
Threshold-free Code Clone Detection
for a Large-scale Heterogeneous Java Repository

Iman Keivanloo
Department of Electrical and

Computer Engineering
Queen’s University

Kingston, Ontario, Canada
iman.keivanloo@queensu.ca

Feng Zhang
School of Computing

Queen’s University
Kingston, Ontario, Canada

feng@cs.queensu.ca

Ying Zou
Department of Electrical and

Computer Engineering
Queen’s University

Kingston, Ontario, Canada
ying.zou@queensu.ca

Abstract—Code clones are unavoidable entities in software
ecosystems. A variety of clone-detection algorithms are available
for finding code clones. For Type-3 clone detection at method
granularity (i.e., similar methods with changes in statements),
dissimilarity threshold is one of the possible configuration pa-
rameters. Existing approaches use a single threshold to detect
Type-3 clones across a repository. However, our study shows that
to detect Type-3 clones at method granularity on a large-scale
heterogeneous repository, multiple thresholds are often required.
We find that the performance of clone detection improves if
selecting different thresholds for various groups of clones in a
heterogeneous repository (i.e., various applications). In this paper,
we propose a threshold-free approach to detect Type-3 clones
at method granularity across a large number of applications.
Our approach uses an unsupervised learning algorithm, i.e.,
k-means, to determine true and false clones. We use a clone
benchmark with 330,840 tagged clones from 24,824 open source
Java projects for our study. We observe that our approach
improves the performance significantly by 12% in terms of F-
measure. Furthermore, our threshold-free approach eliminates
the concern of practitioners about possible misconfiguration of
Type-3 clone detection tools.

Keywords—clone detection; clone search; clustering; unsuper-
vised learning; large-scale repository

I. INTRODUCTION

Code clones commonly exist in software systems. Type-1
clones are made of exactly the same code fragments regardless
of the presentation style, comments or white spaces [1].
Further changes of token values (e.g., variable names) lead to
Type-2 clones. Type-3 clones are modified copies of the origi-
nal code with statement changes (e.g., deletion) [22]. Clone
detection is a well-established research discipline since the
1970s [26]. Emerging applications of clone detection usually
find clones of a specific functionality (e.g., bubble sort) across
a large-scale heterogeneous source-code repository (e.g., open
source projects on SourceForge, GitHub, or GoogleCode). For
example, Ossher et al. [25] and Schwarz et al. [31] use clone
detection to determine the prevalence of reuse within open
source development community. Inoue et al. [30] use large-
scale clone detection for studying the evolution of cloned
files across similar software systems. Koschke [21] studies
the application of large-scale inter-system clone detection for
license infringement detection. Higo et al. [11] observe that
new programming libraries can be identified using clone detec-
tion across a large number of software systems. Furthermore,

Type-3 clone detection can be used to intelligently tag code
fragments [28], or recommend code examples [19].

Ishihara et al. [14] argue that detecting cloned methods
with similar functionality across a large number of software
systems is one of the basic requirements of such emerging ap-
plications. To detect up to Type-3 clones at method granularity,
the similarity degree between two candidate methods should be
measured. For example, NiCad [29] uses the longest common
subsequence; Deckard [16] uses Euclidean distance. Common
to these approaches [6] [16] [17] [20] [29] [34], the precision
is maintained at an acceptable level by excluding any candidate
clone-pair with low similarity degree from the final clone set.
A cutoff value on the similarity degree is therefore required
to determine how much dissimilarity (between two methods)
is allowed for a clone-pair. This dissimilarity threshold consti-
tutes the main configuration parameter of such Type-3 clone
detection algorithms at method granularity.

We observed that there are two major challenges associated
with the existing threshold-based approach. First, finding the
proper value of threshold is an essential step for each pro-
posed clone detection algorithm. Changing the value of the
threshold from low to high considerably increases precision
and decreases recall in Type-3 clone detection, e.g., [34].
Wang et al. [35] report that 61% out of 185 studies using
clone detection algorithms explicitly mention the configuration
choice as a threat to validity. The default thresholds, as
discussed by Wang et al. [35], can also be biased towards
a specific observation, experiment, or dataset. This problem
puts limitation on the emerging applications (e.g., [17]) that
depend on Type-3 clone detection algorithms. Second, existing
approaches use a single threshold to detect Type-3 clones
across a source-code repository. However, we observe that the
performance improves if multiple thresholds are used to detect
clones across a large-scale heterogeneous source-code reposi-
tory. For example, different thresholds are preferred to detect
clones related to “bubble sort” and “Zip file decompression”
functionalities across Java open source systems. A potential
explanation for this phenomenon is that methods implementing
bubble sort are exposed to less modifications and diversity than
methods implementing zip file decompression.

In response to the two aforementioned challenges, we
propose a solution that does not require a threshold (as part
of the configuration) for Type-3 clone detection. We use an



Fig. 1: The 9-line method (A) discussed in the trial case of Oracle and Google. Methods B and C are two Type-3 clones of
method A that we identified in projects hosted on GitHub and GoogleCode.

unsupervised learning step to filter the candidate pairs that
are probably not clones. Specifically, we apply k-means clus-
tering to replace the threshold-based cutoff step in the clone
detection process. However, we have to determine the number
of expected clusters as part of the configuration of k-means.
To automatically identify the proper number of clusters at run-
time for each group of candidate clones, our approach uses the
Friedman quality optimization method [7] that quantifies the
quality of clustering by evaluating the inter and intra-cluster
distance. The optimization method maximizes the distance
between clusters while minimizing the inter-cluster distance.

In this paper, we studied the following three research
questions:

RQ1: Do we need more than a single threshold for detect-
ing clones across a source code repository? In our analysis,
we use a clone benchmark created using a source-code repos-
itory of 24,824 Java open source projects [33]. We observe
that the best threshold for Type-3 clone detection varies for
different functionalities when finding similar methods across a
large number of software systems. The observation suggests
that thresholds should be selected dynamically for Type-3
clone detection on such a large-scale repository.

