
Software Qual J
DOI 10.1007/s11219-017-9375-5

An investigation of the fault-proneness of clone
evolutionary patterns

Liliane Barbour1 ·Le An2 ·Foutse Khomh2 ·
Ying Zou1 ·Shaohua Wang3

© Springer Science+Business Media New York 2017

Abstract Two identical or similar code fragments form a clone pair. Previous studies have
identified cloning as a risky practice. Therefore, a developer needs to be aware of any clone
pairs in order to properly propagate any changes between clones. A clone pair may expe-
rience many changes during the creation and maintenance of a software system. A change
can either maintain or remove the similarity between clones in a clone pair. If a change
maintains the similarity between clones, the clone pair is left in a consistent state. When a
change makes the clones no longer similar, the clone pair is left in an inconsistent state. The
set of states and changes experienced by clone pairs over time form an evolution history
known as a clone genealogy. In this paper, we examine clone genealogies to identify fault-
prone “patterns” of states and changes. We explore the use of clone genealogy information
in fault prediction. We conduct a quasi-experiment with four long-lived software systems
(i.e., APACHE ANT, ARGOUML, JEDIT, MAVEN) and identify clones using the NiCad and
iClones clone detection tools. Overall, we find that the size of the clone can impact the

� Foutse Khomh
foutse.khomh@polymtl.ca

Liliane Barbour
l.barbour@queensu.ca

Le An
le.an@polymtl.ca

Ying Zou
ying.zou@queensu.ca

Shaohua Wang
shaohua@cs.queensu.ca

1 Department of Electrical and Computer Engineering, Queen’s University, ON, Canada

2 SWAT, École Polytechnique de Montréal, QC, Canada

3 School of Computing, Queen’s University, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9375-5&domain=pdf
http://orcid.org/0000-0002-5704-4173
mailto:foutse.khomh@polymtl.ca
mailto:l.barbour@queensu.ca
mailto:le.an@polymtl.ca
mailto:ying.zou@queensu.ca
mailto:shaohua@cs.queensu.ca

Software Qual J

fault-proneness of a clone pair. However, there is no clear impact of the time interval
between changes to a clone pair on the fault-proneness of the clone pair. We also dis-
cover that adding clone genealogy information can increase the explanatory power of fault
prediction models.

Keywords Clone genealogies · Fault-proneness · Metrics

1 Introduction

Cloning occurs when two code segments are highly similar or identical to each other. Each
code segment is known as a clone, and the two clones form a clone pair. A clone group is
a set of code segments, where any two of them form a clone pair. Cloning is a common
practice in software development. Some clones are introduced intentionally through the
copy and paste actions of developers, while others are introduced accidentally (Roy and
Cordy 2007).

Once created, clones evolve as they are modified during both the development and main-
tenance phases of software systems. A clone pair is in a consistent state if the clones are
identical or similar. A clone pair is in an inconsistent state if they are no longer similar. Over
time, a clone pair is either in a consistent state or an inconsistent state. Clones that become
inconsistent can be later re-synchronized, and consistent clones can diverge. The set of states
and changes between the states experienced by a clone pair across versions of a system is
known as a “clone pair genealogy.” Furthermore, a clone genealogy can exhibit a specific
“clone evolutionary pattern”, which defines a specific ordering of states and changes that
occur frequently in clone genealogies over the lifetime of a software system. For example,
a consistent clone pair that transitions to an inconsistent state, and then re-synchronizes to
a consistent state is known as late propagation (Thummalapenta et al. 2010). Clone pairs
that transition to inconsistent states during their evolution are difficult to monitor using
clone detection tools. Hence, they are more at risk of faults due to a lack of propagation
of changes.

Previous studies (Thummalapenta et al. 2010; Aversano et al. 2007; Barbour et al. 2011;
2013) on clone genealogies have defined specific clone evolutionary patterns and stud-
ied their relationship with faults. Specific clone evolutionary patterns have been identified
as fault-prone without detailed information. More specifically, a genealogy only provides
details about the past, but cannot inform a developer about whether the current state or the
next change will be risky. Moreover, the history of the clone groups has also not been consid-
ered when predicting faults in clones. In our work, we examine clone evolutionary patterns
and changes within clone genealogies and their relationship with faults and strive to pro-
vide insights on the characteristics of fault-prone clones. For each clone group, we analyze
all the clone pairs within the clone group. We chose to study clone pairs instead of clone
groups since clone pairs within the same clone group are not equally risky. Additionally, we
investigate if metrics collected from clone pair genealogies can improve the performance of
prediction models when identifying clone pairs that are at a higher risk of faults.

We investigate the clone genealogies of four open-source software systems (i.e., APACHE

ANT, ARGOUML, JEDIT, MAVEN). Using the cloning information from each system, we
address the following research questions:

– RQ1: Which clone evolutionary patterns and clone changes are most at risk of faults?
We examine if a specific evolutionary pattern or change is found to be more prone to

Software Qual J

faults. Clone pairs exhibiting a fault-prone pattern or experiencing a fault-prone change
should be flagged for future monitoring.

– RQ2: Does the size of a clone or the time interval between changes affect the fault-
proneness of a clone pair? We expand on the previous question to determine if the
size of the clone (in LOC) or the time interval between consecutive changes to a clone
pair can be used to highlight fault-prone clone pairs. We suggest that these characteris-
tics may influence the fault-proneness of clone evolutionary patterns and changes. Our
results can be used to refine the identification of clone pairs at risk of faults. This helps
determine where testing and review efforts should be focused.

– RQ3: Can we predict faults in software clones using clone genealogy information? One
snapshot of a software system provides limited information that can be used to predict
faults in a clone pair. However, genealogy information about a clone pair takes more
effort to collect and track. We propose metrics to capture information about the geneal-
ogy of a clone pair and we use statistical models to establish and inspect dependencies
between the metrics and faults in clone pairs.

We provide three contributions in this paper:

– We give a formal definition of clone pair genealogies and clone evolutionary patterns.
– We identify characteristics of fault-prone clone pair states and changes in clone pair

genealogies that can be used to locate the most fault-prone clones.
– We show that clone genealogy information can increase the explanatory power of fault

prediction models. In particular, the number of previous faults in a clone pair can help
predict future faults in the clone fragments.

Organization Section 2 summarizes related studies on clone genealogies and prediction of
faults. Section 3 discusses the building blocks of genealogies and clone evolutionary pat-
terns. Section 4 outlines our study approach. Section 5 summarizes the study results. Section 6
reports on a qualitative evaluation of the genealogies and discusses the results of the study.

Section 7 discusses the threats to the validity of our study. Section 8 concludes the paper
and outlines avenues for future work.

2 Related work

2.1 Clone genealogies

Kim et al. (2005) performed the first study of clone evolution. They analyzed groups of
clone snippets, known as clone classes, and described the types of changes that can be expe-
rienced by a clone class. In our work, we examine clones at the clone pair level to identify
which clone pairs are most at risk of faults. A clone class with dozens of members may only
contain a few risky clone pairs. Kim et al. also performed a case study using CCFINDER

and found that clones are very volatile. Half the clones became inconsistent within eight
check-ins. In our work, we continue to examine clones after they become inconsistent to
examine their fault-proneness.

2.2 Bug-proneness of code clone

Rahman et al. (2012) explored the relationship between defect-proneness and code clones
by analyzing four open-source C projects. They did not observe a strong correlation between

Software Qual J

bugs and code clones, nor a correlation between bug-proneness and cloned code size.
Their findings challenge the Fowler et al’s (2009) claim that code clones are “bad code
smells.” However, this study did not take the evolution of code clones nor a more pop-
ular programming language, Java, into account. Juergens et al. (2009) conducted a case
study on open-source and commercial systems to investigate whether code clone’s incon-
sistent changes can lead to defects. They observed that nearly half of the unintentionally
inconsistent changes caused defects. Although this work only studies one type of clone evo-
lution, it leads us to further discover the relationship between bug-proneness and other clone
evolution types.

