
Empir Software Eng (2017) 22:1831–1865
DOI 10.1007/s10664-016-9467-z

Towards just-in-time suggestions for log changes

Heng Li1 ·Weiyi Shang2 ·Ying Zou3 ·
Ahmed E. Hassan1

Published online: 24 October 2016
© Springer Science+Business Media New York 2016

Abstract Software developers typically insert logging statements in their source code
to record runtime information. However, providing proper logging statements remains a
challenging task. Prior approaches automatically enhance logging statements, as a post-
implementation process. Such automatic approaches do not take into account developers’
domain knowledge; nevertheless, developers usually need to carefully design the logging
statements since logs are a rich source about the field operation of a software system. The
goals of this paper include: i) understanding the reasons for log changes; and ii) propos-
ing an approach that can provide developers with log change suggestions as soon as they
commit a code change, which we refer to as “just-in-time” suggestions for log changes. In
particular, we derive a set of measures based on manually examining the reasons for log
changes and our experiences. We use these measures as explanatory variables in random
forest classifiers to model whether a code commit requires log changes. These classifiers

Communicated by: Arie van Deursen

� Heng Li
hengli@cs.queensu.ca

Weiyi Shang
shang@encs.concordia.ca

Ying Zou
ying.zou@queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Software Analysis and Intelligence Lab (SAIL),
Queen’s University, Kingston, Ontario, Canada

2 Department of Computer Science and Software Engineering,
Concordia University, Montreal, Quebec, Canada

3 Department of Electrical and Computer Engineering,
Queen’s University, Kingston, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9467-z&domain=pdf
mailto:hengli@cs.queensu.ca
mailto:shang@encs.concordia.ca
mailto:ying.zou@queensu.ca
mailto:ahmed@cs.queensu.ca

1832 Empir Software Eng (2017) 22:1831–1865

can provide just-in-time suggestions for log changes. We perform a case study on four open
source projects: Hadoop, Directory Server, Commons HttpClient, and Qpid. We find that:
(i) The reasons for log changes can be grouped along four categories: block change, log
improvement, dependence-driven change, and logging issue; (ii) our random forest classi-
fiers can effectively suggest whether a log change is needed: the classifiers that are trained
from within-project data achieve a balanced accuracy of 0.76 to 0.82, and the classifiers
that are trained from cross-project data achieve a balanced accuracy of 0.76 to 0.80; (iii)
the characteristics of code changes in a particular commit and the current snapshot of the
source code are the most influential factors for determining the likelihood of a log change
in a commit.

Keywords Software logs · Log improvement · Mining software repositories

1 Introduction

Logs are generated at runtime from logging statements in the source code. Logs record
valuable run-time information. A logging statement, as shown below, typically specifies a
verbosity level (e.g., debug/info/warn/error/fatal), a static text and one or more variables (Fu
et al. 2014; Yuan et al. 2012b; Gülcü and Stark 2003).

logger.error(“static text” + variable);

Logs help software practitioners better understand the behaviors of large scale software
systems and assist in improving the quality of the systems (Fu et al. 2013; Shang et al.
2014b). Software operators leverage the rich information in logs to guide capacity planning
efforts (Sharma et al. 2011; Kavulya et al. 2010), to monitor system health (Bitincka et al.
2010), and to identify abnormal behaviors (Fu et al. 2009; Syer et al. 2013; Xu et al. 2009).
Besides, software developers rely on logs for debugging field failures (Glerum et al. 2009;
Yuan et al. 2010, 2012a). In recent years, the broad usage of logs led to the emergence a
new market of Log Processing Applications (LPAs) (e.g., Splunk1 (Bitincka et al. 2010),
XpoLog,2 and Logstash3), which support the collection, storage, search, and analysis of
large amounts of log data.

However, appropriate logging is difficult to reach in practice. Both logging too little and
logging too much is undesirable (Fu et al. 2014). Logging too little may result in the lack
of runtime information that is crucial for understanding and diagnosing software systems
(Yuan et al. 2011, 2012a); while logging too much may lead to runtime overhead and costly
log maintenance efforts (Fu et al. 2014). A recent study shows that developers spend a
large amount of effort for maintaining logging statements, and 33 % of the log changes
are introduced as after-thoughts (i.e., as follow-up changes instead of being done when the
actual surrounding code is being changed) (Yuan et al. 2012b).

Listing 1 shows a code snippet that is taken from Hadoop revision 1240413. We use
“svn blame”4 to show the contributing commit of each code line. The code snippet shows

1Splunk. http://www.splunk.com/
2XpoLog. http://www.xpolog.com/
3Logstash. http://logstash.net/
4svn blame. http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.blame.html

http://www.splunk.com/
http://www.xpolog.com/
http://logstash.net/
http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.blame.html

Empir Software Eng (2017) 22:1831–1865 1833

that the commit 1190122 added a try-catch statement, and an if statement in the catch
clause. In a later commit 1240413, which contributed to a bug fix, developer added an
error logging statement to record important runtime information, in order to help fix bug
MAPREDUCE-3711.5 The information that is recorded by the logging statement even help
understand the execution of the system when fixing bugs in the future (e.g., MAPREDUCE-
55016 and MAPREDUCE-63177). Suppose that the developer was suggested to add the
logging statement in the earlier commit (1190122) with the try-catch statement, the logged
information would help developers and operators understand the system’s behavior when
they are fixing bug MAPREDUCE-3711. In this paper, we propose an approach that can
automatically provide developers with such suggestions for log changes when they commit
new code changes.

Log enhancement approaches, such as Errlog (Yuan et al. 2012a) and LogEnhancer
(Yuan et al. 2011), aim to improve software failure diagnosis by automatically adding more
logged information to the existing code, as a post-implementation process. However, these
automatic log enhancement approaches never take into account developers’ knowledge
about where and how to add logging statements. In practice, developers need to care-
fully design logging statements since logs contain valuable information for both software
developers and operators (Yuan et al. 2012b).

Recent studies investigate where developers insert logging statements (Fu et al. 2014)
and automatically suggest locations in need of logging statements (Zhu et al. 2015). In par-
ticular, the authors conducted source code analysis to investigate the types of code snippets

5https://issues.apache.org/jira/browse/MAPREDUCE-3711
6https://issues.apache.org/jira/browse/MAPREDUCE-5501
7https://issues.apache.org/jira/browse/MAPREDUCE-6317

https://issues.apache.org/jira/browse/MAPREDUCE-3711
https://issues.apache.org/jira/browse/MAPREDUCE-5501
https://issues.apache.org/jira/browse/MAPREDUCE-6317

1834 Empir Software Eng (2017) 22:1831–1865

(e.g., catch block) in which developers often insert logging statements. The study provides
post-coding guidelines for inserting logging statements into the source code. However to the
best of our knowledge, there exists no studies to guide developers during coding, i.e., pro-
viding guidance about whether to change (add, delete or modify) logging statements when
developers are committing code changes.

In this paper, we propose an approach that can provide just-in-time suggestions as to
whether a log change is needed when a code change occurs. The term “just-in-time” is based
on prior research by Kamei et al. (2013) that advocates the benefits of providing suggestions
to developers at commit time. Follow-up studies (Kamei et al. 2016; Tourani and Adams
2016; Fukushima et al. 2014) also use the term “just-in-time” to describe commit-time sug-
gestions or alerts. In this paper, we leverage prior commits to build classifiers in order to
suggest whether log changes are needed for a new commit. We perform a case study on
four open source systems (Hadoop, Directory Server, Commons HttpClient, and Qpid), to
answer the following three research questions:

RQ1: What are the reasons for changing logging statements?
Through a manual analysis of a statistically representative sample of logging

statements, we find that the reasons for log changes can be grouped along four cat-
egories: block change, log improvement, dependence-driven change, and logging
issue.

RQ2: How well can we provide just-in-time log change suggestions?
We build random forest classifiers using software measures that are derived from

our manual study in RQ1, and from our experience, in order to model the drivers
for log changes in a code commit. We evaluate our classifiers in both a within-
project and a cross-project evaluation. For our within-project evaluation, we build
a random forest classifier for every code commit using all previous code commits
as training data, in order to suggest whether a log change is needed for the current
commit. The random forest classifiers that are built from historical data from the
same project achieve a balanced accuracy of 0.76 to 0.82. For our cross-project
evaluation, we build random forest classifiers that are trained from three out of four
studied projects and suggest log changes in the remaining project. We repeat the
process for each of the studied projects. The classifiers reach a balanced accuracy
of 0.76 to 0.80 and an AUC of 0.84 to 0.88.

RQ3: What are the influential factors that explain log changes?
Factors which capture characteristics about the changes to the non-logging code

in a commit (i.e., change measures, such as the number of changed control flow
statements) and factors that capture characteristics of the current snapshot of the
source code (i.e., product measures, such as the number of existing logging state-
ments) are the most influential factors for explaining log changes in a commit.
In particular, change measures are the most influential explanatory factors for log
additions, while product measures are the most influential explanatory factors for
log modifications.

Paper Organization The remainder of the paper is organized as follows. Section 2 surveys
related work on software logs. Section 3 describes the studied systems and our experimental
setup. Section 4 explains the approaches that we used to answer the research questions and
presents the results of our case study. Section 5 discusses the characteristics of commits that

Empir Software Eng (2017) 22:1831–1865 1835

only change logging statements without changing the non-logging code. Section 6 discusses
the threats of validity. Finally, Section 7 draws conclusions based on our presented findings.

2 Related Work

In this section, we discuss the prior research with regard to leveraging logs, improving logs,
and empirical studies of logging practices.