RQ2: Can we improve the performance of detecting Type-3
clones at method granularity using multiple thresholds? We
assume that an ideal multi-threshold approach exists. The ideal
approach is the one that always selects the best threshold at

run-time. We show that a multi-threshold approach indeed
improves the performance of Type-3 clone detection. It is
worth finding a practical multi-threshold solution like our
threshold-free approach.

RQ3: Does our threshold-free approach outperform
threshold-based clone detection? We propose a k-means based
approach for clustering true and false clones which is called
threshold-free clone detection. We observe that our approach
can improve the performance by 12% in terms of F-measure.

The remainder of this paper is organized as follows.
Section II summarizes the motivation of our research. Our
approach is described in Section III. Sections IV and V present
the design and results of our case study. Sections VI and
VII review threats to validity and related work. Finally, we
conclude and provide insights for future work in Section VIII.

II. MOTIVATION

In this section, we first review a motivating application for
detecting code clones in a large-scale heterogeneous repository.
We then review an example that motivates our threshold-free
clone detection.

A. Motivating application

A 9-line method (i.e., method A in Figure 1) responsible
to implement “range check” functionality for an array data



Fig. 2: Overview of threshold-based Type-3 clone detection at method granularity.

structure is discussed in the trial case of Oracle and Google1.
In this case, Oracle claims that the 9-line method used by
Google has an incompatible license. The method is made of
three “if” statements. Since implementation of the range check
functionality using these if statements is an intuitive approach,
an interesting question to ask is the following:

“Is Google’s Android the only open source software system
that adopted the 9-line method from Oracle’s systems with an
incompatible license?”.

Answering such questions helps open source developers to
avoid inadvertent license infringement like the case between
Oracle and Google. In general, we require to identify clones of
a method which implements a specific functionality on a large-
scale heterogeneous repository, e.g., [14]. A corpus of open
source software systems crawled from the online resources
(e.g., SourceForge, GitHub, and GoogleCode) is an example
of a large-scale heterogeneous repository [37]. The major
challenge is to detect such clones with an acceptable balance
between recall and precision. Recall is important since missing
a true clone-pair can lead to legal cases. Similarly, precision
plays an important role as well [21]. Low precision causes
wasting of human resources since the outcome of the clone
detection step has to be manually verified by experts [21].

B. Background - threshold-based Type-3 clone detection

Figure 1 shows two methods (i.e., methods B and C) that
are Type-3 clones of Oracle’s 9-line method (i.e., method A).
Method B2 in Figure 1 is part of the HTTL open source project
that is a hyper-text template language and engine hosted on
GoogleCode. Method C3 in Figure 1 is part of a dependency
injection framework (guice-restlet-gwt) hosted on GitHub.

For detecting such similar methods, we require a scalable
approach that can detect Type-3 clones at method granularity.
Although both methods B and C in Figure 1 use a similar
implementation as method A for the range check functionality,
they include additional source code for other purposes such
as “for loop” statements for partially copying of a list (line
10, method C). Furthermore, the condition C1 in method A
is moved to the middle of the code in methods B and C.
In addition, there exist fine-grained dissimilarities among the
three snippets. For example, method A retrieves the size of
the array from a parameter called arrayLen at line 7, while the

1http://en.wikipedia.org/wiki/Oracle v. Google (The trial case of Oracle v.s.
Google.)

2https://code.google.com/p/httl/source/browse/trunk/httl/src/main/java/com
/googlecode/httl/support/sequences/CharacterSequence.java?r=16#155

3https://github.com/nightscape/guice-restlet-
gwt/blob/master/src/main/java/org/restlet/engine/util/ListUtils.java#L59

Fig. 3: A candidate clone of method A in Figure 1. The
low lexical similarity between the two methods suggests that
this is not an actual (true) clone of method A in Figure 1
which implements the range check functionality for arrays.
Such clone candidates are referred to as false clones [33].

other two fetch the size via a method call at line 4 (method
B) and line 5 (method C) in Figure 1.

The major common steps in the existing Type-3 clone
detection algorithms are shown in Figure 2. First, a set of
candidate clones for a target method (e.g., method A in
Figure 1) are located using an indexing mechanism (e.g.,
[18] [8] [12] [21] [30]). In this example, methods B and C
would be probably detected as candidate clones of method
A in Figure 1. We denote the set of candidate clones as
Jmi

for the target method mi. The members of the candidate
set Jmi

create a set of candidate clone-pairs with the target
method mi. The candidate clone-pairs set is denoted by Cmi

.
Each candidate clone-pair can be represented as a triple
(mi,mj ,ςmi,mj ) where mj denotes a candidate clone from
the candidate clone set Jmi and ςmi,mj is the similarity degree
between the target method mi and the candidate clone mj .
Then, each candidate clone-pair in the candidate set Cmi is
evaluated against the threshold in Step 2 (Figure 2), i.e., if
(ςmi,mj > τ ) {report (mi,mj) as a clone-pair} else {discard
the pair}, where τ denotes the threshold.

Figure 3 shows a candidate clone of Oracle’s 9-line range
check code (method A in Figure 1). Although the candidate
clone (Figure 3) shares some similarity with the target snippet
(method A in Figure 1) such as the “if” and “throw” statements
in lines 2 and 3, the method clearly is not an actual clone of
the range check functionality as implemented in Figure 1. To
avoid low precision, we require to detect such false candidates
(e.g., Figure 3) from actual candidates (e.g., methods B and C
in Figure 1) as clones of method A in Figure 1. To achieve this
goal, existing approaches for Type-3 clone detection at method
granularity use the threshold-based filtering step to balance the
trade off between precision and recall [29] by removing false
candidate clones such as Figure 3 from the final result set.