2.3 Analysis of clone genealogies

Krinke (2007) examined inconsistent and consistent changes to clones in 200 weekly snap-
shots of five open-source systems. The study examined identical clones. About half of the
changes to identical clones were consistent. The results may have been affected by the
time interval of 1 week between snapshots. Changes to the clones, including inconsistent
changes, may have occurred between snapshots. In our work, we examine the relationship
between delay since the last change and faults.

Krinke performed a second study on the stability of cloned code, which was repeated and
extended by Göde and Harder (2011). In Göde et al.’s work, they performed clone detection
using a token-based clone detection tool, but used a time interval between snapshots of one
commit. Overall, their findings agreed with Krinke that cloned code is much more stable
than non-cloned code. They also experimented with the parameters of their clone detection
tool and showed that the results are impacted by the choice of parameters. Because of this
result, we use two different clone detection tools in our study, with each one implementing
a different clone detection technique. These two clone detection tools (i.e., NICAD and
ICLONES) were found to achieve higher precision and recall by Svajlenko and Roy (2014).
For each clone detection tool, we use the same parameters as in the study of Svajlenko and
Roy (2014), that compared 11 different clone detection tools.

Göde and Koschke (2011) performed a different study on code clones and found that
over half of the clones in three systems were stagnant. In other words, once they were
formed, they were never modified. About 12% of the clones experienced a change. In a
similar study (Göde and Koschke 2011), Göde et al. found that 87.8% of clones are never
changed or only changed once. They suggest that these clones are irrelevant to developers.
In our study, we consider all the changes that occurred during the evolutionary history of
the clones and identify the most fault-prone ones. We also consider metrics that contain
historical information taken from clone genealogies to identify fault-prone clone pairs.

Göde and Harder (2011) performed a study examining consecutive change pairs within
clone genealogies. They defined four different types of consecutive changes. They examined
the relationship between the change pair type, the delay between changes, the change author,
and the location of the clones in the project structure and whether an inconsistent change
was intentional. Overall, they found that two consecutive changes are the most common
change pair, and that few inconsistent changes were accidental.

Thummalapenta et al. (2010) performed a study that looked at four different types of
clone evolutionary patterns within clone classes. They classified their clone classes into
consistent evolution, independent, delayed propagation, and late propagation evolutionary pat-
terns. They found that the first two patterns were the most common types. They concluded
that each pattern experienced a different proportion of faults within a software system. In
our work, we examine clones in more detail and define further clone evolutionary patterns.

Software Qual J

Barbour et al. (2011, 2013) investigated faults in eight different types of late propaga-
tion and found that late propagation clones are more fault-prone when (i) clones in the
pair undergo a diverging modification followed by a reconciling change that modifies both
clones in the clone pair or (ii) clones in pair experience diverging changes, followed by
a reconciling change that modifies only the diverging clone in the clone pair. They also
reported that the size of the clones experiencing late propagation has an effect on the fault-
proneness of specific types of late propagation genealogies. Recently, Mondal et al. (2016)
investigated the frequency of late propagation for different types of clones (i.e., type 1,
type 2, and type 3) using the NiCad clone detection tool. They found that late propagation
occurs more frequently in type 3 clones. They also observed that late propagation of type 3
clones are more fault-prone than late propagations of either type 1 or type 2 clones. In this
paper, we build on these previous works to analyze the fault-proneness of all types of clone
evolutionary patterns (i.e., not only late propagation).

Xie et al. (2013) investigated two evolutionary phenomena on clones: the mutation of
the type of a clone during the evolution of a system, and the migration of clone segments
across the repositories of a software system. They observed that clone migration and clone
mutation occur frequently in clone genealogies, and that increasing the distance between
code segments in a clone group during the evolution of the system increases the risk for
faults. They also found that mutating clones to type 2 or type 3 increases the risk for
faults. In a follow-up study (Xie et al. 2014), they examined the fault-proneness of clone
migration in clone genealogies and found that migrated clone segments, clone groups, and
clone genealogies are not equally fault-prone. They also found that when a clone muta-
tion occurs during a clone migration, the risk for faults in the migrated clone is increased.
The migration of a clone that was not changed for a long period of time is also reported to
be risky.

2.4 Statistical explanatory models

Several studies have investigated the use of process and product metrics to build fault
prediction and explanatory models.

Khoshgoftaar et al. (1996) analyzed two consecutive releases of a large software system
used in telecommunications and showed that the number of past added/removed lines of
code is a good predictor of future faults at the module level. Bernstein et al. (2007) used the
number of revisions and corrections on a file, recorded in a given amount of time, to predict
the location of faults. Graves et al. (2000) investigated different predictors of faults using
statistical models and found that the sum of contributions from all changes to a module is the
best predictor of faults in a module. Nagappan and Ball (2005) analyzed the relation between
code churn (i.e., the amount of lines added, modified or deleted to a file) and fault density
in Windows Server 2003 and concluded that relative code churns are better predictors of
fault density than absolute code churns. Hassan (2009) introduced the notion of entropy of
changes to capture the complexity of a source code change process. He performed a case
study using six open-source software systems and found that the entropy of changes is a
better predictor of faults than traditional predictors like the amount of changes or the number
of previous faults.

El Emam et al. (2001) combined Chidamber and Kemerer metrics (Chidamber and
Kemerer 1994) with Briand et al.’s coupling metrics (Briand et al. 1999) to predict faults in
a large commercial Java system. Nagappan et al. (2006) investigated the use of source code
metrics to predict post-release faults at the module level using five Microsoft software sys-
tems. They found that complexity metrics can successfully predict post-release faults, but

Software Qual J

that the set of best predictors was system-dependant. Zimmermann et al. (2007) also used
source code metrics to predict faults in Eclipse. Arisholm and Briand (2006) proposed the
use of code quality, class structure, changes in class structure, and the history of class-level
changes and faults to predict faulty classes.

Moser et al. (2008) performed a comparative analysis of the predictive power of pro-
cess and source code metrics for fault prediction and found that process metrics are better
predictors of faults than product metrics. In this work, we examine whether clone geneal-
ogy metrics can be used to increase the performance of fault prediction models built using
product and process metrics.

Kononenko et al. (2015) investigated the relationships between the quality of code review
and technical, personal, and participation factors in the code review process. They found that
both personal and participation factors can influence the quality of code review. McIntosh
et al. (2015) built explanatory models to explore the impact of the code review process on
software quality. They found a significant correlation between code review quality and the
factors on code review coverage, participation, and reviewers’ expertise. In this paper, we
built explanatory models to investigate the relationship between clone genealogies metrics
and fault-proneness.

3 Clone evolutionary patterns

3.1 States and transitions of clone pairs

A clone pair can either be in a consistent state (Cs) or an inconsistent state (Is). We define
the set of states of a clone pair as S = {Cs, Is}. The two states are shown as circles in
Fig. 1. A clone pair is in a consistent state if the code segments in the pair are identical or
similar (i.e., have a cloned-relationship). A clone pair is in an inconsistent state if the code
segments in the pair are no longer similar (i.e., the cloned-relationship has been removed).
An inconsistent clone pair can transition back to a consistent state (Cs) at a later time, so
we continue to study inconsistent clone pairs.

A change is an input action that modifies the content of one or both of the code seg-
ments in a clone pair. A change can transition the clone pair between states, or maintain
the clone pair’s current state. For example, if a clone pair is in a consistent state and
experiences a change that removes the cloned-relationship between the code segments in
the pair, the clone pair transitions into an inconsistent state. If the change preserves the
cloned-relationship between the code segments, the clone pair remains in a consistent state.