2.1 Leveraging Logs

A large amount of log related research focuses on postmortem diagnosis of logs (Oliner
et al. 2012; Xu et al. 2009; Yuan et al. 2010; Mariani and Pastore 2008; Mariani et al.
2009). Since console logs, generated in large-scale data centers, often consist of volumi-
nous messages and it is difficult for operators to detect noteworthy logs, Xu et al. (2009)
propose a method to mine logs to automatically detect system runtime problems within a
short time. As field logs and source code are usually the only resource for developers to
diagnose a production failure, Yuan et al. (2010) propose a tool named SherLog, which
leverages run-time log information and source code to infer the execution path of a failed
production run. The tool requires no expert knowledge of the product. Mariani’s work
(Mariani and Pastore 2008) also proposes a technique, which automatically analyzes log
files and retrieves valuable information, to assist developers in identifying failure causes.
The widespread usage of logs highlights the importance of proper logging practices, and
motivates our work to propose an approach that can provide effective suggestions for log
changes.

2.2 Improving Logs

Prior research proposed approaches to improve logging statements. In order to address the
lack of log messages for failure diagnosis, Errlog (Yuan et al. 2012a) analyzes the source
code to detect unlogged exceptions (abnormal or unusual conditions) and automatically
inserts the missing logging statements. LogEnhancer (Yuan et al. 2011), on the other hand,
automatically adds additional causally-related information to existing logging statements
to aid in future failure diagnosis. A recent tool named LogAdvisor (Zhu et al. 2015) aims
to provide developers with suggestions on where to log. LogAdvisor extracts contextual
features (such as textual features) of a code snippet (exception snippet or return-value-check
snippet) and leverages the features to suggest whether a logging statement should be added
to a code snippet. These tools try to improve logs by adding additional logged information
or suggesting where to log as a post-implementation process. In this paper, in comparison,
we propose an proactive approach that can provide just-in-time log change suggestions to
developers. We provide guidance to developers by suggesting the need for a log change
when developers commit code changes.

2.3 Empirical Studies of Logging Practices

Prior research has empirically studied logging practices in both open source and indus-
trial software projects. Yuan et al. (2012b) perform a study of logging practices in four
open source projects. They study the current practices of modifying logging code. Their

1836 Empir Software Eng (2017) 22:1831–1865

Table 1 Overview of the studied systems

Project #SLOC Studied history #Commits #Log-changing commits #Log changes

Hadoop 458 K 2009-05-19 to 2014-07-02 5,401 1,621 (30.0 %) 9,503

Directory Server 119 K 2006-01-03 to 2014-06-30 4,968 1,130 (22.7 %) 11,883

Http- Client 18 K 2001-04-25 to 2012-12-16 949 252 (26.6 %) 2,333

Qpid 271 K 2006-09-19 to 2014-07-01 3,538 908 (25.7 %) 8,761

work notes several observations on the amount of efforts that developers often spend on
modifying log messages, as well as observations on where developers spend most of their
efforts modifying the log messages. Similarly, prior research also shows that logs are often
changed by developers without considering the needs of other stakeholders (Shang et al.
2011, 2014a), and that changes to logs often break the functionality of log processing appli-
cations which are highly dependent on the format of logs. Another study (Yuan et al. 2012a)
investigates the efficacy of logs for failure diagnosis across five large software systems, and
finds that more than half of the failures could not be diagnosed using existing log informa-
tion. Fu et al. (2014) study the logging practices in two industrial software projects. They
investigate in what kinds of code snippets do developers add logs and provide guidelines on
where to log. In this paper, we focus on understanding what causes developers to change
logging statements instead of what kind of code needs to be logged.

3 Case Study Setup

This section describes the subject systems and the process that we used to prepare the data
for our case study.

3.1 Subject Systems

This paper studies the reasons for log changes and explores the feasibility of providing
accurate just-in-time suggestions for log changes through a case study on four open source
projects: Hadoop, Directory Server, Commons HttpClient, and Qpid. All the four projects
are mature Java projects with years of development history and from different domains.
Table 1 shows the studied development history for each project. We use the “svn log”8

command to retrieve the development history for each project (i.e., the svn commit records).
We analyze the development history of the main branch (trunk) of each project, and focus on
Java source code (excluding Java test code). Some commits import a large number of atomic
commits from a branch into the trunk (a.k.a. merge commits), which usually contain a large
amount of code changes and log changes. Such merge commits would introduce noise in
our study (Zimmermann et al. 2004) of log changes in a commit. We unroll each merge
commit into the various commits of which it is composed (using the “use-merge-history”
option of the “svn log” command).

Table 1 also presents an overview of the studied systems. The source lines of code
(SLOC) of each project is measured at the end of the studied development history.

8svn log. http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

Empir Software Eng (2017) 22:1831–1865 1837

Version control
repositories

Log change
identification

Log changes

Labelled commits

Random forest
classification

Statistically
representative

random
sampling

Manual
analysis

Model analysis

Rationale for
log changes

Data Extraction

Manual analysis (RQ1)

Modeling analysis (RQ2, RQ3)

Subset of
log changes

Code change in
each commit

Source code at
each commit

Commit
records

Software
measures

Model evaluation

Influential
factors for log
changes

Model
performance

(RQ1)

(RQ2)

(RQ3)

Fig. 1 An overview of our data extraction and analysis approaches

The Hadoop project is the largest project. It has 458K lines of source code, while
HttpClient is the smallest project, with an SLOC of 18K. We study 5,401, 4,968,
949 and 3,538 commits for Hadoop, DirectoryServer, HttpClient and Qpid, respec-
tively. These commits include all the commits in the studied development history that
change at least one Java source code file. Table 1 also shows the numbers and per-
centages of commits that change (i.e., add, modify, or delete) logging statements, for
each project. 30.0 % (1,621 out of 5,401) of Hadoop’s commits are accompanied with
log changes, while the percentage of commits that change logging statement ranges
from 22.7 % to 26.6 % for Directory Server, HttpClient, and Qpid. The last col-
umn of Table 1 lists the number of log changes (a log change is an occurrence of
either adding, deleting, or modifying a logging statement) that occurred during the stud-
ied development history. The DirectoryServer project has the most log changes within
the studied history. We provide our dataset9 for all four studied projects for better
replication.

3.2 Data Extraction

Figure 1 presents an overview of our data extraction and data analysis approaches. From the
version control repositories of each subject system, we analyze the code changes in each
commit and identify the commits that contain changes to logging statements. As a result,
we are able to create a log-change database (i.e., a collection of log changes) and label each
commit as to whether it contains log changes or not. The log-change database is used in our
manual analysis (RQ1), and the labeled commit data is employed in our modeling analysis
(RQ2 and RQ3).

Within the commits that change logging statements, there are only 1.2 % to 4.2 % of
them that do not change other source code (i.e., log-changing-only commits). Since our
models aim to provide developers with just-in-time suggestions for log changes when they
are changing other source code, we exclude these log-changing-only commits in our mod-
eling analysis. We revisit the characteristics of the log-changing-only commits at the end of
the paper, in Section 5.

9http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/dataset.zip

http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/dataset.zip

1838 Empir Software Eng (2017) 22:1831–1865

3.3 Log Change Identification

In order to represent the term log change more accurately, we define the following four
terms:

– Log addition, measures the new logging statements that are added in a commit.
– Log deletion, measures the obsolete logging statements that are deleted in a commit.
– Log modification, measures the existing logging statements that are modified in a

commit.
– Log change, measures any kind of change (addition, deletion, and modification) that is

made to logging statements in a commit.

The studied projects leverage standard logging libraries (e.g., Apache Commons Log-
ging,10 Log4j11 and SLF4J12) for logging. The usage of the standard libraries brings
uniform formats (e.g., logger.error(message)) to the logging statements, thus we can
accurately identify the logging statements.

We use regular expressions to identify the added and deleted logging statements across
commits (see on-line replication package for the used regular expressions13). If a pair
of an added logging statement and a deleted one are within the same code snippet and
they are textually similar to each other, the pair of logging statements are considered as
a log modification. Otherwise they are considered as one log addition and one log dele-
tion. We measure the textual similarity between two logging statements by calculating the
Levenshtein distance ratio (Levenshtein 1966) between their concatenation of static text and
variable names. Two logging statements are considered similar if the Levenshtein distance
ratio between them is larger than a specified threshold for which we choose 0.5 in this paper
(see Section 6 for a sensitivity analysis of the impact of this threshold on the identification
of log modifications).

4 Case Study Result

In this section, we present the results of our research questions. For each research question,
we present the motivation of the research question, the approach that we used to address the
research question, and our experimental results.

4.1 RQ1: What are the Reasons for Changing Logging Statements?

4.1.1 Motivation

Before proposing an approach that can provide just-in-time suggestions for log changes,
we first conduct a manual study in order to investigate the reasons for changing logging
statements. Our manual observation will assist us in defining appropriate measures that we
can use later on to build models to provide just-in-time suggestions for log changes when
developers commit code changes.

10http://commons.apache.org/proper/commons-logging
11http://logging.apache.org/log4j/2.x
12http://www.slf4j.org
13http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/log change regex.zip

http://commons.apache.org/proper/commons-logging
http://logging.apache.org/log4j/2.x
http://www.slf4j.org
http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/log_change_regex.zip

Empir Software Eng (2017) 22:1831–1865 1839

4.1.2 Approach

There is a total of 32,480 logging statement changes in the studied commits of the four stud-
ied projects (9,503 for Hadoop, 11,883 for DirectoryServer, 2,333 for HttpClient and 8,761
for Qpid). Each commit may contain multiple logging statement changes. We randomly
selected a statistically representative sample (95 % confidence level with a ±5 % confi-
dence interval) of 380 log changes. Among the 380 log changes, there are 204 log additions,
91 log modifications, and 85 log deletions. We manually examine the possible reasons for
these log changes. For each log change, we check the log change itself, the co-changed
code, the commit message, and the associated issue report if an issue id is noted in the com-
mit message. Certain log change reasons (e.g., a typo) can be detected by only looking at
the log change itself. Examining the co-changed code can help us determine the log change
reasons such as “a logging statement is changed because the logged variables are changed”.
The commit message and the issue report directly communicate the intention of the devel-
oper and the issue owner for a log change. The first and second author of this paper work
together by manually examining all log changes from the random sample. We examine the
log change, code change, commit message and the associated issue report to understand the
reason of a log change. If the reason is new, we add it to the list of identified reasons. If
there is a disagreement during the process, the two authors discuss and reach a consensus.