C. Motivation for threshold-free Type-3 clone detection

In this paper, we aim to find an alternative solution to
replace the classical threshold-based filtering step (Step 2



Fig. 4: A motivating example that shows the optimum thresh-
old (marked by the horizontal dashed lines) varies for detecting
clones of different functionalities. The observation is based on
clones of the corresponding functionalities recorded in a clone
benchmark [33] from online resources (e.g., GoogleCode and
SourceForge).

shown in Figure 2). There exist two motivations for us to
propose a threshold-free Type-3 clone detection for applica-
tions discussed in Sections I and II-A. First, to identify the
value of the threshold, a sensitive analysis is required (e.g.,
[29]), which is a time-consuming and error-prone process
[35]. The value of the identified threshold might need to
be updated for each source-code repository, as discussed by
Wang et al. [35]. Second, a single threshold might lead to
poor performance of detecting Type-3 clones in a large-scale
repository. Figure 4 shows pair-wise similarity for true and
false clones of two sample functionalities, i.e., bubble sort
and zip file decompression. The data are extracted from a
benchmark [33] of code clones that exist in open source
projects from SourceForge and GoogleCode. True clones are
Type-3 clone-pairs that both methods implement the same
corresponding functionality. False clones are pairs that share
some degree of similarity but they are not a true clone-pair of
the corresponding functionality, e.g., method A in Figure 1
and the method in Figure 3. As shown in Figure 4, the
observation suggests that to detect clones related to bubble
sort functionality, a threshold about 0.24 is preferred (marked
by the horizontal dashed line). According to the benchmark,
this threshold achieves the best balance between precision and
recall measured by F-measure. The recall decreases if we
move the threshold toward the top of the figure. Similarly, the
precision decreases if we move the threshold toward the bottom
of the figure. However, for the decompression functionality, a
threshold about 0.14 is preferred. If we use a single-threshold
for both cases, either the precision or recall of one of the
two cases will be negatively affected. This motivating example
suggests that different thresholds for various functionalities
should be considered to properly balance precision and recall.

In this paper, we propose a threshold-free Type-3 clone
detection approach for applications discussed in Sections I
and II-A. First, a threshold-free clone detection approach
improves the ease of using clone detection tools. It does not
require the users to find the optimized threshold as part of the
configuration step. Instead, it automatically infers the required

Algorithm 1: Using unsupervised learning for threshold-
free clone detection

Input:
mi: target method, e.g., method A in Figure 1.
e: the optimization method for the clustering algorithm.
d: the distance function of our approach.
h: the inverted index covering all methods in repository.
Output:
methods in the repository that are Type-3 clones of mi.

1 Jmi
= findCandidates(mi,h);

2 nmi
= size(Jmi

);
3 vbest = null;
4 for k = 2 to nmi do
5 v = e(k, Jmi);
6 if v > vbest then
7 kmi,e

best = k;
8 vbest = v;
9 end

10 end
11 clustersmi,e = k-means(kmi,e

best , Ji, d);
12 outputmi,e = dropTail(clustersmi,e);

threshold from the data. Second, it improves the performance
(i.e., F-measure) by dynamically inferring the threshold for
various functionalities.

III. OUR APPROACH FOR THRESHOLD-FREE CLONE
DETECTION

Preparation. Algorithm 1 illustrates the details of our ap-
proach which replaces Step 2 in the traditional threshold-based
approach shown in Figure 2. First, our approach identifies
the set of candidate methods for the target method mi using
an inverted index implemented by a hash table (e.g., [18]
and [12]). The inverted index helps us to identify the set of
candidate clones in constant time [18]. Second, the distance
between candidates of the target method mi is calculated.
The distance is denoted by Dmi,mj where mj is a candidate
clone of the target method mi. The distance between two
methods is measured based on NiCad’s Unique Percentage
of Items (UPI) [29] which uses the number of unique cases
that do not appear in the longest common subsequence (LCS)
[13] of methods mi and mj . In our approach, each candidate
is represented using its distance to the target method. The
relative distance between two candidate methods of mi is
d(ma,mb) = Dmi,ma −Dmi,mb .

Clustering. We apply a clustering algorithm on the candidate
methods represented by their distance to the target method.
A clustering technique partitions data into clusters of similar
elements [2]. The elements inside each cluster are similar to
each other (i.e., cohesiveness) and dissimilar to the elements
of other clusters (i.e., decoupled). We use the distance method
described in the preparation step to quantify dissimilarity be-
tween the entities. One of the common clustering methods is k-
means [10]. k-means works well for numerical attributes from
a geometrical and statistical perspective [2]. Our approach uses
k-means clustering to achieve threshold-free clone detection.
As an unsupervised learning method, k-means has a config-
uration parameter k which specifies the number of expected
clusters. The algorithm assigns each input data point to one of



the k clusters by considering two clustering criteria, decoupling
and cohesiveness of clusters. Therefore, the selected value for
k affects the outcome of the algorithm.

Optimization. A proper value for k leads to a high quality
clusters where clusters are highly distant from each other
and objects of each cluster are highly close to each other.
Optimization methods for a clustering algorithm evaluate the
resulting clusters from cohesiveness and decoupling points of
view [24]. To identify the proper value for k, we choose to
use the Friedman quality optimization method [7]. Friedman
method can explore the relation of data points for non-
hierarchical clustering algorithms (e.g., k-means). Friedman
method uses the following criterion to quantify the quality of
clustering results.

Friedman = trace(W−1B) (1)

where B is the between-group scatter matrix and W is the
within-group scatter matrix. Scatter matrices quantify separa-
bility within and between groups. The detailed definition of B
and W can be found in the work by Friedman and Rubin [7].

To find the best number of clusters, we evaluate k-means
performance for a set of possible k. For each k, we compute
the Friedman criterion. The maximum value observed by the
method (denoted by v in Algorithm 1 - line 5) identifies the
optimized k for k-means clustering.

