs/13085499

3114 Empir Software Eng (2017) 22:3088–3116

Ehsan Noei is a Ph.D. candidate at Queen’s University. He received his M.Sc. in Software Engineering
from Sharif University of Technology. His primary research interests include software engineering, software
re-engineering, and mining software repositories. More about Ehsan is available online at http://www.noei.
net/.

Mark D. Syer is a Data Scientist at Maple Leaf Sports and Entertainment. He received his Ph.D. and M.Sc.
from the Software Analysis and Intelligence Lab at Queen’s University. His research interests include soft-
ware and systems engineering, software performance engineering, mining software repositories and empirical
software engineering. He is also committed to the rigorous application of statistics and machine learning to
software engineering and systems research. His work has been published at premier venues such as ICSE and
ICSME and in major journals such as TSE, EMSE and ASE. His industrial experience includes improving
the scalability, reliability and performance of large-scale software systems at SAP, BlackBerry and Dragonfly
IT. Early tools and techniques developed by him are already used in daily industrial practice.

http://www.noei.net/
http://www.noei.net/

Empir Software Eng (2017) 22:3088–3116 3115

Ying Zou is a Canada Research Chair in Software Evolution. She is an associate professor in the Depart-
ment of Electrical and Computer Engineering and cross-appointed to the School of Computing at Queen’s
University in Canada. She is a visiting scientist of IBM Centers for Advanced Studies, IBM Canada.
Her research interests include software engineering, software re-engineering, software reverse engineering,
software maintenance, and service-oriented architecture.

Ahmed E. Hassan is the Canada Research Chair (CRC) in Software Analytics, and the NSERC/BlackBerry
Software Engineering Chair at the School of Computing at Queen’s University, Canada. His research interests
include mining software repositories, empirical software engineering, load testing, and log mining. Hassan
received a Ph.D. in Computer Science from the University of Waterloo. He spearheaded the creation of
the Mining Software Repositories (MSR) conference and its research community. Hassan also serves on
the editorial boards of IEEE Transactions on Software Engineering, Springer Journal of Empirical Software
Engineering, and PeerJ Computer Science. Contact ahmed@cs.queensu.ca. More information at: http://sail.
cs.queensu.ca/.

http://sail.cs.queensu.ca/
http://sail.cs.queensu.ca/

3116 Empir Software Eng (2017) 22:3088–3116

Dr. ImanKeivanloo worked as a Postdoctoral researcher in the Department of Electrical and Computer Engi-
neering at Queens University, Canada. He received his PhD from Concordia University, Montreal, Canada
in 2013. His research focuses on the area of source-code search and recommendation. He has published
over 20 papers in major refereed international journals, conferences and workshops. He has also served as a
committee member on international conferences and workshops in the area of clone detection and program
comprehension.

	A study of the relation of mobile device attributes with the user-perceived quality of Android apps
	Abstract
	Introduction
	Paper Organization

	Case Study Design
	Data Source
	Data Processing
	Decompiling APK Files
	Cleaning Dataset
	Extracting App Attributes
	Source Code
	User Interface
	Miscellaneous

	Extracting Device Attributes
	Calculating the User-perceived Quality

	Approach and Results
	RQ1) How strong is the relationship between the user-perceived quality of apps and the devices on which they run?
	Motivation
	Approach
	Findings

	RQ2) Which device attributes have the strongest relationship with the user-perceived quality?
	Motivation
	Approach
	Model Construction
	Model Building
	Findings

	Device attributes with a positive relationship with the user-perceived quality of Apps
	Device attributes with a negative relationship with the user-perceived quality of Apps
	Motivation
	Approach
	Model Construction
	Model Building
	Findings

	Threats to Validity
	Construct Validity
	Measuring the User-perceived Quality
	Measuring Time and Location Dependent Attributes
	Defining the UI Elements
	Other Possible Attributes

	Internal Validity
	Precision of the Device Attributes
	Selecting the Apps
	Measuring the App Attributes

	External Validity
	Ecosystem
	Paid Versus Free Apps
	Age of our Dataset
	Type of the Apps
	Discussion of our Findings

	Reliability

	Related Work
	User Studies of User-perceived Quality
	Empirical Studies of App Attributes
	Information Extraction

	Conclusion
	References