Table 2 Log-change reasons and the distribution: manual analysis result

Reason
category

Log change reason Log
change
number

Log
change
type

Total log
change
number

block change

adding/deleting try-catch block 80 add,delete

260

adding/deleting method 69 add,delete

adding/deleting branch 52 add,delete

adding/deleting if-null branch 49 add,delete

adding/deleting loop 10 add,delete

log
improvement

improving debugging capability 19 add,modify

63

improving readability 13 add,modify

leveraging message translation 11 modify

improving runtime information 9 add,modify

redundant log information 6 delete

log library migration 4 modify

security issue 1 delete

dependence-
driven
change

logger change 20 modify

39

variable change 14 modify

method change 2 modify

class change 2 modify

dependence removal 1 modify

logging issue

inappropriate log level 13 modify

18inappropriate log text 4 modify

incorrect message translation 1 modify

1840 Empir Software Eng (2017) 22:1831–1865

4.1.3 Results

We Find 20 Reasons for log Changes Across Four Categories: Changing Context
Code, Improving Logging, Dependency-Driven Changes and Fixing Logging
Issues Table 2 summarizes the log change reasons. We present below the four categories
of reasons for log changes.

Block Change Logging statements are added (or deleted) as a result of the change of
the surrounding code blocks. According to our manual analysis, logging statements are
added (or deleted) when developers are adding (or deleting) try-catch blocks, adding
(or deleting) methods, adding (or deleting) branches (if branches and switch branches),
adding (or deleting) if-null branches (if branches checking an abnormal condition), and
adding (or deleting) loops (for loops and while loops). For example, the following code
snippet indicates that a logging statement is added to record the error information as
part of the newly added try-catch block. (Note: the plus sign (+) or minus sign (-)
leading a code line indicates that the code line is added or deleted in that particular
commit.)

Log Improvement Logging statements are added, deleted or modified to achieve a better
logging practice. Developers change logging statements (e.g., by adding a logging state-
ment which tracks the value of a variable) to improve the debugging capability of the
logged information. They also change a logging statement to improve the readability of the
logged information; for example, they rephrase a logging statement such that the log mes-
sage would be easier to understand. Some logging statements are changed to leverage log
message translation method (i.e., using predefined code such as “I18n.ERR 115” to repre-
sent a log message). Developers also change logging statements, for example, by adding
a logging statement to record the occurrence of an event, to improve the logged runtime
information. Removing redundant log information is another way to improve the logging
of a system; the redundant log information includes duplicated log information and unnec-
essary log information. Developers sometimes improve their logging by migrating from an
old logging style (e.g., “System.out”) to a more advanced logging library (e.g., Log4j) (i.e.,
log library migration (Kabinna et al. 2016)). Finally, we also find that a logging statement is
removed because of a security issue that is mentioned in the associated issue report. The fol-
lowing code listing shows that a logging statement is added to a method in order to enhance

Empir Software Eng (2017) 22:1831–1865 1841

the debugging capability. The commit message states that the developer added “some extra
debug log entries for the authentication process”.

Dependence-Driven Change Logging statements are changed because they depend on
other code elements (e.g., variables) that are changed by developers. A log change might
be driven by the change of a logger (i.e., an class object that is used to invoke a logging
method), a variable, a method or a class. We also find that a logging statement is changed to
remove its dependence to a different module to remove the coupling between modules. The
following examples shows that a logging statement is modified because the method (“Datan-
odeID:getName”) that it depended on has been replaced by a new method (“toString”).
The reason of the log changes is recorded in the commit message and the associated issue
report.14

Logging Issue Logging statements are modified because issues (e.g., defects) are discov-
ered in the existing logging statements. Some logging statements are modified due to an
inappropriate log level. Some logging statements are modified because the old logging state-
ment has an inappropriate log text (e.g., a typo). We also find a log change which is caused
by an incorrect log message translation. In the following example, the level of a logging
statement is downgraded from info to debug because the info level caused too much noise,
as noted in the commit message.

14https://issues.apache.org/jira/browse/HDFS-3144

https://issues.apache.org/jira/browse/HDFS-3144

1842 Empir Software Eng (2017) 22:1831–1865

The Manually Identified Reasons for log Changes Assist us in Defining Measures
to Model the Drivers for log Changes. The log change reasons in the block change cat-
egory motivate us to consider measures that capture the changes in the commit itself. These
measures may include the number of changed method declarations, try-catch, if/if-null,
and for/while statements in a commit. The log change reasons from the dependence-
driven change category also suggest us to consider measures that capture the changes in
the commit itself, since the code elements that a logging statement depends on might
get changed in the commit. The log change reasons from the categories of log improve-
ment and logging issue suggest that we should consider measures that capture the current
snapshot of the source code, such as log density, number of logs, average log length, aver-
age log level, average number of log variables and complexity measures. The log change
reasons from the dependence-driven change category also motivate us to consider mea-
sures that capture the current snapshot of the source code, as logging statements with
higher dependence on other source code (e.g., more log variables) are more likely to be
changed.

4.2 RQ2: How well can we Provide Just-in-Time log Change Suggestions?

4.2.1 Motivation

We want to provide developers with just-in-time suggestions on whether a log change (log
addition, log deletion, or log modification) is needed when they are changing the code.
We need a classifier that can tell whether a code commit should contain log changes. By
evaluating the accuracy of the classifier, we can understand whether developers can depend
in practice on the suggestions that can be provided by our approach.

Empir Software Eng (2017) 22:1831–1865 1843

4.2.2 Approach

We use random forest classifiers to provide just-in-time suggestions for log changes. A
random forest classifier models a binary response variable which measures the likelihood
of a log change occurring in a particular code commit.

In order to model the drivers for log changes, we extract and calculate a set of mea-
sures from three dimensions: change measures, historical measures, and product measures.
Table 3 presents a list of measures that we collect for each dimension. Table 3 also describes
our proposed measures and explains our motivation behind each measure. We build classi-
fiers at the granularity of a code commit, thus we calculate all of our proposed measures for
very commit during the studied development history. We describe below each dimension of
measures:

– Change measures capture the changes in the commit itself, represented by the changes
of control flow statements (e.g., try statement, if statement), and the type of a com-
mit (commit type, Bug/Improvement/New Feature/Task/Subtask/Test). We choose the
change measures according to our manual analysis results. As shown in the results
of RQ1, most log changes are accompanied with contextual code changes (i.e., block
change and dependence-drive change). For example, adding/deleting try-catch block is
one of the most frequent reasons for a log change. The commit type captures the con-
text or purpose of the code change; we use the “type” field of the JIRA issue report that
is linked to the commit.

– Historical measures capture the code changes throughout the development history
(before the considered commit) of the changed files. Based on our intuition, source
code files undergoing frequent log changes in the past may have log changes in the
future. Besides, prior research shows that files with high churn rate are more defect-
prone (Nagappan et al. 2006; Nagappan and Ball 2007), and developers are likely to
add more logs in defect-prone source code files (Shang et al. 2015).

– Product measures capture the current snapshot of the source code, represented by
the status of logging statements and other source code, of the software system just
before the considered commit. For example, log number and log density capture the
log-intensiveness of the changed code. Our manual analysis in RQ1 shows that many
log changes are committed to improve existing logging (i.e., the log improvement rea-
sons) or fix logging issues (i.e., the logging issue reasons). Thus the code changes on
log-intensive code are more likely to involve log changes. In addition, based on our
intuition, the appropriateness of logging statements should be related to their contex-
tual source code. Therefore, we also calculate several product measures that capture
the contextual source code of logging statements (i.e., SLOC, McCabe complexity and
fan-in).

For the if statement measure from the dimension of change measures, we do not consider
if statements that act as logging guards. An example of such if statements is the one listed
below:

1844 Empir Software Eng (2017) 22:1831–1865

Table 3 Software measures used to model the drivers for log changes, measured per each commit

Dimension Measures Definition (d) — Rationale (r)

Change class declaration d: Number of changed class declarations in the commit.

measures r: Developers might add logging statements in a new class so

that they can better observe the behavior of the class.

method declaration d: Number of changed method declarations in the commit.

r: Developers might add logging statements in a new method

so that they can better observe the behavior of the method.

try statement d: Number of changed try statements in the commit.

r: Logging statements often reside inside try blocks; hence

logging statements are likely to co-change with try statements.

catch clause d: Number of changed catch clauses in the commit.

r: Exception catching code is often logged

(Yuan et al. 2012b; Fu et al. 2014; Zhu et al. 2015); hence

logging statements are likely to co-change with catch clauses.

throw statement d: Number of changed throw statements in the commit.

r: A logging statement is often inserted right before a throw

statement (Fu et al. 2014); hence developers changing a throw statement

are likely to change the corresponding logging statement.

throws clause d: Number of method definitions with throws clauses

(which declare that a method can throw exceptions) changed in the commit.

r: Methods that throw exceptions are likely to have logging

statements; thus logging statements might co-change with throws clauses.

if statement d: Number of changed if statements in the commit.

r: Logging statements are usually inside if branches

(Fu et al. 2014; Zhu et al. 2015);

thus logging statements are likely to co-change with if statements.

if-null statement d: Number of changed if-null statements (if statements with

null condition, e.g., “if (outcome == NULL)”) in the commit.

r: if-null branches are usually corner-case execution paths

which are likely to be logged (Fu et al. 2014; Zhu et al. 2015);

thus logging statements

might co-change with if-null blocks.

else clause d: Number of changed else clauses in the commit.

r: Logging statements are usually inside if-else branches

(Fu et al. 2014; Zhu et al. 2015);

thus logging statements are likely to co-change with else clauses.

for statement d: Number of changed for statements in the commit.

r: Logging statements inside for loops usually record the execution

path or status of the for loops; hence these logging statements are likely

to co-change with the for statements.

while statement d: Number of changed while statements in the commit.

r: Logging statements inside while loops usually record the

Empir Software Eng (2017) 22:1831–1865 1845

Table 3 (continued)

Dimension Measures Definition (d) — Rationale (r)

execution path or status of the while loops; hence these logging

statements are likely to co-change with the while statements.

commit type d: Change type of the commit: Bug/Improvement/New Feature/

Task/Subtask/Test.

r: Change type characterized the context of a code change,

thus it might affect developers’ logging behavior.