Fig. 1 Clone pair states and changes

Software Qual J

There are four possible changes:

– Consistent change (CONc): a change modifies one or both code segments of a clone
pair in a consistent state. Such change keeps the code segments in the clone pair in a
cloned-relationship (i.e., consistent changeCONc is the transition from consistent state
Cs to consistent state Cs).

– Inconsistent change (INCc): a change modifies one or both code segments of a clone
pair in an inconsistent state. The code segments continue to be dissimilar, so the clone
pair remains in an inconsistent state (i.e., inconsistent change INCc is the transition
from inconsistent state Is to inconsistent state Is).

– Re-synchronizing change (RESYNCc): a change modifies one or both code seg-
ments of a clone pair in an inconsistent state. The change causes the code segments
to have a cloned-relationship. The clone pair transitions to a consistent state (i.e.,
re-synchronizing change RESYNCc is the transition from inconsistent state Is to
consistent state Cs).

– Diverging change (DIVc): a change modifies one or both code segments in a clone
pair in a consistent state. The change removes the cloned-relationship between the code
segments (i.e., diverging change DIVc is the transition from consistent state Cs to
inconsistent state Is).

A clone genealogy describes the evolutionary history of a clone pair. We define a clone
genealogy as a finite transition system, G = {S,Act, T rans, I0, A}, where:
– The set of states is S = {Cs, Is};
– The set of actions (i.e., changes) is

Act = {CONc, INCc,RESYNCc,DIVc};
– The transition relations are

T rans = {(Cs, CONc,Cs), (Cs, DIVc, Is),

(Is, INCc, Is), (Is, RESYNCc, Cs)};
– The set of initial states is I0 = {Cs}; and
– The accepting states are A = {Cs, Is}

Figure 1 is a pictorial representation of the clone genealogy transition system. A genealogy
is a finite model, and grows as changes are applied to a clone pair, terminating in either a
consistent or an inconsistent state. A clone pair starts from a consistent state when the clone
pair can be detected. Therefore, a clone genealogy is always initiated in a consistent state.

3.2 Six clone evolutionary patterns

A “clone pair evolutionary pattern” is a path in a graph G. The graph G represents the his-
tory of states and changes for a clone pair. It is a finite sequence of states P = s0s1s2 . . . sn,
where s0, s1, s2, . . . , sn ∈ S = {Cs, Is}. The following six evolutionary patterns define all
possible paths in graph G, where n is an integer ≥ 1:

– Unchanged pattern (UNCp): the clone pair is formed, but never experiences any
changes (i.e., UNCp is defined as the path Cs in graph G).

– Synchronous (SYNCp): the clone pair has experienced one or more changes, but
remains in a consistent state (i.e., SYNCp is defined as the path CsC

n
s in graph G).

– Inconsistent pattern (INCp): after the creation of the clone pair, it transitions to an
inconsistent state without ever experiencing any consistent changes (i.e., INCp is
defined as the path CsI

n
s in graph G).

Software Qual J

– Divergent pattern (DIVp): the clone pair experiences one or more consistent changes
before transitioning to an inconsistent state (i.e., DIVp is defined as the path CsC

n
s In

s

in graph G).
– Late propagation pattern (LPp): the clone pair transitions from a consistent state to

an inconsistent state. Later, it experiences a re-synchronizing change that transitions it
back to a consistent state (i.e., LPp is defined as the path (Cn

s In
s)nCn

s in graph G).
– Late propagation with diversion pattern (LPDIVp): the clone pair undergoes late prop-

agation, but later it experiences a diverging change that brings it back to an inconsistent
state (i.e., LPDIVp is defined as the path (Cn

s In
s)nCn

s In
s in graph G).

A clone pair with an unchanged pattern (UNCp) never changes and therefore has no
evolutionary history. These clone pairs are excluded from our study.

Figure 2 shows an example of inconsistent clone genealogy. The example is a code seg-
ment from a clone containing 18 lines of code and is taken from ARGOUML using the clone
detection tool NICAD. When the clone pair is created in revision 7646, it is in a consistent
state (Cs). Its genealogy is described by the graph G and it exhibits an unchanged pattern
(UNCp). Clone A then experiences a diverging change (DIVc) that modifies several lines
of code. The clone pair is now in an inconsistent state (Is). This gives it the path CsIs in
graph G, which belongs to the inconsistent evolutionary pattern (INCp).

The inconsistent and divergent evolutionary patterns are similar. However, in a divergent
evolutionary pattern (DIVp), a clone pair must experience at least one consistent change
before a diverging change occurs. A clone pair demonstrating an inconsistent evolutionary
pattern (INCp) diverges immediately after the clone pair is formed. Clone pairs exhibiting
an inconsistent pattern (INCp) may be “false positive” clones, since the clone pair never
experiences any consistent or re-synchronizing changes. They may also be intentionally
transitioned to an inconsistent state. For example, a developer may copy a code and then
extensively modify it for a new environment (Kapser and Godfrey 2006). Because clones
exhibiting inconsistent and divergent patterns are not able to be identified by a clone detec-
tion tool, they are more difficult to monitor, and could be more at risk of faults due to a lack
of propagation of changes.

Late propagation (LPp) occurs much less frequently than other evolutionary patterns
(Thummalapenta et al. 2010). However, previous studies (Thummalapenta et al. 2010) have
shown that the late propagation is risky and fault-prone. For example, the diverging change

Fig. 2 An example of an inconsistent genealogy from ArgoUML using NiCad (inconsistent lines are
highlighted)

Software Qual J

in a late propagation may be accidental, given that the clone pair is later re-synchronized.
However, accidental changes to clones are considered risky. Therefore, late propagation is
considered risky (Thummalapenta et al. 2010). Late propagation with diversion (LPDIVp)
is a special case of the late propagation evolutionary pattern. A clone pair first experi-
ences a late propagation evolutionary (LPp) pattern (a diverging change later followed by
a re-synchronizing change). The clone pair then diverges a second time, creating the late
propagation with diversion (LPDIVp) evolutionary pattern. The frequent change of a state
in the late propagation with diversion pattern might indicate that developers have difficulty
in monitoring and propagating changes between clone pairs.

4 Study design

This section describes the setup of our quasi-experiment that aims to identify fault-prone
states and changes in clone genealogies. Figure 3 shows an overview of the steps we use
to extract clone information from a source code repository and build clone genealogies. We
describe our steps in more detail in the following subsections. We share our analytic scripts
and data at: https://github.com/swatlab/clone genealogies.

4.1 Subject systems

We select four open-source Java systems as the subjects systems. All of the subject systems
possess a long development history, which is suitable for our clone genealogy study.

– APACHE ANT is an open-source build-tool with an extensive Java library. We study its
revision history from January 2000 to July 2016.

– ARGOUML is a UML-modeling software system. We study its commit history from
January 1998 to January 2015 (i.e., until the most recent version of the project).

– JEDIT is an open-source text editor built for programmers. It is written in Java, and
provides support for editing more than 200 programming languages. Many plug-ins
have been written for JEDIT. In this study, we only examine the editor. The project
started in 1998 and is still under development. We examine its revision history from
September 2001 to July 2015.

– MAVEN is a build automation tool used primarily for Java projects. We study its commit
history from September 2003 to July 2016.

Table 1 summarizes the characteristics of each system. We use the SLOCCount tool
(Wheeler 2016) to count the total number of lines of code (LOC) and the percentage of
Java code in each project. For each project, we provide LOC for the last studied revision.