Threshold-free detection. In the algorithm, nmi denotes the
total number of candidate methods reported by the inverted
index (Line 1) for the target method mi. When our algorithm
identifies the best value for the number of clusters k (i.e.,
kmi,e
best ) for the target method mi from the optimization method

point of view, it passes the value to k-means to generate the
clusters of the candidates. In the last step (i.e., drop tail),
amongst the kmi,c

best clusters generated by k-means, our approach
drops the cluster where the centroid has the largest distance
from the target method mi. The underlying rationale is that
the cluster with the largest distance from the target method
mi has the highest probability to contain false clones. This
heuristic is motivated by our earlier experience in evaluating
similarity scores of 32K distinct clone-pairs. We also noticed
a similar observation reported in an earlier study [9] that
false clones “are considerably farther apart than those that
are considered potential clones”. Finally, the members in the
remaining clusters are reported as true clones of method mi.

IV. CASE STUDY SETUP

We perform a case study with three research questions
to evaluate the feasibility and performance of our proposed
approach. In this section, we present the setup of our study.

A. Data collection

Source code repository. We use IJaDataset 2.0 as the source-
code repository [19]. This dataset covers 24,824 projects
downloaded from SVN, Git, and CVS repositories published
on SourceForge, GoogleCode, and GitHub. Table I summarizes
the source-code repository.

Clone benchmark. To measure the clone detection perfor-
mance, we require a gold dataset (e.g., [1]) that specifies true
and false candidate clones that might exist in the source-code

TABLE I: Summary of the source-code repository (IJaDataset
2.0).

Feature Value

Java projects 24,824
Java files 2,882,458
LOC 300 Million
Snippets 23.7 Million

repository. Specifically, we require a large-scale benchmark
that includes clones across software systems. Svajlenko et
al. [33] created a clone benchmark called BigCloneBench
which is publicly available4. The benchmark consists of clones
of specific functionalities in IJaDataset, i.e., the same source-
code repository that we use in this paper. The benchmark
is created by mining IJaDataset for methods that implement
a set of candidate functionalities. The benchmark is initially
released with 59,688 tagged candidate clones [33], and later
extended via an incremental process. We acquired an extended
version of the benchmark which was available at the time of
our analysis from the benchmark maintainer. Table II provides
a summary of the extended version of the benchmark used
in our analysis. This snapshot includes 330,840 candidate
clones that are tagged by the benchmark curators for a set
of functionalities.

For each functionality, a set of candidate clones that might
implement the functionality are reported in the benchmark.
For example, 14,054 candidate clones are identified in the
benchmark (Table II) for the “Binary Search” functionality
from the source code of 24,824 Java projects in IJaDataset
(Table I). Furthermore, the candidate clones for the function-
ality are labeled as either true clone or false clone in the
benchmark. A true clone is a method that indeed implements
a functionality in the benchmark [33]. A false clone is a
method that does not implement the functionality. For example,
as identified by the benchmark, there exist 1,758 true clones for
“Binary Search” in the source-code repository (i.e., IJaDataset
2.0). For the same functionality, 12,296 clones exist in the
source-code repository that seem to implement the “Binary
Search” functionality but they do not. In total, there exist
43,085 true clones for the covered functionalities and 287,755
snippets that are false clones tagged by the benchmark curators.

B. Performance evaluation measure

We measure the performance of a clone detection experi-
ment for each functionality using the information provided in
the benchmark (i.e., candidate snippets, true, and false clones).
We calculate F-measure as defined in Equation (2) to observe
the overall performance with regard to precision (3) and recall
(4).

F −measureg, τ = 2× Precisiong, τ ×Recallg, τ
Precisiong, τ +Recallg, τ

(2)

Precisiong, τ =
Bg ∩Dg, τ

Dg, τ
(3)

4http://github.com/clonebench/BigCloneBench (the clone benchmark by
Svajlenko et al. [33] for IJaDataset 2.0).



TABLE II: The summary of the clone benchmark used in our analysis.

Id Functionality Number of Number of Number of min max mean median std.dev var
candidates true clones false clones LOC LOC LOC LOC LOC LOC

1 Binary Search 14054 1758 12296 3 5118 53 26 161 25796
2 Bubble Sort Array 18291 2303 15988 5 2232 43 21 98 9661
3 Call Method Using Reflection 2170 1666 504 3 2935 64 26 233 54076
4 Connect to Database 415 409 6 4 575 37 24 50 2542
5 Copy File 222626 18518 204108 2 4682 30 16 93 8612
6 Get Prime Factors 194 42 152 3 568 69 25 139 19277
7 Create Encryption Key Files 507 57 450 5 194 47 33 39 1546
8 Decompress Zip Archive 27 15 12 4 126 50 41 39 1484
9 Delete Folder and Contents 695 549 146 7 772 29 15 52 2735
10 Download From Web 41571 2733 38838 3 1557 31 22 41 1693
11 Connect to FTP Server 6589 2398 4191 4 251 35 26 29 815
12 Convert Date String Format 212 58 154 3 865 75 30 115 13169
13 Copy Directory 667 301 366 8 1162 67 35 99 9788
14 CRC32 File Checksum 318 282 36 5 6131 50 18 344 118136
15 Encrypt To File 180 74 106 7 610 48 30 69 4820
16 Execute External Process 1001 929 72 6 647 53 29 55 2972
17 Execute Update and Rollback 3313 1503 1810 4 1288 45 32 60 3578
18 Extract Matches Using Regex 505 502 3 7 500 36 22 42 1771
19 Fibonacci 211 211 0 5 12 7 7 1 1
20 File Dialog 1908 1908 0 5 507 41 20 65 4271
21 Get MAC Address String 47 43 4 11 78 31 27 15 233
22 Initialize Java Eclipse Project 22 22 0 28 243 81 54 70 4862
23 Instantiate Using Reflection 905 861 44 3 2935 44 24 144 20674
24 Load Custom Font 96 75 21 5 397 49 24 73 5369
25 Load File into Byte Array 360 158 202 4 2431 52 22 149 22153
26 Open File in Desktop Application 281 104 177 3 415 39 20 57 3199
27 Open URL in System Browser 432 387 45 3 415 31 16 46 2099
28 Parse CSV File 250 201 49 5 305 65 57 43 1888
29 Parse XML to DOM 495 391 104 3 450 46 27 62 3878
30 Play Sound 234 111 123 3 6131 190 28 718 516033
31 Resize Array 462 439 23 4 434 22 12 38 1454
32 Secure Hash 5906 1342 4564 3 918 24 16 33 1080
33 Send E-Mail 272 239 33 3 263 46 34 38 1419
34 Setup SGV Event Handler 1282 10 1272 2 255 16 10 18 331
35 Setup SGV 101 23 78 2 152 22 13 24 560
36 Shuffle Array in Place 846 234 612 3 181 32 14 37 1393
37 Take Screenshot to File 400 104 296 3 1217 32 17 69 4772
38 Transpose a Matrix 592 542 50 6 1574 39 17 78 6126
39 Write PDF File 287 158 129 10 2431 79 37 195 37937
40 Zip Files 2116 1425 691 3 574 35 24 42 1797