Historical log churn d: Number of changed logs in the development history of the

measures in history involved files.

r: Files experiencing frequent log changes in the past might

expect frequent log changes in the future.

log churn ratio d: Ratio of the number of changed logging statements to the

in history number of changed lines of code in the development history of

the involved files.

r: Files experiencing frequent log changes in the past are

likely to exhibit frequent log changes in the future.

log-changing d: Number of commits involving log changes in the development

commits history of the involved files.

in history r: Files experiencing frequent log changes in the past are likely

to exhibit frequent log changes in the future.

code churn d: Number of changed lines of code in the development history

in history of the involved files.

r: Frequently changed code are problem-prone thus are more

likely to be logged.

commits d: Number of commits in the development history of the

in history involved files.

r: Frequently changed code are problem-prone thus are more

likely to be logged.

Product log number d: The number of logging statements in the files that are

measures involved in the commit.

r: Code snippets with more logging statements are more likely

to require frequent log changes.

log density d: The density of logging statements in the files that are in-

volved in the commit, calculated by dividing the total number

of logging statements by the lines of source code across all the

involved files.

r: Issues with the existing logging statements might cause log

changes. Thus code snippets with denser logging statements

are more likely to require log changes.

average log length d: Average length of the existing logging statements in the

changed files.

1846 Empir Software Eng (2017) 22:1831–1865

Table 3 (continued)

Dimension Measures Definition (d) — Rationale (r)

r: Longer logging statements are more likely to require contin-

uous maintenance.

average log level d: Average level of the existing logging statements in the

changed files. Obtained by quantifying the log levels into

integers and calculating the average.

r: Logs with a lower verbosity level might get changed more

often since they are more likely to be used for debugging.

average log variables d: Average number of variables in the existing logging statements

in the changed files.

r: Logs with more variables are likely more coupled with the

code, hence they may be changed more often.

SLOC d: Number of source lines of code in the changed files.

r: Large source files are likely to have more logging statements,

thus they get more chances for log changes.

McCabe d: McCabe’s cyclomatic complexity of the changed files.

complexity r: Complex source files are likely to have more logging points,

thus they are more likely to exhibit log changes.

fan-in d: The number of classes that depend on (i.e., reference) the

changed code.

r: Classes with a high fan-in, such as library classes, tend

to have less logging statements.

Correlation Analysis Prior to constructing the classifiers for log changes, we check the
pairwise correlation between our proposed measures using the Spearman rank correlation
test (ρ). Specifically, we use the “varclus” function in the “Hmisc” R package to cluster
measures based on their Spearman rank correlation. We choose the Spearman rank corre-
lation method because it is robust to non-normally distributed data (McIntosh et al. 2014).
In this work, we choose the correlation value 0.8 as the threshold to remove collinearity. In
other words, if the correlation between a pair of measures is greater than 0.8 (|ρ| > 0.8),
we keep one of the two measures in the classifier. We find that the measures that are listed
in Table 3 present similar patterns of correlation across all four studied projects, thus we
drop (i.e., do not consider in the classifier) the same measures for all the studied projects.
Dropping the same set of measures for the projects enables us to build cross-project clas-
sifiers as discussed in the “Cross-project Evaluation” part that follows. We combine the
data of the four projects together and perform correlation analysis on the combo data.
Figure 2 shows the result of the correlation analysis on the combo data, where the horizon-
tal bridge between each pair of measures indicates the correlation, and the red dotted line
represents the threshold value (0.8 in this case). The results of our correlation analysis on
each individual project can be downloaded at a public link.15 To ease the interpretation of
the classifier, we try to keep the one that is easier to understand and calculate from each pair
of highly-correlated measures. For example, the SLOC and McCabe complexity measures

15http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/correlation.zip

http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/correlation.zip

Empir Software Eng (2017) 22:1831–1865 1847

th
ro

w
s

cl
au

se
w

hi
le

 s
ta

te
m

en
t

th
ro

w
 s

ta
te

m
en

t
ca

tc
h

cl
au

se
tr

y
st

at
em

en
t

cl
as

s
de

cl
ar

at
io

n
m

et
ho

d
de

cl
ar

at
io

n
fo

r
st

at
em

en
t

el
se

 c
la

us
e

if
st

at
em

en
t

if−
nu

ll
st

at
em

en
t

av
er

ag
e

lo
g

le
ng

th
lo

g
ch

ur
n

ra
tio

 in
 h

is
to

ry
lo

g
de

ns
ity

av
er

ag
e

lo
g

va
ria

bl
es

av
er

ag
e

lo
g

le
ve

l
fa

n−
in

lo
g

nu
m

be
r

lo
g

ch
ur

n
in

 h
is

to
ry

lo
g−

ch
an

gi
ng

 c
om

m
its

 in
 h

is
to

ry
S

LO
C

M
cC

ab
e

co
m

pl
ex

ity
co

m
m

its
 in

 h
is

to
ry

co
de

 c
hu

rn
 in

 h
is

to
ry

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
ρ

Fig. 2 Correlation analysis using Spearman hierarchical clustering (for the combo data)

have a correlation higher than 0.8, we keep the SLOC measure and drop the McCabe com-
plexity measure. Based on the result shown in Fig. 2, we drop the following measures: log
churn in history, log-changing commits in history,McCabe complexity, commits in history,
log churn ratio in history, try statement and if-null statement, as they are highly correlated
with other measures.

Modeling Technique We build random forest classifiers to model the drivers for log
changes. A random forest is a classifier consisting of a collection of decision tree classi-
fiers and each tree casts a vote for the most popular class for a given input (Breiman 2001).
Random forests construct each tree using a different bootstrap sample (i.e., if the number
of instances in the training set is N , randomly sample N instances with replacement) of
the input data as the training set. The random forest classifier uses a bootstrap approach
internally to get an unbiased evaluation of the performance of a classifier (Breiman 2001).
In addition, unlike standard decision trees where each decision node is split using the best
split among all variables, random forests split each node using the best among a randomly
chosen subset of variables from each of the constructed trees (Liaw and Wiener 2002). Ran-
dom forests are naturally robust against overfitting, and they perform very well in terms of
accuracy (Breiman 2001). Random forest provides us a way to do sensitivity analysis on the
measures so that we can understand the most influential factors in our classifiers (Breiman
2002; Liaw and Wiener 2002). Besides, a recent study (Ghotra et al. 2015) compares 31

1848 Empir Software Eng (2017) 22:1831–1865

classifiers in software defects prediction and suggests that Random Forest outperforms other
classifiers.

Within-Project Evaluation We build a random forest classifier to determine the like-
lihood of a log change for each commit based on the development history prior to that
particular commit. Specifically, for each commit, we build a random forest classifier using
all the prior commits as training data, and use the classifier to determine whether a log
change is needed for that particular commit. A classification result can be “true” (i.e., the
likelihood of a log change is higher than 0.5) or “false” (i.e., the likelihood of a log change is
lower than 0.5). A “true” classification result suggests the need of log changes in that code
commit, while a “false” classification result suggests that no log change is needed for that
commit. Then, we update the classifier with the new commit and use the updated classifier
to determine the likelihood of a log change for the following commit, and so on. Evaluating
the classification result for a commit can have one of four outcomes: TP - true positive, FP
- false positive, FN - false negative, and TN - true negative. The outcomes are illustrated in
the confusion matrix that is shown in Table 4.

We use balanced accuracy (BA) as prior research (Zhu et al. 2015) to evaluate the perfor-
mance of our within-project evaluation. BA averages the probability of correctly identifying
a log-changing commit and the probability of correctly identifying a non-log-changing com-
mit. BA is widely used to evaluate the modeling results on imbalanced data (Zhu et al. 2015;
Cohen et al. 2004; Zhang et al. 2005), because it avoids over-optimism on imbalanced data.
BA is calculated by (1):

BA = 1

2
× T P

T P + FN
+ 1

2
× T N

FP + T N
(1)

We determine the likelihood of a log change for each commit throughout the lifetime of
a project, using a random forest classifier that is trained from all the prior commits of the
same project, and get an outcome that is represented by one of TP, FP, FN and TN. We train
the first classifier for each project when there are 50 commits in the development history;
in other words, we evaluate our first classifier on the 51st commit. For each project, we sum
up the TP, FP, FN and TN for all commits (except for the first 50 commits) and apply (1)
to calculate the overall performance of our just-in-time suggestions that is represented by
a BA. Moreover, in order to observe the evolution of our classifier’s performance over the
lifetime of each project, we use a “sliding window” technique to calculate the BA for each
commit. Specifically, the “sliding window” of a particular commit contains 101 consecutive
commits, including 50 preceding commits, the commit itself, and 50 following commits. In
order to get the BA for the particular commit, we sum up the TP, FN, TN and FP in the
“sliding window” and then calculate the averaged BA using (1). Each time we move the
sliding window forward by one commit to calculate the BA for the next commit. The BA
for each commit that is calculated from the “sliding window” enables us to examine the
stability of the performance of our just-in-time suggestions, and whether the suggestions

Table 4 Confusion matrix for
the classification results of a
commit

Actual

Logging Non-logging

Classified Logging TP FP

Non-logging FN TN

Empir Software Eng (2017) 22:1831–1865 1849

are accurate when there are only a small number of commits available to train a classifier at
the start of a project.

Cross-Project Evaluation Since small projects or new projects might not have enough
history data for log change classification, we also evaluate our classifiers’ performance in
cross-project classification. We train a classifier using a combo data of N − 1 projects (i.e.,
the training projects), and use the classifier to determine the likelihood of a log change for
each of the commits of the remaining one project (i.e., the testing project).