Data analysis

Version Control
System (Git)

Extract explanatory
metrics

Perform clone
detection on
each commit

Identify fault-
prone commits

Remove
test files

Build clone
genealogy on

each clone pair

Bug Repository Bug reports

commits
RQ1

RQ2

RQ3

Fig. 3 Overview of the analysis process

https://github.com/swatlab/clone_genealogies

Software Qual J

Table 1 Characteristics of the systems

System # LOC % Java code # Commits # Clones # Genealogies

NiCad iClones NiCad iClones

ARGOUML 253.1k 70.1 17.8k 96.7M 17.3M 16.6k 7.6k

ANT 172.3k 80.0 13.4k 7.8M 7.2M 5.5k 7.1k

JEDIT 215.8k 55.9 7.7k 3.7M 8.8M 6.8k 6.5k

MAVEN 88.2k 79.8 10.3k 1.6M 3.3M 0.7k 0.4k

Table 2 shows the numbers of faulty changes and the numbers of clean changes for each
subject system.

We examined the length of the clone genealogies contained in the selected software
systems and observed that more than 50% of the genealogies only experienced 1–2 changes.

Figures 4 and 5 show the frequency of the number changes in each of the clone genealo-
gies. Overall, although the studied systems contain high numbers of genealogies, the
genealogies tend to be short. In this paper, we do not consider the unchanged clone pattern
(UNCp), hence, all the studied clone genealogies experienced at least one change. Figure 6
depicts the number of clone genealogies deriving from a specific commit. In this figure, we
eliminated outliers. The median value for each project is less than 3, implying that there are
only few clone genealogies starting from each commit.

4.2 Data preprocessing

To analyze a repository’s history, Git provides high-performance functions to extract
changed files, renamed files, and blame faulty files. Since the source code of ArgoUML
and JEdit is managed by SVN, we use Git’s git-svn command to convert the two systems’
repositories to Git. Then, we use the following command to extract each commit’s commit
ID, committer email, commit date, and commit message:

git log --pretty=format:”%H,%ae,%ai,%s”

4.3 Detecting faulty changes

We leverage the SZZ algorithm (Śliwerski et al. 2005) to detect changes that introduced
faults. We first apply Fischer et al.’s heuristic (Fischer et al. 2003) to identity fault-fixing
commits by using regular expressions to detect bug IDs from the studied commit messages.
We then mine the subject systems’ bug tracking systems (issuezilla for ArgoUML, Jira for
Ant and Maven, and SourceForge for JEdit) to extract their bugs’ creation date. Next, we
extract the modified files of each fault-fixing commit through the following Git command:

git log [commit-id] -n 1 --name-status

Table 2 Number of faulty and clean clone changes in each system

NiCad iClones

ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Faulty 3,246 643 49 300 2,967 363 48 256

Clean 2,629 3,440 319 436 1,876 2,292 273 1,168

Software Qual J

0%

10%

20%

30%

40%

1 2 3 4 5 6~10 11~50 >50

0%

10%

20%

1 2 3 4 5 6~10 11~50 >50

0%

10%

20%

30%

1 2 3 4 5 6~10 11~50 >50

0%

10%

20%

30%

40%

1 2 3 4 5 6~10 11~50 >50

Fig. 4 Percentage of the frequency of the number of changes in a studied clone genealogy detected by NiCad

In this paper, we only take modified Java files into account. Given each file F in a commit
C, we extract C’s parent commit C′. For Ant and Maven, we use the [commit-id]ˆ command
to obtain C′; while for ArgoUML and JEdit, since their repositories were converted from
SVN, we find the C’s precedent commit C′ by time, i.e., C′ is the nearest commit prior
to C. Then, we use Git’s diff command to extract F ’s deleted lines. We apply Git’s blame

0%

5%

10%

15%

20%

1 2 3 4 5 6~10 11~50 >50

0%

10%

20%

30%

40%

1 2 3 4 5 6~10 11~50 >50

0%

10%

20%

30%

1 2 3 4 5 6~10 11~50 >50

0%

20%

40%

60%

80%

1 2 3 4 5 6~10 11~50 >50

Fig. 5 Percentage of the frequency of the number of changes in a studied clone genealogy detected by iClones

Software Qual J

4

8

12

16

Ant ArgoUML JEdit Maven

4

8

12

16

Ant ArgoUML JEdit Maven

Fig. 6 Number of clone genealogies starting from a specific commit

command to identify commits that introduced these deleted lines, noted as the “candidate
faulty changes.” We eliminate the commits that only changed blank and comment lines.
Finally, we filter the commits that were submitted after their corresponding bugs’ creation
date.

4.4 Extracting clone genealogies

Extracting clone genealogies from each subject system requires three steps: removing test
files, detecting clones, and building clone genealogies.

Removing test files Test files are frequently copied and then modified to create multi-
ple test cases, so they often contain clones. These files are used for development purposes
and not used during the normal execution of the system. They may also contain syntacti-
cally incorrect code. For all these reasons, we believe that clones in test code should be
studied separately from clones in production code. Therefore, we exclude test files from
our study. In future work, we plan to examine the evolution of clones in test code which
are nevertheless clones and need to be maintained. To remove the test files, we perform a
search on each system for files and folders with a filename containing the word “test.” We
then manually verify each file before removing it from the study to prevent the automatic
removal of a non-test file, such as a file with the name “updateState.java.” At the end of this
semi-automatic process, we also manually verify all the remaining files in our data set, to
ensure that no semantically test-related files remain in the data set of our study.

Software Qual J

Detecting clones We use two existing clone detection tools to detect clones in the four
systems: NICAD(Roy and Cordy 2008) and ICLONES (Gode and Koschke 2009). We use
the most recent versions of both tools: NICAD-4 and ICLONES-0.2. We select these two
clone detection tools because they are recommended by Svajlenko and Roy (2014) who
compared the performance of 11 clone detection tools from the literature. Today, NiCad and
iClones are considered as state-of-the-art tools by the clone community (Svajlenko and Roy
2014).

Both NiCad and iClones use a hybrid approach to detect clones. We use the default
settings of Nicad to detect clones greater than 10 lines of code, while using the default
setting of iClons to detect clones with minimum 100 tokens. We detect identical clones
and clones where the variable names are different (i.e., “blindrename”). The same settings
were used by Svajlenko and Roy (2014) in their comparison of 11 clone detection tools.
With these settings, NiCad and iClones were found to achieve higher precision and recall in
comparison to the other nine clone detection tools that were studied.

We use the Git checkout command to retrieve a system’s snapshot for a specific commit.
Then we perform clone detection on each of the snapshots of the studied systems. Table 1
summarizes the number of clone pairs and clone genealogies found in each subject system
using both clone detection tools. For ArgoUML and Ant, Nicad detected more clone pairs
than iClones; while for JEdit and Maven, iClones detected more clone pairs. This difference
in the number of clones found by the two detection tools is likely due to the lack of agree-
ment on the definition of code clones (Lakhotia et al. 2003) and to the implementation of
the tools.
Building clone genealogies Each clone detection tool outputs a list of clones within each
source code repository. To create a set of clone pair genealogies, we link the clone pairs
between each commit. A change to a clone can affect its size. A change to the file containing
the clone, even if it does not affect the clone itself, can shift the clone’s line numbers. To
account for these changes when mapping clones, we use the Git diff command to query for
a list of changes to each Java file. We limit our genealogies to describe only changes that
modify the clone contents, not the clone line numbers. This is because a shift in the line
numbers cannot cause the clone pair to transition to a different state.

We build a clone genealogy for each clone pair detected by the clone detection tool.
We first extract a system’s commit sequence list. For ArgoUML and JEdit, which were
originally managed by SVN, we sort their commits by time in ascending order. For Ant
and Maven, which are managed by Git, we make a list and put a system’s last commit as
the first element. Then we recursively look for the list’s last element’s parent commit until
the system’s first commit is met. We reverse the lists to obtain Ant and Maven’s commit
sequence lists.