Recallg, τ =
Bg ∩Dg, τ

Bg
(4)

where g denotes one of the functionalities in the benchmark.
The threshold used for Type-3 clone detection is identified by
τ . Bg is the set of all true clones related to functionality g in
the benchmark. Dg, τ is the set of clones detected by the tool
as the answer for functionality g using threshold τ .

C. Threshold-based clone detection

In our case study, we use NiCad’s similarity measure [29].
NiCad is a clone detector for Type-3 clone detection at method
granularity. NiCad uses the length of the longest common
subsequence between a target fragment and its candidate
fragments as the similarity measure. It depends on a dis-
tance measure named Unique Percentage of Items (UPI) to
distinguish clone-pairs and non clone-pairs. We consider nine
possible thresholds of NiCad in our analysis. The nine possible
thresholds of NiCad are identified as T #1 to #9.

V. CASE STUDY RESULTS

This section presents and discusses the results of our three
research questions. For each research question, we present the
motivation behind the question, the analysis approach and a
discussion on our findings.

RQ1: Do we need more than a single threshold for detecting
clones across a source code repository?

Motivation. Existing approaches use a single threshold to
distinguish true clones from false clones within a source-code
repository. The value of the threshold is determined using
sensitive analysis or search-based optimization (e.g., [35]). The
threshold that achieves the best overall performance is used
for clone detection on the complete repository (e.g., [29]).
However, we conjecture that a single threshold might not
always lead to the best clone detection performance for various
functionalities in a repository, as discussed in our motivating
example in Section II-C and Figure 4. In this exploratory re-
search question, we investigate if a single threshold can always
achieve the best clone detection performance on a source-
code repository. The analysis of RQ1 is our first step towards
understanding if threshold-free clone detection is necessary.

Approach. In our experiments, we consider IJaDataset 2.0 as
the source-code repository. We use NiCad to detect clones in
the source-code repository. NiCad supports nine thresholds for
Type-3 clone detection. As an exploratory study, we consider
all of the nine possible thresholds in our analysis.

As described in Section IV-B, we measure the performance
of each threshold per functionality using the benchmark [33].
To observe if a single threshold can achieve a superior per-



Fig. 5: The F-measure values that are achieved for the functionalities. The performance achieved by each threshold (#1 to #9)
is reported separately. The best threshold for each functionality is marked by a pin.

formance for various functionalities, we also report the best
threshold for each functionality that exists in the benchmark
(Section IV-A). The best threshold is the one that leads to the
best F-measure (Section IV-B) for detecting clones that belong
to a specific functionality.

Findings. Figure 5 shows the performance in terms of F-
measure achieved for the studied functionalities in the bench-
mark (Table II). Due to lack of the space, we show only ten
sample functionalities from the benchmark in Figure 5. For
each functionality, the threshold that leads to the highest F-
measure is tagged in the heat map. As we can observe, the
performance varies as we use different thresholds for each
functionality. The darker the color is, the higher performance
is achieved for the corresponding functionality. For example,
in detecting clones related to “Binary Search”, the best F-
measure is achieved when we use threshold #2. However, we
can observe that threshold #2 is not consistently the best choice
for clone detection in other functionalities. For example, the
best performance for “Bubble Sort” is achieved using threshold
#3, as highlighted in Figure 5.�

�
�
�

A single threshold cannot achieve the best F-measure
across various functionalities for Type-3 clone detec-
tion on a large-scale heterogenous repository.

RQ2: Can we improve the performance of detecting Type-3
clones at method granularity using multiple thresholds?

Motivation. In RQ1, we observe that the best thresholds
for different functionalities in a single large-scale repository
are different. Such observation motivates us to investigate if
using various thresholds for different functionalities (i.e., clone
groups) can significantly improve the performance of Type-
3 clone detection (measured by F-measure). We refer to this
approach as multi-threshold clone detection. Our threshold-
free approach is a concrete form of multi-threshold clone
detections. Hence, it is essential to examine the usefulness of
multi-threshold approach. If we do not observe a significant
improvement of multi-threshold approach comparing to the
traditional approach (i.e., single-threshold Type-3 clone detec-
tion), there is no reason to persuade the idea of threshold-free
clone detection.

Approach. To answer this research question, we assume that
the ideal multi-threshold detection approach exists. The ideal
approach is the one that always selects the best possible
threshold from the nine possible thresholds of NiCad for each

TABLE III: Mapping Cliff’s delta to Cohen’s standards

Cliff’s delta % of Non-overlap Cohen’s d Cohen’s standards

0.147 14.7% 0.20 small
0.330 33.0% 0.50 medium
0.474 47.4% 0.80 large

functionality. In our analysis, the ideal approach uses the best
possible thresholds identified in RQ1 for each functionality.
We measure the overall performance using F-measure which is
discussed in Section IV-B. We consider all of the nine possible
thresholds for Type-3 clone detection using the traditional
approach. To compare the performance of multi-threshold
approach with the traditional approach, we test the following
null hypothesis:

H1
0 : the ideal multi-threshold clone detection approach

does not improve the clone detection performance.