We evaluate the BA of the cross-project classifiers. For each testing project, we sum up
the TP, FN, TN and FP that are computed from determining the likelihood of a log change
of all the commits of the project, and apply (1) to calculate the BA.

We also use the area under the ROC curve (AUC) to evaluate the performance of the
cross-project classifiers. While the BA measures our classifiers’ accuracy in log change
classification, the AUC evaluates how well our classifiers can discriminate log-changing
commits and non-log-changing commits. The AUC is the area under the ROC curve which
plots the true positive rate (T P/(T P +FN)) against false positive rate (FP/(FP +T N)).
The AUC ranges between 0 and 1. A high value for the AUC indicates a high discriminative
ability of the classifiers; an AUC of 0.5 indicates a performance that is no better than random
guessing.

To avoid the unbalanced number of commits for each project in the training data, we
leverage up-sampling to balance the training data such that each project has the same num-
ber of entries in the training data. Specifically, we keep unchanged the largest training
project in the training data; while we randomly up-sample the entries of the other training
projects with replacement to match the number of entries of the largest training project. In
order to reduce the non-determinism caused by the random sampling, we repeat the “up-
sampling - training - testing” process for 100 times and calculate the average BA and AUC
values.

4.2.3 Results

Our Random Forest Classifiers can Effectively Provide Just-in-Time Suggestions
for log Changes Using Historical Data from the Same Project The overall BA values
when considering all commits in Hadoop, DirectoryServer, HttpClient, and Qpid are 0.76,
0.83, 0.77, 0.77, respectively (see Table 5). Figures 3, 4, 5 and 6 illustrate the within-project
classification results using the “sliding window” technique for Hadoop, DirectoryServer,
HttpClient, and Qpid, respectively. For each figure, the horizontal axis denotes the commit
index while the vertical axis shows the BA value. The black solid curve plots the BA value
at each commit, and the red dashed line indicates an average BA over all the commits of the
project. These figures show that our random forest classifiers achieve an average BA of 0.76

Table 5 The BA results for the
within-project evaluation Project Sliding window Overall BA

Average BA 5 % BA 95 % BA

Hadoop 0.76 0.68 0.82 0.76

DirectoryServer 0.82 0.71 0.92 0.83

HttpClient 0.77 0.66 0.83 0.77

Qpid 0.77 0.68 0.88 0.77

1850 Empir Software Eng (2017) 22:1831–1865

Commit number: 209

 Average BA: 0.76

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Commit number

B
A

Fig. 3 The balanced accuracy of the within-project classifiers for Hadoop

to 0.82. In other words, given a commit, our classifiers can tell whether this commit should
change logging statements or not, with an average accuracy of 0.76 to 0.82. Table 6 presents
the detailed TP, FN, TN, and FP numbers that are used to calculate the overall BAs using
(1). Taking the Hadoop project for example, among the 1,541 actual logging commits (TP
+ FN), 76 % (1,166) of them are correctly classified as logging commits, and 24 % (375) of
them are incorrectly classified as non-logging commits; among the 3,718 actual non-logging
commits (TN + FP), 76 % (2,822) of them are correctly classified as non-logging commits,
and 24 % (896) of them are incorrectly classified as logging commits. On average, training
such a random forest classifier for a large system like Hadoop on a workstation (Intel i7
CPU, 8G RAM) takes about 2 seconds, and classifying the log changes for a particular
commit takes about 0.02 seconds. For each commit, we would only need to perform the
classification step in real-time, while the training can be done offline. These results indicate
that our within-project classifiers can effectively provide just-in-time suggestions for log
changes.

Our Classifier Achieve the Average Balanced Accuracy with a Small Number of
Commits as Training Data We measure when a project accumulates sufficient commit
data to train a classifier that reaches the average performance in terms of BA. In Figs. 3,
4, 5 and 6, we’ve marked the commit number where each classifier reaches its average BA
for the first time. We find that the within-project classifiers for Hadoop, DirectoryServer,
HttpClient, and Qpid reach their average BAs when the projects got 209, 193, 211 and
155 commits, respectively. The results indicate that the classifiers can learn an average
classification power after a relatively small number of commits.

The Performance of our Classifiers Fluctuates Over Time As shown in Fig. 3
through 6, the performance (in terms of the BA) of the within-project classifiers fluctu-
ates over time, and the fluctuation does not follow any clear trend. These results might be
explained by the assumption that developers follow different logging practices at different
development stages. For example, developers might be less focused on logging at the begin-
ning of a release cycle and might pay more attention on logging when a product is approach-
ing its release (and final testing is being performed on it). Table 5 shows the average BA, 5
percentile BA and 95 percentile BA for the within-project classifiers over time. Only 5 % of
the commits get a BA smaller than 0.68, 0.71, 0.66 and 0.68 for Hadoop, DirectoryServer,

Empir Software Eng (2017) 22:1831–1865 1851

Commit number: 193

 Average BA: 0.82

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Commit number

B
A

Fig. 4 The balanced accuracy of the within-project classifiers for DirectoryServer

HttpClient, and Qpid, respectively. And 5 % commits get a BA bigger than 0.82, 0.92, 0.83
and 0.88, respectively.

Our Random Forest Classifiers can Effectively Provide Just-in-Time Suggestions
for log Changes Using the Development History of Other Projects Table 7 lists the
performance of the cross-project classifiers, expressed by the BA and the AUC measures.
Each row of the table shows the performance of the classifier that uses the specified project
as testing data and all the other projects as training data. The cross-project classifiers reach
a BA of 0.76 to 0.80, indicating that the cross-project classifiers can effectively determine
the likelihood of a log change for each commit of a project with little development history.

Our Random Forest Classifiers can Effectively Discriminate log-Changing Com-
mits and non-log-Changing Commits As shown in Table 7, the cross-project classifiers
achieve an AUC of 0.84 to 0.88. The high AUC values indicate that the classifiers per-
form much better than random guessing in discriminating the log-changing commits and
non-log-changing commits.

Cross-Project Classification and within-Project Classification Achieve Similar
Performance The within-project classifiers achieve an average BA of 0.76, 0.82, 0.77,

Commit number: 211

 Average BA: 0.77

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600 700 800 900

Commit number

B
A

Fig. 5 The balanced accuracy of the within-project classifiers for HttpClient

1852 Empir Software Eng (2017) 22:1831–1865

Commit number: 155
 Average BA: 0.77

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500
Commit number

B
A

Fig. 6 The balanced accuracy of the within-project classifiers for Qpid

0.77 for Hadoop, DirectoryServer, HttpClient, and Qpid, respectively; while the cross-
project classifiers reach a BA of 0.76, 0.80, 0.79 and 0.78 for these four projects,
respectively. These results show that developers of a new software project that do not have
a large amount of development history can leverage classifiers that are built from other
projects to provide just-in-time log change suggestions.

4.3 RQ3: What are the Influential Factors that Explain log Changes?

4.3.1 Motivation

In order to quantitatively understand the reasons for log changes, we analyze the random
forest classifiers to find out the most influential factors that are associated with log changes.
There are three types of log changes: log additions, log deletions, and log modifications. The
influential factors for log changes, log additions, log deletions and log modifications may
be different. Therefore, we analyze the influence of factors for log changes, log additions,
log deletions, and log modifications, separately. From our manual analysis in RQ1, we find
that the occurrences of deleting a logging statement is usually associated with deleting the

Table 6 The TP, FN, TN, FP
results for the within-project
evaluation

Project TP FN TN FP

Hadoop 1,166 375 2,822 896

DirectoryServer 907 167 2,998 721

HttpClient 193 50 490 161

Qpid 664 196 2,006 575

Empir Software Eng (2017) 22:1831–1865 1853

Table 7 The BA and AUC
results for the cross-project
evaluation

Project BA AUC

Hadoop 0.76 0.84

DirectoryServer 0.80 0.88

HttpClient 0.79 0.87

Qpid 0.78 0.86

enclosing code block (see Table 2). Therefore, we do not analyze the factors that influence
log deletions.

4.3.2 Approach

Bootstrap Analysis In order to study the influential factors that affect log changes, we use
the bootstrap method to repeatedly sample training data and build a large number of random
forest classifiers, so as to statistically analyze the influence of the factors. Bootstrap (Efron
1979) is a general approach to infer the relationship between a sample data and the overall
population, by resampling the sample data with replacement and analyzing the relationship
between the resample data and the sample data. The bootstrap analysis is implemented in
the following steps:

– Step 1. From the original dataset with N instances, we choose a random bootstrap
sample of N instances with replacement.

– Step 2. We build a random forest classifier using the bootstrap sample.
– Step 3. We collect the influence of each factor in the classifier.
– Step 4. We repeat the above steps 1,000 times.

By repeatedly using the bootstrap samples to analyze the influence of the factors, we can
avoid the bias that might be caused by a single round of modeling analysis.

Variable Influence in Random Forest The random forest classifier evaluates the influ-
ence of each factor by permuting the values of the corresponding measure of that factor
while keeping the values of the other factors unchanged in the testing data (the so-called
“OOB” data) (Breiman 2001). The classifier measures the impact of such a permutation on
the classification error rate (Breiman 2002; Liaw and Wiener 2002). In each round of the
1,000 bootstraps, we use the “importance” function in the R package “randomForest” to
evaluate the influence of the factors.

Scott-Knott Clustering In this step, we compare the average influence of the factors from
the 1,000 bootstrap iterations. However, the differences among the influence of some factors
might actually be due to random variability. Thus we need to partition all the factors into
statistically homogeneous groups so that the influence means of the factors within the same
group are not significantly different (i.e, p value ≥ 0.05). The Scott-Knott (SK) algorithm
is a hierarchical clustering approach that can partition the results into distinct homogeneous
groups by comparing their means (Scott and Knott 1974; Jelihovschi et al. 2014). The SK
algorithm hierarchically divides the factors into groups and uses the likelihood ratio test to
judge the significance of difference among the groups. The SK method generates statisti-
cally distinct groups of factors, i.e., each two groups of factors have a p value < 0.05 in a
likelihood ratio test of their influence values.