For each clone pair, we track its modification in every commit along the commit sequence
list. If a commit, Cnew , changed a file that contains code in the clone pair, we use the diff
command to compare the commit with its previous commit, Cold , in order to check whether
the clone snippets are modified and to map the start line and end line numbers from Cold

to Cnew . We use Python’s third-party patch parsing library whatthepatch (Corley 2016) to
extract the line mapping on a clone file between Cold and Cnew . In case that the first lines,
L1 ∼ Ln, of a clone snippets are deleted in Cold and no corresponding line added in Cnew

to replace these deleted lines, we map Ln+1 from Cold to Cnew as the start line. Similarly,
in case that the last lines, Lx ∼ Lx+n are deleted in Cold and no corresponding line added
in Cnew to replace them, we map Lx−1 from Cold to Cnew as the end line.

We decide whether a clone is changed when there is any deleted or added lines performed
in the clone’s boundaries. If a clone is modified, we determine whether the new state of the

Software Qual J

clone pair is inconsistent (Is) or consistent (Cs). We verify this by searching the clone pair
list generated by a clone detection tool. We query the list for a matching clone pair in the
new commit, Cnew , that contains the start and end line numbers of the clone pair. If no clone
pair is found, then the state of the clone is inconsistent and an inconsistent state (Is) is added
to the genealogy. If a clone is found, then a consistent state (Cs) is added to the genealogy. This
process is repeated for each commit in the commit sequence list or until one or both of the
clones is deleted. We use the following command to extract renamed files in a new commit:

git diff [old-commit] [new-commit] --name-status -M

This command can extract file pair, where a file is deleted and another file is added in the
new commit and the two files have a code similarity greater than 50%. In this paper, we
only consider the file pairs with more than 99% of code similarity as renamed files. When
searching the clone sequence list, we allow a matching clone to be bigger than the clone
pair, and contain the smaller clone. For example, if one of the clones in a clone pair is from
lines 1 to 10, a matching clone in the clone pair list could be from lines 1 to 20. Although
we add the bigger clone from the clone pair list to our genealogy, we continue to monitor
only the smaller clone to generate the genealogy. The bigger clone (i.e., lines 1 to 20 in our
example) might disappear in a future revision, but the smaller clone (i.e., lines 1 to 10 in our
example) persists after the bigger clone is removed.

5 Study results

This section reports and discusses the results of our study.

5.1 RQ1: Which clone evolutionary patterns and clone changes are most at risk
of faults?

Motivation Developers are interested in identifying areas of a software applications that
have a higher likelihood of faults. Previous studies (Kamiya et al. 2002) have identified
clones as more fault-prone than non-cloned code. Clones occur frequently, with as much
as one fifth of a software system containing duplicate code (Roy and Cordy 2007). How-
ever, not all the clones lead to faults. It can be resource consuming to monitor all clone
pairs for faults. It is beneficial if we can identify characteristics of fault-prone clone pairs,
risky clone pairs can be highlighted for monitoring. In this research question, we examine
whether the evolutionary pattern exhibited by the clone pair can be used to locate fault-prone
clone pairs. Additionally, we study the different changes described in Section 3 to deter-
mine whether some types of changes are more likely to induce faults than others. This will
make developers more aware of the potential risk of performing a specific type of change to
a system.

Approach We examine this research question using the odds ratio (OR) and validate the
statistical significance of the results using the Fisher’s exact test. The Fisher’s exact test
(Sheskin 2007) determines whether there are non random associations between two categor-
ical variables (e.g., a clone evolutionary pattern and the occurrence of faults). In this paper,
we use a 95% confidence level (i.e., α = 0.05) as the cutoff to decide whether there exists
statistically significant difference between a clone evolutionary pattern and the occurrence
of faults. Since we will perform more than one comparison, we use Bonferroni correction
(Dmitrienko et al. 2005) to control the familywise error rate. Concretely, we use the adjusted

Software Qual J

p value, which is multiplied by the number of comparisons. The odds ratio compares the
odds of an event occurring in two different groups, the “control” group and the “experi-
mental” group. An OR = 1 implies that the event is equally likely in both the control and
experimental group, an OR > 1 implies that the event is more likely in the experimental
group, and an OR < 1 implies that it is more likely in the control group. An OR value close
to zero or infinity means that the difference between the ratios of the odds of experiencing
a fault by clone evolutionary patterns from the two groups is very large.

After building the set of clone genealogies for a subject system, we identify all clone
evolutionary patterns within the genealogies. For each genealogy graph G, we visit each
state in G and identify the clone evolutionary pattern (i.e., the path P). Using the SZZ
algorithm described in Section 4.3, we identify faulty states. We also check each change
within the genealogy graph G to determine the type of the change, and verify whether the
change is fault-inducing.

For the result of each clone detection tool, we perform the following three tests:

Faults vs. clone evolutionary patterns Using the synchronous (SYNCp) evolutionary
pattern as the control group, we calculate the odds ratios between the control group and each
of the different evolutionary patterns (the “experimental” groups). We test the following null
hypothesis H01: Each type of clone evolutionary pattern has the same proportion of clone
pairs that experienced a fault-inducing change.

We chose the SYNCp evolutionary pattern as our control group because we expect that
clones that are maintained consistently (all the changes are propagated on time consistently)
throughout their evolution history would be less prone to faults than others.

Faults vs. Changes Using consistent changes (CONc) as our control group, we calculate
the odds ratios between the consistent changes and each of the different types of changes.
We test the following null hypothesis H02: Each change type has the same proportion of
clone pairs that experienced a fault fix as a consequence of the change.

We chose CONc changes as our control group because we expect a change that keeps
two clone fragments in a consistent state to be less risky (i.e., to have a low probability of
introducing a fault in the system).

Faults vs. evolutionary patterns and changes We examine evolutionary patterns and
changes together to determine the most fault-prone changes when a clone pair exhibits a
specific clone evolutionary pattern (e.g., late propagation followed by a consistent change).
Using the inconsistent (INCp) evolutionary pattern followed by a diverging change (INCc)
as the control group, we calculate the odds ratio between the control group and each of the
different combinations of evolutionary patterns and changes. Each evolutionary pattern can
be followed by only two of the four types of changes. The final state of a clone evolutionary
pattern is always consistent for the pattern. For example, a synchronous pattern (SYNCp)
will always end in a consistent state (Cs). Therefore, a clone pair can only be in one of
two states at any time (i.e., consistent or inconsistent). Each state only has two possible
transitions, with each transition representing a change to a clone pair. For example, since a
late propagation (LPp) ends in a consistent state (Cs), it can only be followed by a consistent
change (CONc) or a diverging change (DIVc). We test the following null hypothesis: H03:
Each combination of evolutionary pattern and change type has the same proportion of clone
pairs that experienced a fault fix as a consequence of the change.

We chose the inconsistent (INCp) evolutionary pattern followed by a diverging change
(INCc) as our control group because we expect this combination of pattern and operation

Software Qual J

to be the riskiest. Clones that experience these operations cannot be tracked with a clone
detection tool, hence, developers can easily fail to propagate changes to clone fragments.
The combination of INCp and INCc is therefore a good reference upon which we can
compare the odds of faults occurring in the other combinations of genealogies and change
operations.

Results We now discuss the results of the aforementioned three tests. Each of the following
subsections summarizes the results for one of the three tests. For each evolutionary pattern,
change, and combination of genealogy and change, we provide the number of faulty and
clean occurrences in Tables 3, 5, and 7.

Faults vs. clone evolutionary patterns Table 4 summarizes the results of the odds ratio
and Fisher’s exact test. For each clone evolutionary pattern we show the obtained odds ratios
and p-values. If an adjusted p-value of the Fisher’s exact test is less than 0.05, it is marked
in italics (Table 5).