Hypothesis H1
0 is two-tailed since it investigates if us-

ing multiple thresholds achieves better performance than the
single-threshold approach or not. We perform a Mann-Whitney
U test [32] for H1

0 using p-value < 0.05. The Mann-Whitney
U test is a non-parametric statistical test to assess whether
two independent distributions have equally large values. Non-
parametric statistical methods make no assumptions about the
distributions of assessed variables. If there is a statistically
significant difference (i.e., p-value is less than 0.05), we reject
the null hypothesis and conclude that the ideal multi-threshold
detection (if exists) outperforms single-threshold Type-3 clone
detection approach.

To quantify the impact of the observed improvement, we
calculate Cliff’s delta as the effect size [15]. Cliff’s delta
estimates non-parametric effect size. It makes no assumption
of a particular distribution [15], and is reported to be more
robust and reliable than Cohen’s d [5]. Cliff’s delta represents
the degree of overlap between two sample distributions [15].
It ranges from -1 (if all selected values in the first group are
larger than the second group) to +1 (if all selected values
in the first group are smaller than the second group). It is
zero when two sample distributions are identical [3]. Cohen’s
standards (i.e., small, medium, and large) are commonly used
to interpret effect size. Therefore, we map the Cliff’s delta to
Cohen’s standards, using the percentage of non-overlap [15].
The mapping between the Cliff’s delta and Cohen’s standards
is shown in Table III. Cohen [4] states that a medium effect size
represents a difference likely to be visible to a careful observer,



TABLE IV: Comparison of F-measures between the ideal
multi-threshold approach and each of the single-threshold
experiments.

Approach F-measure (mean) Cliff’s delta (effect size) p-value

Ideal multi-threshold 0.63 NA NA
Threshold #9 0.00 0.998 (large) 1.82e-12
Threshold #8 0.01 0.998 (large) 1.82e-12
Threshold #7 0.02 0.998 (large) 1.82e-12
Threshold #6 0.03 0.997 (large) 1.82e-12
Threshold #5 0.06 0.993 (large) 1.82e-12
Threshold #4 0.16 0.970 (large) 5.47e-08
Threshold #3 0.28 0.935 (large) 1.19e-07
Threshold #2 0.44 0.872 (large) 3.82e-07
Threshold #1 0.60 0.484 (large) 5.92e-03

while a large effect is noticeably greater than medium.

Findings. Table IV shows the F-measures for Type-3 clone
detection achieved by the ideal multi-threshold selection and
the nine possible single-threshold experiments. We observe
that among the single-threshold experiments, threshold #1
leads to the best overall performance (i.e., with the highest
F-measure). We also observe that the ideal multi-threshold
approach achieves higher F-measure than all of the single-
threshold experiments. The results of Mann-Whitney U tests
show that multi-threshold selection significantly outperforms
the single-threshold clone detection experiments. Therefore,
we can reject the null hypothesis H1

0 . Moreover, the ideal
multi-threshold approach leads to a better performance with
large effect size measured via Cliff’s delta based on the
guideline provided in Table III.�

�
�
�

Multi-threshold clone detection can significantly im-
prove the performance of Type-3 clone detection with
large effect size.

RQ3: Does our threshold-free approach outperform
threshold-based clone detection?

Motivation. In RQ2, we observed that the performance is
significantly improved when using multiple thresholds for a
single heterogeneous source-code repository. As an exploratory
study, the observation in RQ2 was based on the assumption
that the ideal multi-threshold clone detection exists. This
question aims to investigate if our threshold-free Type-3 clone
detection, as a practical multi-threshold solution, can still
achieve better performance than the traditional approach (i.e.,
single-threshold based approach).

Approach. To answer this research question, we apply our
approach on the source-code repository (Section IV-A) for
Type-3 clone detection. We measure the performance using
the large-scale clone benchmark (Section IV-A and Table II) as
described in Section IV-B. The performance is measured using
F-measure. We compare the performance of our threshold-free
approach with the traditional single-threshold approach using
all of its nine possible thresholds. Finally, we test the following
null hypothesis:

H2
0 : the threshold-free clone detection approach does not

improve the clone detection performance.

Fig. 6: Summary of the performance evaluation on the pro-
posed threshold-free Type-3 clone detection approach and the
traditional single-threshold approach using the clone bench-
mark. The performance of the single-threshold approach is
reported for the nine possible threshold T #1 to T #9.

TABLE V: Comparison of F-measures between our approach
(threshold-free) and the traditional single-threshold approach.

Approach F-measure Improvement Cliff’s delta p-value
(mean) (effect size)

Threshold-free 0.67 NA NA NA
Threshold #9 0.00 <100% 0.989 (large) 1.82e-12
Threshold #8 0.01 <100% 0.988 (large) 1.82e-12
Threshold #7 0.02 <100% 0.985 (large) 1.82e-12
Threshold #6 0.03 <100% 0.982 (large) 1.82e-12
Threshold #5 0.06 <100% 0.962 (large) 7.82e-11
Threshold #4 0.16 <100% 0.904 (large) 6.78e-09
Threshold #3 0.28 <100% 0.828 (large) 3.88e-07
Threshold #2 0.44 52% 0.703 (large) 7.20e-05
Threshold #1 0.60 12% 0.572 (large) 1.52e-03

Hypothesis H2
0 is two-tailed since it investigates if

threshold-free clone detection achieves better or worse per-
formance than the single-threshold approach. We perform a
Mann-Whitney U test [32] for H2

0 using p-value < 0.05. If
there is a statistically significant difference (i.e., p-value is
less than 0.05), we reject the null hypothesis and conclude that
our proposed threshold-free approach outperforms the single-
threshold approach for Type-3 clone detection. To quantify the
impact of the observed improvement, we further calculate the
Cliff’s delta effect size.