1854 Empir Software Eng (2017) 22:1831–1865

Table 8 The influence mean of the top 10 factors (measures) for the log change classifier, divided into
distinct homogeneous groups by Scott-Knott clustering

Hadoop Directory Server

Group Factor Influence Mean Group Factor Influence Mean

1 log density 0.149 1 catch clause 0.169

2 if statement 0.135 if statement 0.169

3 catch clause 0.122 2 log density 0.134

4 log number 0.107 3 throw statement 0.125

5 method declaration 0.072 4 method declaration 0.085

6 average log length 0.069 5 log number 0.080

7 average log variables 0.068 6 average log variables 0.076

8 average log level 0.066 7 SLOC 0.072

9 SLOC 0.062 8 else clause 0.068

10 else clause 0.061 9 average log length 0.065

HttpClient Qpid

1 if statement 0.119 1 log density 0.155

2 log density 0.081 2 catch clause 0.125

log number 0.080 3 method declaration 0.095

3 average log length 0.074 log number 0.095

4 average log level 0.072 4 if statement 0.094

5 average log variables 0.066 5 average log level 0.082

6 method declaration 0.060 6 average log variables 0.073

7 catch clause 0.057 7 else clause 0.069

8 code churn in history 0.052 8 average log length 0.064

SLOC 0.051 9 SLOC 0.057

In this work, we use an enhanced SK approach (Tantithamthavorn et al. 2016), which
considers the effect size in addition to the statistical significance of the difference between
groups, to divide the factors into distinct groups according to their influence in the random
forest classifiers.

We repeat our approach (bootstrap analysis, variable influence and Scott-Knott cluster-
ing) for the log addition classifier and the log modification classifier to study the most
influential factors for log additions and log modifications respectively.

We also compare the influential factors with the log change reasons that we observed in
our manual analysis step in RQ1. The connections between the two outcomes help us better
understand the reasons behind developers’ decision of changing logs.

4.3.3 Results

Change Measures and Product Measures are the Most Influential Factors for log
Changes Tables 8, 9 and 10 present the influence values of the 10 most influential predictor
variables for the log change classifier, the log addition classifier and the log modification
classifier, respectively. For each studied project, we measure the mean value of each factor’s
influence. The factors are divided into statistically distinct groups by a Scott-Knott test on
the influence values. Overall, the most influential factors in these classifiers include the if

Empir Software Eng (2017) 22:1831–1865 1855

Table 9 The influence mean of the top 10 factors (measures) for the log addition classifier, divided into
distinct homogeneous groups by Scott-Knott clustering

Hadoop Directory Server

Group Factor Influence Mean Group Factor Influence Mean

1 catch clause 0.152 1 catch clause 0.204

2 if statement 0.145 2 if statement 0.182

3 log density 0.141 3 throw statement 0.130

4 log number 0.102 4 log density 0.124

5 else clause 0.092 5 SLOC 0.096

6 average log level 0.079 6 else clause 0.087

7 method declaration 0.070 7 method declaration 0.086

8 SLOC 0.067 8 average log length 0.081

9 average log length 0.065 9 log number 0.070

10 fan-in 0.064 10 fan-in 0.066

HttpClient Qpid

1 if statement 0.121 1 catch clause 0.162

2 log density 0.091 2 log density 0.145

3 catch clause 0.085 3 if statement 0.103

4 throw statement 0.081 4 method declaration 0.091

log number 0.080 5 log number 0.088

5 average log level 0.071 6 average log variables 0.082

6 average log variables 0.066 7 average log level 0.073

average log length 0.064 8 else clause 0.071

7 throws clause 0.059 9 fan-in 0.065

8 method declaration 0.055 10 class declaration 0.064

statement (with a median group ranking of 2), catch clause (with a median group ranking of
3) andmethod declaration (with a median group ranking of 5) measures from the dimension
of change measures, as well as the log density (with a median group ranking of 2), log
number (with a median group ranking of 3.5), average log variables (with a median group
ranking of 6), average log length (with a median group ranking of 6.5) and average log level
(with a median group ranking of 6.5) measures from the dimension of product measures.

The strong influence of the measures from the change measures dimension indicates
that log changes are highly associated with other code changes, and this is in accordance
with the fact that the block change reasons are the most frequent reasons that we observed
in our manual analysis. In particular, the influence of the catch clause measure suggests
a strong association between exception handling and logging, and this matches with the
adding/deleting try-catch block reason that is observed in our manual analysis. This result
also quantitatively supports best practices recommendation that exception-handling code
should log the information that is associated with the exception being handled (Apache-
Commons 2016; Microsoft-MSDN 2016). The strong influence of the if statement and
if-null statement measures (if-null statement has a high correlation with if statement) shows
that developers tend to change logging statements while changing conditional branches,
and this corresponds to the adding/deleting branch and adding/deleting if-null branch rea-
sons that we observed in RQ1. As another influential factor from the change measures

1856 Empir Software Eng (2017) 22:1831–1865

Table 10 The influence mean of the top 10 factors (measures) for the log modification classifier, divided
into distinct homogeneous groups by Scott-Knott clustering

Hadoop Directory Server

Group Factor Influence Mean Group Factor Influence Mean

1 log density 0.191 1 log number 0.177

2 log number 0.160 2 log density 0.168

3 if statement 0.142 3 average log length 0.155

4 average log variables 0.106 4 if statement 0.117

5 method declaration 0.100 5 method declaration 0.109

6 average log length 0.097 6 average log variables 0.098

7 average log level 0.089 7 SLOC 0.092

fan-in 0.088 8 average log level 0.076

8 SLOC 0.084 9 fan-in 0.071

9 code churn in history 0.071 10 throw statement 0.063

HttpClient Qpid

1 log number 0.140 1 log density 0.184

2 if statement 0.110 2 log number 0.165

3 log density 0.096 3 if statement 0.106

average log variables 0.096 4 average log variables 0.101

4 method declaration 0.093 catch clause 0.101

5 average log level 0.091 5 average log level 0.095

6 SLOC 0.076 6 average log length 0.090

7 average log length 0.068 7 method declaration 0.087

8 code churn in history 0.058 8 SLOC 0.070

9 fan-in 0.047 9 fan-in 0.068

family, the method declaration measure suggest that the change of a method declaration is
strong indicator for log changes. Again, this result consents with manually detected reason
adding/deleting method.

The great influence of the measures from the product measures dimension implies that
the current snapshot of the source code impacts the logging decisions of developers. Specif-
ically, the log density and log number measures being influential factors indicates that log
changes occur more in code snippets with higher log density, and this agrees with our
manually-observed log improvement and logging issue reason categories; the influence of
the average log level, average log length and average log variablesmeasures shows that the
characteristics of the existing logging statements impact developers’ decision on whether to
change logs in a commit, which also corresponds to the manually detected reason categories
log improvement and logging issue.

ChangeMeasures are themost InfluentialMeasures for the log Addition Classifier,
while Product Measures are the Most Influential Ones for the log Modification
Classifier Developers tend to add logging statements when adding contextual code. The
current snapshot of the source code is the best indicator for log modifications. This result
agrees with the observations from our manual analysis that the most frequent reasons for
log additions are from the block change category, while the reasons for log modifications

Empir Software Eng (2017) 22:1831–1865 1857

are from the log improvement, dependence-drive change and the logging issue categories.
The catch clause (with a median group ranking of 1 in the log addition classifier) and if
statement (with a median group ranking of 2 in the log addition classifier) measures from
the change measures dimension play the most influential roles in the log addition classifier.
Developers tend to add logging statements when they are adding exception catching block
(catch) or dealing with a conditional branch. The log density and log numbermeasures (both
with a median group ranking of 1.5 in the log modification classifier) from the product
measures dimension are the most influential measures for the log modification classifier,
which means that log modifications occur more often in code snippets with high log density.

Different Projects Present Different log Change Practices The catch clause measure
is one of the most influential indicators for a log change in the Hadoop, Directory Server,
and Qpid projects, with a group ranking of 3, 1, and 2, respectively; however, the catch
clause measure is a less influential indicator for log changes in the HttpClient project (with
a group ranking of 7). This might imply that developers for the HttpClient project are less
likely to log exception-handling blocks; or it maybe because that there are significantly
less changes of catch clauses for the HttpClient project compared to other three projects.
However, the latter inference is unlikely since 18.5 % of the commits for the HttpClient
project contain changes to catch clauses, while that proportions are 21.0 %, 20.3 % and
27.5 % for the Hadoop, Directory Server, and Qpid projects, respectively.

For the log addition classifier, the throw statement measure shows much stronger
explanatory power in the Directory Server and HttpClient projects (with a group ranking
of 3 and 4, respectively) than that in the other two projects. This difference might indicate
that developers for the Directory Server and HttpClient projects are more likely to add log-
ging statements when they throw an exception; or it maybe due to the rareness of changes
of throw statement in the Hadoop and Qpid projects. Again, the latter inference is not
likely since the proportions of commits that contain changes to throw statement are 26.5 %
and 28.6 % for the Hadoop and Qpid projects, respectively, and these proportions for the
Directory Server and HttpClient projects are 25.8 % and 22.8 % respectively.

5 Discussion

Discussion Regarding log-Changing-Only Commits Our random forest classifiers
aim to provide developers with just-in-time log change suggestions when they commit code
changes. However, developers sometimes also change logging statements without affect-
ing other source code (we call such commits as log-changing-only commits). In such cases,
our approach cannot provide just-in-time log change suggestions. As shown in Table 11,
the log-changing-only commits take up 1.2 % to 4.2 % of all the commits that change log-
ging statements. By manually examining all these log-changing-only commits, we find that
a log-changing-only commit occurs when either 1) the developers have not correctly imple-
mented the needed logging statements in the first place, or 2) the requirements of logging

1858 Empir Software Eng (2017) 22:1831–1865

have changed afterwards. The following example shows that a logging statement was miss-
ing in an exception handling code, which increased the difficulty of finding the root cause
of a reported bug (i.e., QPID-1352.16) A log-changing-only commit (704187) added a log-
ging statement in the exception handling block so that “hopefully the next time it shows up
we have a bit more info”.