For all studied system, when the p value is less than 0.05 (i.e., the difference is statisti-
cally significant), the OR values of INCp, DIVp , LPp , and LPDIVp are greater than 1;
meaning that the risk for faults is higher when clones follow other patterns in comparison to
the SYNCp pattern. In JEdit and Maven, we could not find enough occurrences of LPp or
LPDIVp , which may lead to some insignificant p values. Since all the obtained OR values
are �= 1, we reject H01.

Faults vs. changes The results of the odds ratio and Fisher’s exact test are summarized in
Table 6. For each type of change, we show the obtained odds ratios and p-values.

Table 3 Contingency tables for clone evolutionary patterns

The grey background indicates the control group

Software Qual J

Table 4 Statistical analyses for clone evolutionary patterns

Significant p values are marked in italics

The grey background indicates the control group

For all studied system (with the exception of RESYNCc detected by NiCad for
ArgoUML), when the p-value is less than 0.05 (i.e., the difference is statistically signif-
icant), the OR values of DIVc, INCc, and RESYNCc are greater than 1; meaning that
all of the changes are more fault-prone than consistent changes (CONc). These results
are expected, because clone pairs experiencing inconsistent changes are difficult to moni-
tor using clone detection tools and are more likely to cause bugs. For Maven, none of the
results is statistically significant (all adjusted p-values are > 0.05). Hence, we cannot reject
H02. We explain this outcome by the low number of DIVc, INCc, RESYNCc changes
performed in Maven, compared to other systems (Table 7).

Table 5 Contingency tables for clone pair changes

The grey background indicates the control group

Software Qual J

Table 6 Statistical analyses for clone pair changes

Significant p values are marked in italics

The grey background indicates the control group

Faults vs. evolutionary patterns and changes The results of the odds ratio and Fisher’s
exact test are summarized in Table 8. For each combination of clone evolutionary pattern
and type of change, we show the obtained odds ratios and p values.

Table 7 Contingency tables for evolutionary patterns and changes

The grey background indicates the control group

Software Qual J

Table 8 Statistical analyses for evolutionary patterns and changes

Significant p values are marked in italics

The grey background indicates the control group

Using the NiCad clone detection tool, we obtained the following results: In ArgoUML,
Ant, and JEdit, a consistent change on a clone pair that follows the SYNCp pattern is less
likely to introduce a fault than an inconsistent change on a clone pair that follows the INCp

pattern. This result is statistically significant (adjusted p value <0.01).
In ArgoUML and Ant, a re-synchronizing change on a clone pair that follows the INCp

pattern or follows the DIVp pattern is less likely to introduce a fault than an inconsistent
change on a clone pair that follows the INCp pattern. This result is statistically significant
(adjusted p value <0.01).

In Ant, an inconsistent change on a clone pair that follows the DIVp pattern is more
likely to introduce a fault than an inconsistent change on a clone pair that follows the INCp

pattern. This result is statistically significant (adjusted p value <0.01).
In ArgoUML, an inconsistent change on a clone pair that follows the DIVp pattern, a

re-synchronizing change that follows the late propagation patten, as well as a consistent
change that follows the late propagation pattern are more likely to introduce a fault than an
inconsistent change on a clone pair that follows the INCp pattern. This result is statistically
significant (adjusted p value <0.01).

Using the iClones clone detection tool, we obtained the following results: In Ant and
JEdit, a consistent change on a clone pair that follows the SYNCp pattern is less likely to
introduce a fault than an inconsistent change on a clone pair that follows the INCp pattern.
This result is statistically significant (adjusted p value <0.01).

Software Qual J

In ArgoUML and Ant, a re-synchronizing change on a clone pair that follows the INCp

pattern is less likely to introduce a fault than an inconsistent change on a clone pair that
follows the INCp pattern. This result is statistically significant (adjusted p value <0.01).

In ArgoUML and JEdit, a diverging change on a clone pair that follows the SYNCp

pattern is more likely to introduce a fault than an inconsistent change on a clone pair that
follows the INCp pattern. This result is statistically significant (adjusted p value <0.01).

In ArgoUML, a consistent change following the SYNCp pattern, an inconsistent change
following the DIVp , as well as a consistent change following the LPp pattern are more
likely to introduce a fault than an inconsistent change on a clone pair that follows the INCp

pattern. This result is statistically significant (adjusted p-value < 0.05).
In Ant, an inconsistent change on a clone pair that follows the LPDIVp pattern is more

likely to introduce a fault than an inconsistent change on a clone pair that follows the INCp

pattern. In addition, a diverging change following the SYNCp, a re-synchronizing change
following the DIVp or the LPDIVp , as well as a consistent change following the LPp

pattern are less likely to introduce a fault than an inconsistent change following the INCp

pattern. This result is statistically significant (adjusted p-value < 0.05).
In the case of Maven, there is no statistically significant result. Hence, we cannot reject

H03.

5.2 RQ2: Does the size of a clone or the time interval between changes affect
the fault-proneness of a clone pair?

Motivation In this question we examine the effect of two metrics on fault-proneness: the
time interval since the last change and the size of the clone. We examine the time inter-
val because it is believed that a long time interval between changes will lead a developer
to become unfamiliar with the code, causing an increase in the number of faults. It is also
expected that a smaller clone will be less prone to faults, as it is less complex and may
require less effort to modify. Using our set of clone pair genealogies, we examine whether
the time interval between changes or the size of the clone relates to faults. An evolutionary
history of a clone pair tracks the types and frequency of changes to clone pairs. By exam-
ining the evolutionary history of clone pairs, we can determine whether fault-proneness is
affected by either of these two metrics.

Approach In this question, we classify each change by the time interval since the last
change. We divide the changes into five time periods: one day, one week, one month, one
year, and more than one year. We performed this discretization because the Fisher test
requires categorical variables. A change is flagged if it is fault-inducing. Using “One Day”
as the control group, we calculate the odds ratios between the control group and each of the
other time period and perform the Fisher’s exact test. We test the following null hypothe-
sis H04: The time interval between modifications to a clone pair has no relationship with
faults.

When examining the effect of clone size on faults, we examine each state from each
genealogy graph G. For each state, we identify the evolutionary pattern of the clone pair

Software Qual J

and measure the number of lines of cloned code in a clone pair. The size of the clone is then
labeled as either “big” if it is greater than or equal to the median lines of clone of a studied
system detected by the tool, or “small” if it is smaller than the median lines of clone of the
system detected by the tool. For each state, we use the SZZ algorithm to determine whether
it is faulty or not. We calculated the odds ratios and the p value of the Fisher’s exact test,
and test the following null hypothesis H05: The size of the clone has no relationship with
faults. When calculating the odds ratio, we select the synchronous evolutionary pattern with
a small clone size as our control group. Since a large size is known to be correlated with a
high risk of fault, we expect the synchronous evolutionary pattern with a small clone size
to be less fault-prone than the other patterns, hence our choice of this pattern as our control
group.

To better understand the correlational relationship between bug-proneness and time inter-
val (respectively clone size), we build a linear regression model for each studied system.
The linear regression models have the following form:

Faulty = αInterval + βSize + γ (1)

We leverage R to create the GLM models, in which, time interval and clone size are
independent variables, and whether a clone is faulty is the dependent variable. We will
compare the explanatory power of time interval and clone size with other metrics in RQ3.

Results In this subsection we summarize our results when investigating the relationship
between the time interval between changes or the size of the clone and faults. For each time
interval and evolutionary pattern considering cloned code size, we provide the number of
faulty and clean occurrences in Tables 9 and 11.

Faults and time interval between changes Table 10 summarizes the results of the Odds
ratio and Fisher tests. We obtained the following result with NiCad: For ArgoUML, changes
occurring after one week are always less fault-prone than changes performed within a day.
For Ant, on the contrary, any changes occurring after one week are always more fault-
prone than changes performed within a day. For JEdit, changes occurring after one week
and less than one year are less fault-prone than changes performed within a day; while

Table 9 Contingency tables for evolutionary patterns considering the time interval between changes

The grey background indicates the control group

Software Qual J

Table 10 Statistical analyses for evolutionary patterns considering the time interval between changes

Significant p values are marked in italics

The grey background indicates the control group

Table 11 Contingency tables for evolutionary patterns considering the cloned code sizes

The grey background indicates the control group

Software Qual J

changes occurring after a year become more fault-prone than changes performed within a
day. Regarding Maven, none of the results is statistically significant (Table 11).