Findings. Figure 6 presents the boxplot of F-measures
achieved by the single-threshold approach for Type-3 clone
detection with the nine possible thresholds, and the perfor-
mance of our approach. We can observe that the threshold-
based approach achieves its best performance with threshold
#1 (expecting at least 10% similarity), and our approach
yields better performance than the single-threshold approach
regardless of its chosen threshold. Table V summarizes the
result of the statistical test and the effect size when comparing
our approach with the traditional approach. In particular, our
approach achieves at least 12% improvement (i.e., from 0.60
to 0.67) than the traditional approach. The improvement is
statically significant with large effect size. Moreover, the per-
formance of our approach is even higher than the ideal multi-



threshold approach that was studied in RQ2, since Algorithm-1
makes our approach be able to find more precise thresholds,
other than the nine thresholds of the baseline approach.�

�

�

�
Threshold-free Type-3 clone detection improves the
performance by at least 12% in terms of F-measure,
compared to the traditional single-threshold ap-
proach.

VI. THREATS TO VALIDITY

We now discuss the threats to validity of our study follow-
ing common guidelines provided in [36].

Threats to conclusion validity concern the relation between
the treatment and the outcome. Our approach uses k-means
as the unsupervised learning approach. Using k-means, we
demonstrated the feasibility and advantages of threshold-free
clone detection. There might exist a better clustering algorithm
for threshold-free clone detection. Further study is encouraged
to explore more clustering algorithms.

Threats to internal validity concern our selection of subject
systems and analysis methods. To the best of our knowledge,
there exists only one clone benchmark for clone detection
on large-scale heterogeneous repositories. Furthermore, we
acquired an extended snapshot of the benchmark with 330,840
tagged clones from the benchmark maintainer which is four
times larger than its initial release [33] in terms of number
of covered functionalities. We used NiCad as the baseline in
our study since it supports Type-3 clone detection at method
granularity.

Threats to external validity concern the possibility to gen-
eralize our results. The data used in our study is available
at the replication package http://goo.gl/SuUtfi. As part of the
replication package, we also released the analysis scripts used
in the case study.

VII. RELATED WORK

Earlier studies on clone detection have addressed the
scalability challenge for clone detection. Livieri et al. [23]
proposed a distributed architecture for CCFinder called D-
CCFinder that achieves scalability by splitting the repository
into subsets. D-CCFinder delegates small size clone detection
tasks to client computers, and a master computer records the
results reported by clients. Koschke proposes an approach
to achieve scalability by using suffix trees [21] as a form
of inverted index. Göde and Koschke show that the idea of
inverted index using suffix trees can be further extended for
scalable incremental clone detection [8] which is released as
iClones. Jiang et al. propose Deckard [16] which achieves
scalability via Locality Sensitive Hashing (LSH). LSH is an
extended form of hash-based indexing which finds similar
entities with a certain degree of resemblance in constant time
complexity. Hummel et al.’s research [12] shows that massive
scalability for Type-2 clone detection can be achieved using
inverted index and MapReduce. Keivanloo et al. [18] also
studied the application of inverted index for Internet-scale
clone detection. Dang et al. [6] discuss the applications of
clone detection for practitioners. In this paper, we propose an
approach that helps practitioners in using scalable Type-3 clone

detection algorithms across software systems. Specifically, we
focus on improving the performance and the ease of use.

It is challenging to find proper configurations for tools
and algorithms in software engineering research. Clone de-
tection research is not an exception in this context; it also
suffers from the same problem. The traditional approach is
to identify and recommend some default configuration val-
ues at the time of proposing a new algorithmic solution
(e.g., [29] [16] [34]). However, this approach is usually tedious,
and the recommended values are not always generalizable
since they can be biased towards a specific observation,
experiment, or dataset [35]. Panichella et al. [27] show that
it is possible to derive the configuration for topic modeling
for software engineering applications using a genetic algo-
rithm. Wang et al. [35] propose EvaClone which is a search-
based solution for configuring clone detection algorithms for
empirical studies on software clones. EvaClone is applicable
when more than one clone detector is required in a single
study. EvaClone derives configuration values that minimize
the effect of the confounding factor for result comparison in
empirical studies. The derived configuration values are the ones
that achieve the highest agreement among the two or more
clone detectors. EvaClone is effective in minimizing the effect
of the confounding factor when the results of several clone
detection algorithms are being compared. However, Wang et
al. [35] also observe that EvaClone does not necessarily find
a superior configuration for applications that require only a
single clone detection algorithm. As discussed by Wang et
al. [35], EvaClone tends to suggest configurations achieving a
higher recall and lower precision than the default configuration.
In some cases, this behavior leads to a lower F-measure. To the
best of our knowledge, EvaClone is the only and closest work
to our research. While we propose a solution that eliminates
the similarity threshold from the configuration parameters of
Type-3 clone detection algorithms, EvaClone can be used
to derive the values of any type of configuration parameter.
However, EvaClone is designed for applications when more
than one clone detection algorithms is required (e.g., empirical
studies). Our approach is designed for applications depending
on a single clone detection algorithm (e.g., industrial applica-
tions [17]). Furthermore, as we showed in RQ1 and RQ2, a
single threshold does not lead to a superior performance for
large-scale heterogenous repositories. The experiments show
that even if EvaClone identifies the best single threshold for
the complete repository, our approach can outperform that
configuration for Type-3 clone detection clone on a large-scale
heterogeneous repository as discussed in RQ3.

VIII. CONCLUSION

In this paper, we show that more than a single threshold is
required for Type-3 clone detection at method granularity on
a large-scale heterogeneous repository. By considering various
thresholds for different functionalities, the performance (mea-
sured by F-measure) can be significantly improved. Hence, we
propose a threshold-free approach for Type-3 clone detection
at method granularity. We apply k-means clustering to separate
true and false clones. We use the Friedman method to evaluate
the quality of clustering for different k values, so that we can
automatically determine the number of expected clusters for k-
means clustering. Therefore, our approach is fully automated
and threshold free. We show that our approach improves the



performance significantly (i.e., 12% increase on F-measure)
when applied on a large-scale heterogeneous repository. Since
our approach is threshold free, the concern about possible mis-
configuration is also eliminated. As the immediate future work,
we plan to apply our approach for Type-4 clone detection.