The commit listed below, in contrast, removes two logging statements which were pre-
viously inserted for debugging purposes, because the requirement of logging has changed:
they don’t need the debug message anymore.

Table 11 presents the number of log-changing-only commits that add, delete and modify
logging statements, respectively. 88 out of 129 (68.2 %) log-changing-only commits modify
existing logging statements, while 38 (29.5 %) of them add new logging statements. Devel-
opers are least likely to delete a logging statement without changing other source code:
only 24 (18.6 %) of the log-changing-only commits delete logging statements. If devel-
opers forget to add, delete or modify a logging statement, leading to a log-changing-only
commits afterwards, our approach would help developers avoid forgetting to change logs

16https://issues.apache.org/jira/browse/QPID-1352

https://issues.apache.org/jira/browse/QPID-1352

Empir Software Eng (2017) 22:1831–1865 1859

Table 11 Number of log-changing-only commits

Project Log-changing commits Log-changing-only commits

Change logs Add logs Del. logs Mod. logs

Hadoop 1621 68 (4.2 %) 20 9 49

Directory S. 1130 32 (2.8 %) 7 6 24

HttpClient 252 3 (1.2 %) 0 2 1

Qpid 908 26 (2.9 %) 11 7 14

Total 3911 129 (3.3 %) 38 24 88

in the first place. If current logging statements need to be fixed or improved, our approach
cannot provide such suggestion without the context of other code changes. In the studied
projects, however, the log-changing-only commits represent 1.2 % to 4.2 % of the commits
that change logging statements.

6 Threats to Validity

6.1 External Validity

The external threat to validity is concerned with the generalization of the results. In our
work, we investigated four open source projects that are of different domains and sizes.
However, since other software systems may follow different logging practices, the results
may not generalize to other systems. Further, we only analyze Java source code in this study,
thus the results may not generalize to systems that are developed in non-Java languages.

6.2 Internal Validity

The manual analysis for log change reasons is subjective by definition, and it is very diffi-
cult, if not impossible, to ensure the correctness of all the inferred log change reasons. We
classified the log change reasons into four categories; however, there may be different cat-
egorizations. Nevertheless, there is a strong agreement between the results of our manual
and automated analysis.

The random forest modeling results present the relation between log changes and a
set of software measures. The relation does not represent the casual effects of these mea-
sures on log changes. In order to learn log change reasons from the modeling results, we
link the influential factors in the random forest classifiers back to the manually detected
reasons while analyzing the importance factors in these classifiers. Future studies should
conduct longitudinal developer studies or interviews to further understand the rationale for
log changes.

In this study we only analyze Java source code. However, the project Qpid is developed
in multiple languages including Java, C++, C#, Perl, Python and Ruby. Although a large
percent of Qpid code (2,995 Java files out of totally 4,757 source code files) is developed in
Java, the results still can not fully represent its log change practices.

In this paper we learn developers’ logging practices in the past and leverage the learned
knowledge to provide suggestions for future log changes. Our study is based on the assump-
tion that these projects’ logging practices are appropriate and are good practices that future

1860 Empir Software Eng (2017) 22:1831–1865

changes should follow. However, the logging practices in these projects may not be always
appropriate. In order to avoid learning the bad practices, we choose several successful open
source projects which follow a strict code review process.

In this paper we study the development of logging statements in the source code.
However, we don’t consider whether these logging statements would actually output log
messages during the system execution (i.e., the dynamic impact). Whether a logging state-
ment can output log messages depends on various dynamic information such as: 1) whether
the path of the logging statement is executed; 2) whether the level of the logging statement
is turned on to print messages. Extending our paper by leveraging dynamic information is a
promising avenue for future work.

In the results of RQ3, we analyze the influential factors that impact the log changes.
The explanations are inferred based on the modeling results and our manual exploration
of log change reasons. However, they are not necessarily the actual causes that lead to log
changes, instead they are just possible explanations to the logging practices of the studied
projects.

6.3 Construct Validity

The construct threat is concerned with howwe identify log changes.We identify log changes
using a set of predefined regular expressions. The regular expressions may not identify all
the log changes. For example, developers may define their own logging functions which
are difficult to track. However, our approach can detect all the logging statements that
leverage the standard logging libraries with a precision of 100 %. Future studies might
consider using a static analysis approach. Nevertheless, a manual verification of the non-
standard (i.e., defined by developers themselves) logging functions will always be needed
since it is impossible to automatically determine whether a function is a logging wrapper
function.

We identify a log modification by calculating the Levenshtein distance ratio between
a pair of added and deleted logging statements. Two logging statements are considered
similar if the Levenshtein distance ratio between them is larger than a specified thresh-
old (L-threshold). In this paper, we choose an L-threshold value of 0.5 to identify a log
modification. However, this approach is not guaranteed to identify all log modifications. In
order to address this threat, we perform a sensitivity analysis to measure the impact of the
L-threshold value on the identification of log modifications for all the log changes in the
Hadoop project. Specifically, we change the L-threshold to 0.4 and 0.6 and examine the
difference of the identification results for these two thresholds. Table 12 shows summary
statistics of the identification results using the 0.4, 0.5 and 0.6 L-thresholds. We identify
1,861 log modifications using the 0.5 threshold; while we identify 1,932 (+3.8%) and 1,788
(−3.9 %) modifications for the 0.4 and 0.6 L-thresholds, respectively. The results show that
using a different L-threshold does not lead to a large change in the number of identified log
modifications.

We examine the amount of added logging statements that are classified differently
(i.e., classified as a log addition or a part of a log modification) when using different L-
thresholds. We find that there are only 248 out of 7,215 (3.4 %) added logging statements
that are classified differently using different L-thresholds. We manually examine these 248
added logging statements that are classified differently and identify which L-threshold can
accurately classify the added logging statements. We find that using 0.5 as a threshold
has the highest accuracy. In particular, 106 out of the 248 (42.7 %) added logging state-
ments that are classified differently are correctly classified by using the 0.4 threshold; 162

Empir Software Eng (2017) 22:1831–1865 1861

Table 12 L-threshold’s impact
on the identification of log
modifications (for the Hadoop
project). The values in the
brackets are the percentages of
difference when compared with
the 0.5 L-threshold

L-threshold log addition log deletion log modification

0.4 5,283 (−1.3 %) 2,217 (−3.1 %) 1,932 (+3.8 %)

0.5 5,354 2,288 1,861

0.6 5,427 (+1.4 %) 2,361 (+3.2 %) 1,788 (−3.9 %)

(65.3 %) of the added logging statements are correctly classified using the 0.5 threshold;
and 149 (60.1 %) of the added logging statements are correctly classified using the 0.6
threshold.

In this paper we choose 25 software measures (as listed in Table 3) based on our
manual analysis results and our intuition. However, there may be other measures, such
as OO measures (D’Ambros et al. 2012), that can assist in suggesting log changes.
Some feature learning techniques may also help improve the performance of our clas-
sifiers. As a first step of suggesting proper log changing practices, we aim to show
the benefit of leveraging historical information for providing log change suggestions
in the future. We expect more measures or feature learning techniques to be pro-
posed in follow-up research in order to provide more accurate classifiers to suggest log
changes.

This paper proposes an approach that can provide developers with suggestions on
whether to change a logging statement when they commit code changes. Future work may
include real developers’ feedback to better evaluate and further improve the usefulness of
our approach.

7 Conclusions

In this work, we leverage machine learning classifiers to provide just-in-time suggestions
for changing logs when developers commit code changes. We firstly manually investigate
a statistically representative random sample of log changes from four open source projects
Hadoop, Directory Server, Commons HttpClient, and Qpid, in order to understand the rea-
sons behind log changes. Based on the results of our manual analysis and our experiences,
we derive measures as input into random forest classifiers to model the drivers for log
changes. Our experimental results show that the random forest classifiers can accurately
provide just-in-time log change suggestions using a within and across projects evaluation.
Finally, we study which measures play influential roles in the models and thereby influence
log changing practices the most. Some of the key findings of our study are as follows:

– Log change reasons can be grouped along four categories: block change, log improve-
ment, dependence-driven change, and logging issue.

– Our random forest classifiers can provide accurate just-in-time suggestions for log
changes. The classifiers trained from historical data of the same project achieve a bal-
anced accuracy of 0.76 to 0.82; the classifiers trained from other projects reach a
balanced accuracy of 0.76 to 0.80 and an AUC of 0.84 to 0.88.

– Code changes in a commit and the current snapshot of the source code are the most
influential factors for determining the likelihood of a log change in a commit.

Our work provides insights about the reasons why developers change (add, modify or
delete) logging statements in their code. Inexperienced developers may learn from these

1862 Empir Software Eng (2017) 22:1831–1865

reasons to understand the current logging practice (e.g., the need to add logging statements
when changing catch blocks). Our findings also show that developer can leverage machine
learning models to guide their log changing practices.