But when we look at the results obtained with iClones, we see that for ArgoUML,
changes occurring after one week but within one month, as well as changes occurring after
more than one year are less fault-prone than changes performed within a day. For Ant, we
obtained the same results as those of NiCad. For JEdit, changes occurring after one week are
always less fault-prone than changes performed within a day. For Maven, changes occurring
after one year are more fault-prone than changes performed within a day.

Table 13 shows the coefficients and p values in the linear regression model that inves-
tigates how time interval of changes and size impact the fault-proneness. Figures 7 and 8
depict the trends of the fault-proneness probability changes, with respect to the time inter-
val. Based on the results of both clone detection tools, the probability of fault-proneness
increases with the increase of the time interval for Ant; while the probability decreases with
the increase of the time interval for ArgoUML. For JEdit and Maven, the trends diverge
depending on different clone detection tools. Some of the results seem inconsistent with
the those from Table 10 because time interval and size can interfere with each other in the
regression model. In the future, we plan to build non-linear regression models (Harrell 2013)
to explore whether the models contain any knot that changes the direction of the trends. This
kind of model can better reflect trends obtained for JEdit results based on NiCad’s detec-
tion in Table 10. In summary, the results are system dependent, so we cannot reject H04 in
general.

Faults and size of clone The odds ratios of the evolutionary patterns classified by the size
of the clone are summarized in Table 12.

Consistent with our findings from RQ1, most patterns involved with inconsistent change
are more fault-prone than SYNCp small, except SYNCp big for ArgoUML and Ant based
on iClones’ detection. This exception may be due to the relatively small time interval

0.1

0.2

0.3

0.4

0 500 1000 1500

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000

0.3

0.4

0.5

0 500 1000 1500 2000 2500
0.35

0.40

0.45

0.50

0.55

0 500 1000 1500 2000

Fig. 7 Estimated fault-proneness probability for various time interval sizes (in days) based on NiCad’s detection

Software Qual J

0.45

0.50

0.55

0.60

0.65

0.70

0 500 1000 1500

0.30

0.35

0.40

0.45

0.50

0.55

0 1000 2000 3000 4000

0.15

0.20

0.25

0.30

0.35

0.40

0 1000 2000

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

Fig. 8 Estimated fault-proneness probability for various time interval sizes (in days) based on iClones’
detection

observed between the big changes, which can also explain the trend of ArgoUML in Fig. 8.
Once again, the time interval and size factors may interfere with each other. From the results
of Table 12, we can reject H05.

Table 13 shows the coefficients and p-values in the linear regression model that inves-
tigates how cloned code sizes affect fault-proneness. Figures 9 and 10 depict the trends of
the fault-proneness probability changes with respect to the size of the clones. Based on the
results of both clone detection tools, the probability of fault-proneness increases with the
increase of the cloned size for Ant; while the probability decreases with the increase of the
cloned size for JEdit. For ArgoUML and Maven, the trends diverge depending on different
clone detection tools.

5.3 RQ3: Can we predict faults in software clones using clone genealogy
information?

Motivation Tracking the genealogy of all clone pairs in an entire system is resource inten-
sive. When building prediction models to identify faulty code clones, developers face a
tradeoff between relying on only traditional fault prediction metrics or collecting additional
genealogy metrics which provide richer information on the history of a clone pair. Knowing
the gain achieved by adding genealogy metrics to fault explanatory models is important to
help developers decide whether the added effort justifies the results.

Software Qual J

Table 12 Statistical analyses for evolutionary patterns considering the cloned code sizes

The grey background indicates the control group

Approach In this question, we propose metrics to capture the genealogy information of
a clone pair. We combine these metrics with traditional product and process metrics and
investigate their statistical relationships with future faults in cloned code. Table 14 presents
the description of all the metrics used in this study. The metrics are divided into three
categories: product metrics, process metrics and genealogy metrics. Product metrics can
be collected using the snapshot of the system that contains the clone pair. For example,

Table 13 Coefficients and p values of the linear regression model on the relationship between fault-
proneness and time interval of changes as well as cloned code size

System Interval p value Size p value

NiCad

ArgoUML −0.0009 <0.0001 0.022 <0.0001

Ant 0.0002 <0.0001 0.0026 <0.0001

JEdit 0.0004 <0.0001 0.0026 <0.0001

Maven −0.0001 0.43 −0.0018 0.26

iClones

ArgoUML −0.0004 <0.0001 −0.010 <0.0001

Ant 0.0002 <0.0001 0.0024 <0.0001

JEdit −0.0002 <0.0001 −0.049 <0.0001

Maven 0.0009 <0.0001 −0.0051 0.047

Software Qual J

0.4

0.6

0.8

1.0

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0 100 200 300 400

0.1

0.2

0.3

30 60 90

0.3

0.4

0.5

50 100 150

Fig. 9 Estimated fault-proneness probability for various clone sizes based on NiCad’s detection

“CPathDepth” describes the number of folders that the clones in a clone pair have in com-
mon within the system directory structure. Process metrics are collected using the history
of changes on clone pairs. For example, “TPC” measures the total number of changes in the
history of a clone. Genealogy metrics capture state changes in the history of clone pairs. For
example, “EConStChg” measures the number of consistent changes of states within a clone
pair genealogy.

0.2

0.4

0.6

0.8

0 50 100 150 200

0.3

0.4

0.5

0.6

0 100 200 300 400

0.0

0.2

0.4

0.6

20 40 60 80

0.2

0.3

0.4

0.5

25 50 75 100 125

Fig. 10 Estimated fault-proneness probability for various clone sizes based on iClones’ detection

Software Qual J

Table 14 Clone pair metrics

Metrics Description

Product metrics

CLOC The number of cloned lines of code.

CFltF ix The current commit was a fault fix (true or false).

CPathDepth The number of common folders within the project directory structure.

CCurSt The current state of the clone pair (consistent or inconsistent).

CommitterExp The experience of a committer (i.e., the number previous commits
submitted before a specific commit).

Process metrics

EFltDens The number of fault fix modifications to the clone pair since it was
created divided by the total number of commits that modified the clone
pair.

T Churn The sum of the added and changed lines of code in the history of a
clone.

T PC The total number of changes in the history of a clone.

NumOf Bursts The number of change bursts on a clone. A change burst is a sequence
of consecutive changes with a maximum distance of one day between
the changes.

SLBurst The number of consecutive changes in the last change burst on a clone.

CFltRate The number of fault-prone modifications to the clone pair divided by
the total number of commits that modified the clone pair.

Genealogy metrics

EEvPattern One of SYNCp , DIVp , INCp , LPp , or LPDIVp .

EConChg The number of consistent changes experienced by the clone pair.

EIncChg The number of inconsistent changes experienced by the clone pair.

EConStChg The number of consistent change of state within the clone pair genealogy.

EIncStChg The number of inconsistent change of state within the clone pair genealogy.

EFltsConStChg The number of re-synchronizing changes (i.e., RESYNCc) that were a fault fix.

EFltIncStChg The number of diverging changes (i.e., DIVc) that were a fault fix.

EChgT imeInt The time interval in days since the previous change to the clone pair.