IX. ACKNOWLEDGMENTS

The authors would like to thank Dr. Daniel German for
motivating us to study the problem of clone detection for
cases similar to Google versus Oracle license infringement
case. The authors would like to thank Dr. Audris Mockus for
his invaluable feedback and comments in the early stages of
our research. The authors would like to thank the anonymous
reviewers for their invaluable comments.

REFERENCES

[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[2] P. Berkhin, “A survey of clustering data mining techniques,” in Group-
ing Multidimensional Data, J. Kogan, C. Nicholas, and M. Teboulle,
Eds. Springer Berlin Heidelberg, 2006, pp. 25–71.

[3] N. Cliff, “Dominance statistics: Ordinal analysis to answer ordinal
questions,” 1993.

[4] Cohen, “A power primer.” Psychological Bulletin, 1992.
[5] J. Cohen, “Statistical power analysis for the behavioral science,” 1988.
[6] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “Xiao: Tuning

code clones at hands of engineers in practice,” in Proceedings of the
28th Annual Computer Security Applications Conference, 2012, pp.
369–378.

[7] H. P. Friedman and J. Rubin, “On some invariant criteria for grouping
data,” Journal of the American Statistical Association, vol. 62, no. 320,
pp. 1159–1178, 1967.

[8] N. Göde and R. Koschke, “Incremental clone detection,” in Proceed-
ings of the 13th European Conference on Software Maintenance and
Reengineering (CSMR), 2009, pp. 219–228.

[9] S. Grant and J. Cordy, “Vector space analysis of software clones,” in
Proceedings of International Conference on Program Comprehension
(ICPC), 2009, pp. 233–237.

[10] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means
Clustering Algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100–108,
1979.

[11] Y. Higo, K. Tanaka, and S. Kusumoto, “Toward identifying inter-project
clone sets for building useful libraries,” in Proceedings of the 4th
International Workshop on Software Clones, 2010, pp. 87–88.

[12] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in Proceedings
of International Conference on Software Maintenance (ICSM), 2010,
pp. 1–9.

[13] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing
longest common subsequences,” Commun. ACM, vol. 20, no. 5, pp.
350–353, May 1977.

[14] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project
functional clone detection toward building libraries - an empirical study
on 13,000 projects,” in Proceedings of the 19th Working Conference on
Reverse Engineering (WCRE), Oct 2012, pp. 387–391.

[15] J. C. J. Romano, J.D. Kromrey and J. Skowronek, “Appropriate statistics
for ordinal level data: Should we really be using t-test and cohen’s d
for evaluating group differences on the nsse and other surveys?” in AIR
Forum, 2006, pp. 1–33.

[16] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the
29th International Conference on Software Engineering, ser. ICSE ’07,
2007, pp. 96–105.

[17] P. L. Kai Chen and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
IEEE International Conference on Software Engineering, 2014.

[18] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code
clone search via multi-level indexing,” in Proceedings of the 18th
Working Conference on Reverse Engineering (WCRE), 2011, pp. 23–27.

[19] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in Proceedings of the 36th International Conference on Software
Engineering (ICSE), 2014, pp. 664–675.

[20] I. Keivanloo, C. K. Roy, and R. Juergen, “Sebyte: Scalable clone and
similarity search for bytecode,” Science of Computer Programming, vol.
95, Part 4, no. 0, pp. 426–444, 2014.

[21] R. Koschke, “Large-scale inter-system clone detection using suffix
trees,” in Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR), March 2012, pp. 309–318.

[22] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Proceedings of Working Conference on Reverse
Engineering, 2006.

[23] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale code
clone analysis and visualization of open source programs using dis-
tributed ccfinder: D-ccfinder,” in Proceedings of the 29th International
Conference on Software Engineering (ICSE), 2007, pp. 106 –115.

[24] G. Milligan and M. Cooper, “An examination of procedures for deter-
mining the number of clusters in a data set,” Psychometrika, vol. 50,
no. 2, pp. 159–179, 1985.

[25] J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source java
projects: The good, the bad, and the ugly,” in Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM), ser.
ICSM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
283–292.

[26] K. J. Ottenstein, “An algorithmic approach to the detection and pre-
vention of plagiarism,” SIGCSE Bull., vol. 8, no. 4, pp. 30–41, Dec.
1976.

[27] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software engi-
neering tasks? an approach based on genetic algorithms,” in Proceedings
of the 2013 International Conference on Software Engineering, 2013.

[28] J.-w. Park, M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim, “Surfacing
code in the dark: an instant clone search approach,” Knowledge and
Information Systems, pp. 1–33, 2013.

[29] C. Roy and J. Cordy, “Nicad: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization,” in
Proceedings of the 16th IEEE International Conference on Program
Comprehension, ser. ICPC ’08, 2008, pp. 172–181.

[30] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file clones
in freebsd ports collection,” in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories (MSR), May 2010, pp.
102–105.

[31] N. Schwarz, M. Lungu, and R. Robbes, “On how often code is
cloned across repositories,” in Proceedings of the 34th International
Conference on Software Engineering, 2012, pp. 1289–1292.

[32] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition. Chapman & Hall/CRC, Jan. 2007.

[33] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. R. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in Proceedings of the 30th International Conference on Software
Maintenance, ser. ICSM 2014, 2014.

[34] M. Uddin, C. Roy, K. Schneider, and A. Hindle, “On the effectiveness of
simhash for detecting near-miss clones in large scale software systems,”
in roceedings of the 18th Working Conference on Reverse Engineering
(WCRE), 2011, pp. 13–22.

[35] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better con-
figurations: A rigorous approach to clone evaluation,” in Proceedings of
the 9th Joint Meeting on Foundations of Software Engineering, 2013.

[36] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
3rd ed. SAGE Publications, 2002.

[37] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR ’14, 2014, pp.
41–50.