References

Apache-Commons (2016) Apache commons logging user guide - best practices. http://commons.apache.org/
proper/commons-logging/guide.html

Bitincka L, Ganapathi A, Sorkin S, Zhang S (2010) Optimizing data analysis with a semi-structured time
series database. In: Proceedings of the 2010 Workshop on Managing Systems via Log Analysis and
Machine Learning Techniques, SLAML’10, pp 7–7

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L (2002) Manual on setting up, using, and understanding random forests v3.1. http://oz.berkeley.

edu/users/breiman/Using random forests V3
Cohen I, Goldszmidt M, Kelly T, Symons J, Chase JS (2004) Correlating instrumentation data to system

states: A building block for automated diagnosis and control. In: Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’ 04, pp 16–16

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a benchmark and an
extensive comparison. Empirical Software Engineering 17(4-5):531–577

Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26
Fu Q, Lou JG, Wang Y, Li J (2009) Execution anomaly detection in distributed systems through unstructured

log analysis. In: Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, ICDM
’09, pp 149–158

Fu Q, Lou JG, Lin Q, Ding R, Zhang D, Xie T (2013) Contextual analysis of program logs for understanding
system behaviors. In: Proceedings of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pp 397–400

Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? An empirical
study on logging practices in industry. In: Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion ’14, pp 24–33

Fukushima T, Kamei Y, McIntosh S, Yamashita K, Ubayashi N (2014) An empirical study of just-in-time
defect prediction using cross-project models. In: Proceedings of the 11thWorking Conference onMining
Software Repositories, MSR, vol 2014, pp 172–181

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-
mance of defect prediction models. In: Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pp 789–800

Glerum K, Kinshumann K, Greenberg S, Aul G, Orgovan V, Nichols G, Grant D, Loihle G, Hunt G (2009)
Debugging in the (very) large: Ten years of implementation and experience. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pp 103–116

Gülcü C, Stark S (2003) The complete log4j manual. QOS.CH, Lausanne, Switzerland
Jelihovschi EG, Faria JC, Allaman IB (2014) Scottknott: A package for performing the scott-knott clustering

algorithm in R. Trends in Applied and Computational Mathematics 15(1):3–17
Kabinna S, Bezemer CP, ShangW, Hassan AE (2016) Logging library migrations: a case study for the apache

software foundation projects. In: Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, pp 154–164

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Transactions on Software Engineering 39(6):757–773

Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE (2016) Studying just-in-time
defect prediction using cross-project models. Empir Softw Eng 21(5):2072–2106

Kavulya S, Tan J, Gandhi R, Narasimhan P (2010) An analysis of traces from a production mapreduce
cluster. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, CCGRID ’10, pp 94–103

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics
doklady 10(8):707–710

Liaw A, Wiener M (2002) Classification and regression by randomforest. R news 2(3):18–22
Mariani L, Pastore F (2008) Automated identification of failure causes in system logs. In: Proceedings of the

2008 19th International Symposium on Software Reliability Engineering, ISSRE ’08, pp 117–126

http://commons.apache.org/proper/commons-logging/guide.html
http://commons.apache.org/proper/commons-logging/guide.html
http://oz. berkeley. edu/users/breiman/Using_random_forests_V3
http://oz. berkeley. edu/users/breiman/Using_random_forests_V3

Empir Software Eng (2017) 22:1831–1865 1863

Mariani L, Pastore F, Pezze M (2009) A toolset for automated failure analysis. In: Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pp 563–566

McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review
participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR ’14, pp 192–201

Microsoft-MSDN (2016) Logging an exception. https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.
50).aspx

Nagappan N, Ball T (2007) Using software dependencies and churn metrics to predict field failures: An
empirical case study. In: Proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, ESEM ’07, pp 364–373

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: Proceedings of the
28th International Conference on Software Engineering, ICSE ’06, pp 452–461

Oliner A, Ganapathi A, Xu W (2012) Advances and challenges in log analysis. Commun ACM 55(2):55–61
Scott A, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics

30(3):507–512
Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2011) An exploratory

study of the evolution of communicated information about the execution of large software systems. In:
Proceedings of the 18th Working Conference on Reverse Engineering, WCRE ’11, pp 335–344

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014a) An exploratory study
of the evolution of communicated information about the execution of large software systems. J Soft:
Evolution and Process 26(1):3–26

Shang W, Nagappan M, Hassan AE, Jiang ZM (2014b) Understanding log lines using development
knowledge. In: Proceedings of the 30th IEEE International Conference on Software Maintenance and
Evolution, ICSME ’14, pp 21–30

Shang W, Nagappan M, Hassan AE (2015) Studying the relationship between logging characteristics and the
code quality of platform software. Empirical Softw Engg 20(1):1–27

Sharma B, Chudnovsky V, Hellerstein JL, Rifaat R, Das CR (2011) Modeling and synthesizing task place-
ment constraints in google compute clusters. In: Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pp 3:1–3:14

Syer MD, Jiang ZM, Nagappan M, Hassan AE, Nasser M, Flora P (2013) Leveraging performance counters
and execution logs to diagnose memory-related performance issues. In: Proceedings of the 29th IEEE
International Conference on Software Maintenance, ICSM ’13:, pp 110–119

Tantithamthavorn C, McIntosh S, Hassan A, Matsumoto K (2016) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng PP(99):1–1

Tourani P, Adams B (2016) The impact of human discussions on just-in-time quality assurance: An empir-
ical study on openstack and eclipse. In: Proceedings of the 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER ’16, pp 189–200

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining
console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pp 117–132

Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S (2010) Sherlog: Error diagnosis by connecting clues
from run-time logs. In: Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, vol XV, pp 143–154

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2011) Improving software diagnosability via log enhance-
ment. In: Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, vol XVI, pp 3–14

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S (2012a) Be conservative: Enhancing
failure diagnosis with proactive logging. In: Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, OSDI ’12, vol 12, pp 293–306

Yuan D, Park S, Zhou Y (2012b) Characterizing logging practices in open-source software. In: Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pp 102–112

Zhang S, Cohen I, Symons J, Fox A (2005) Ensembles of models for automated diagnosis of system per-
formance problems. In: Proceedings of the 2005 International Conference on Dependable Systems and
Networks, DSN ’05, pp 644–653

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: Helping developers make informed
logging decisions. In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pp 415–425

Zimmermann T, Weisgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software changes.
In: Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, pp 563–572

https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.50).aspx
https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.50).aspx

1864 Empir Software Eng (2017) 22:1831–1865

Heng Li is a PhD student in the Software Analysis and Intelligence Lab (SAIL) at Queen’s University,
Canada. He obtained his BE from Sun Yat-sen University, China, and MSc from Fudan University, China. He
worked at Synopsys as a full-time R&D Engineer before starting his PhD at Queen’s University. His research
interests lie within Software Engineering, in particular, software log analysis, mining software repositories,
and program analysis.

Weiyi Shang is an assistant professor in the Department of Computer Science and Software Engineering
at Concordia University, Montreal. His research interests include big-data software engineering, software
engineering for ultra-large-scale systems, software log mining, empirical software engineering, and software
performance engineering. Shang received a PhD in computing from Queen’s University, Canada. Contact
him at shang@encs.concordia.ca.

Empir Software Eng (2017) 22:1831–1865 1865

Ying Zou Ying Zou is the Canada Research Chair in Software Evolution. She is an associate professor in
the Department of Electrical and Computer Engineering, and cross-appointed to the School of Computing at
Queen’s University in Canada. She is a visiting scientist of IBM Centers for Advanced Studies, IBM Canada.
Her research interests include software engineering, software reengineering, software reverse engineering,
software maintenance, and service-oriented architecture. More about Ying and her work is available online
at http://post.queensu.ca/∼zouy.

Ahmed E. Hassan is a Canada Research Chair in Software Analytics and the NSERC/Blackberry Industrial
Research Chair at the School of Computing in Queen’s University. Dr. Hassan serves on the editorial board
of the IEEE Transactions on Software Engineering, the Journal of Empirical Software Engineering, and
PeerJ Computer Science. He spearheaded the organization and creation of the Mining Software Repositories
(MSR) conference and its research community.

Early tools and techniques developed by Dr. Hassan’s team are already integrated into products used
by millions of users worldwide. Dr. Hassan industrial experience includes helping architect the Blackberry
wireless platform, and working for IBM Research at the Almaden Research Lab and the Computer Research
Lab at Nortel Networks. Dr. Hassan is the named inventor of patents at several jurisdictions around the world
including the United States, Europe, India, Canada, and Japan. More information at http://sail.cs.queensu.ca/

http://post.queensu.ca/~zouy
http://sail.cs.queensu.ca/

	Towards just-in-time suggestions for log changes
	Abstract
	Introduction
	Paper Organization

	Related Work
	Leveraging Logs
	Improving Logs
	Empirical Studies of Logging Practices

	Case Study Setup
	Subject Systems
	Data Extraction
	Log Change Identification

	Case Study Result
	RQ1: What are the Reasons for Changing Logging Statements?
	Motivation
	Approach
	Results
	We Find 20 Reasons for log Changes Across Four Categories: Changing Context Code, Improving Logging, Dependency-Driven Changes and Fixing Logging Issues
	Block Change
	Log Improvement
	Dependence-Driven Change
	Logging Issue
	The Manually Identified Reasons for log Changes Assist us in Defining Measures to Model the Drivers for log Changes.

	RQ2: How well can we Provide Just-in-Time log Change Suggestions?
	Motivation
	Approach
	Correlation Analysis
	Modeling Technique
	Within-Project Evaluation
	Cross-Project Evaluation

	Results
	Our Random Forest Classifiers can Effectively Provide Just-in-Time Suggestions for log Changes Using Historical Data from the Same Project
	Our Classifier Achieve the Average Balanced Accuracy with a Small Number of Commits as Training Data
	The Performance of our Classifiers Fluctuates Over Time
	Our Random Forest Classifiers can Effectively Provide Just-in-Time Suggestions for log Changes Using the Development History of Other Projects
	Our Random Forest Classifiers can Effectively Discriminate log-Changing Commits and non-log-Changing Commits
	Cross-Project Classification and within-Project Classification Achieve Similar Performance

	RQ3: What are the Influential Factors that Explain log Changes?
	Motivation
	Approach
	Bootstrap Analysis
	Variable Influence in Random Forest
	Scott-Knott Clustering

	Results
	Change Measures and Product Measures are the Most Influential Factors for log Changes
	Change Measures are the most Influential Measures for the log Addition Classifier, while Product Measures are the Most Influential Ones for the log Modification Classifier
	Different Projects Present Different log Change Practices

	Discussion
	Discussion Regarding log-Changing-Only Commits

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Conclusions
	References