For each state in a clone genealogy instance, we collect all the metrics from Table 14.
Since each clone in the clone pair will have its own set of metrics (e.g., MLOC), we com-
pute the maximum value of each metric across the two clones. To reduce the skewness
observed on metric values, we apply a standard log transformation to each metric. From the
measurements obtained, we create linear regression models that set the number of reported
faults in relation to our three groups of metrics. The linear regression models have the
following form:

Faults =
∑

i

αiP roductMi +
∑

j

βjP rocessMj

+
∑

k

γkGenealogyMk + δ (2)

With this model, we investigate the statistical relationships between product, process
and genealogy metrics, which are represented by the regression variables (ProductMi ,

Software Qual J

ProcessMj , and GenealogyMk), and the number of reported faults, represented by the
dependent variable of the model (Faults). We follow the same methodology as in the work
of Cataldo et al. (2009). First, we compute the variance inflation factors (VIF) (Kutner et al.
2004) of each metric to examine multi-collinearity between the variables of our regression
model. Next, we construct Generalized Linear Models to investigate the relative impact of
each of our three groups of metrics on future faults. We remove from the models all variables
with VIF > 5, as recommended by Rogerson (2010).

We create the models following a hierarchical modeling approach: we start out with a
baseline model that contains only product metrics as regression variables. We then build
subsequent models by adding step by step, respectively, process metrics and clone geneal-
ogy metrics. We chose to follow a hierarchical modeling approach because contrary to a
step-wise modeling approach, the hierarchical approach has the advantage of minimizing
the artificial inflation of errors and therefore the overfitting (Cataldo et al. 2009).

We report for each statistical model the explanatory power, deviance, of the model and
the percentage of deviance explained. The deviance of a model M is defined as D(M) =
−2.LL(M), where LL(M) is the log-likelihood of the model M . The deviance explained is
the ratio between D(Faults ∼ Intercept) and D(M). For each subsequent model MS+E

derived from a model MS , we also test the statistical significance of the difference between
MS+E and MS . For each explantory metric, we report its corresponding p-values. We use
the varImp package in R to calculate the importance of the metrics, and report the top 3
metrics, which have the strongest explanatory power.

Results In this subsection we describe the results for RQ3. Tables 15 and 16 presents the
results of our hierarchical analysis. In these tables, MS represents a model built using prod-
uct metrics only (i.e., the basic model). MS+E is a model built using product and process
metrics, while MS+E+G is a model containing product, process and genealogy metrics.
The results of Tables 15 and 16 show that genealogy metrics only slightly contribute to the
explanatory power of the fault-proneness models. The biggest improvement is obtained on
Maven (i.e., 2.1%) thanks to the EchgTimeInt metric.

On average, the explanatory power of a fault prediction model built using both product
and process metrics (i.e.,MS+E) is increased by 4.3% when genealogy information is added
to the model. This increase is statistically significant. The increase is the highest for Ant
when the iClones detection tool is used (i.e., 8.5%).

6 Discussion

Our identification of clone genealogies are based on a line mapping algorithm, which
may not be 100% accurate. To examine the accuracy of our results, we manually exam-
ined 50 commits that generated more than 10 new clone genealogies. We found that

Software Qual J

Ta
bl
e
15

H
ie
ra
rc
hi
ca
la
na
ly
si
s
of

lin
ea
r
re
gr
es
si
on

m
od
el
s
fo
r
N
iC
ad

A
rg
oU

M
L

A
nt

JE
di
t

M
av
en

M
et
ri
cs

M
S

M
S
+E

M
S
+E

+G
M

S
M

S
+E

M
S
+E

+G
M

S
M

S
+E

M
S
+E

+G
M

S
M

S
+E

M
S
+E

+G

C
L
O
C

0.
81
**
*

0.
35
**
*

0.
38
**
*

0.
09
**
*

0.
09
**
*

0.
13
**
*

−0
.1
3*
**

−0
.0
2*
**

−0
.0
7*

−0
.0
3

−0
.0
8

−0
.0
6

C
Fl
tF
ix

−0
.0
7

−0
.9
9*
**

−1
.0
3*
**

−0
.5
6*
**

−0
.5
0*
**

−0
.6
8*
**

−0
.7
4*

−3
.7
0*
**

−3
.5
6*
**

0.
34
*

−0
.2
7

−0
.2
6

C
Pa
th
D
ep
th

0.
02

0.
05
9*

0.
06
*

−0
.1
5*
**

−0
.2
1*
**

−0
.2
3*
**

−1
.4
7*
**

−1
.4
0*
**

−1
.4
0*
**

0.
07

0.
07

0.
08

C
C
ur
St

0.
66
**
*

0.
30
**
*

0.
77
**
*

1.
77
**
*

1.
44
**
*

1.
47
**
*

1.
48
**
*

0.
71
**
*

1.
37
**
*

−0
.1
2

−0
.1
5

−0
.4
1

E
xp
er
ie
nc
e

−0
.1
7*
**

−0
.1
7*
**

−0
.1
7*
**

−0
.1
2*
**

−0
.1
3*
**

−0
.1
3*
**

0.
64
**
*

7.
38
**
*

0.
70
**
*

0.
06

0.
06

0.
07
*

E
fl
tD
en
s

1.
92
**
*

2.
11
**
*

−3
.8
2*
**

−3
.1
4*
**

7.
38
**
*

7.
18
**
*

1.
48
**
*

1.
43
**
*

T
C
hu
rn

0.
21
**
*

0.
20
**
*

−0
.0
3*

−0
.0
2

0.
34
**
*

0.
36
**
*

0.
11

0.
11
*

T
PC

0.
08
**
*

−
0.
03

−
−0

.0
9*
**

−
−0

.2
4*

−
N
um

O
fB
ur
st
s

−
−

−
−

−
−0

.0
5*
*

−
−

SL
B
ur
st

−0
.1
1*

−0
.1
0*

−0
.6
2*
**

−0
.5
9*
**

0.
08

−0
.1
2*
*

0.
12

0.
18

C
Fl
tR
at
e

1.
79
**
*

1.
77
**
*

2.
14
**
*

2.
04
**
*

−0
.8
3*
**

−0
.7
5*
**

0.
58
**

0.
59
**

E
E
vP

at
te
rn

−
−

−
−

E
C
on
C
hg

−
0.
23
**
*

−
−

E
In
cC

hg
−

−
−

−
E
C
on
St
C
hg

0.
26
**
*

−
−

−0
.3
6*

E
In
cS
tC
hg

−0
.0
8*
*

−0
.1
3*
**

−
−0

.1
4

E
Fl
ts
C
on
St
C
hg

1.
15
**
*

−0
.2
1

−0
.2
8

−0
.3
1

E
Fl
tI
nc
St
C
hg

−0
.5
8*
**

0.
07

0.
20
**

0.
22

E
C
hg
T
im

eI
nt

−0
.0
06

0.
13
**
*

−0
.0
5*
**

0.
03

D
ev
ia
nc
e

48
54
4

46
27
2

46
05
7

29
64
6

28
30
5

27
73
0

36
89
4

35
77
3

35
73
6

25
13

24
86

24
82

D
ev
.E

xp
la
in
ai
ne
d

8.
2%

12
.5
%

12
.9
%

10
.7
%

14
.7
%

16
.2
%

9.
7%

12
.4
%

12
.5
%

0.
7%

1.
8%

1.
9%

D
el
ta
de
vi
an
ce

22
72

21
5

13
41

48
5

11
21

37
27

4
To

p
va
ri
ab
le
s

C
Fl
tR
at
e

C
Fl
tR
at
e

E
Fl
tD
en
s

E
xp
er
ie
nc
e

C
C
ur
St

C
Fl
tR
at
e

C
L
O
C

E
ch
gT

im
eI
nt

E
co
nS

tC
hg

*
p
va
lu
e

<
0.
05
,*

*
p
va
lu
e

<
0.
01
,*

**
p
va
lu
e

<
0.
00
1;

ot
he
rw

is
e,

p
va
lu
e

≥
0.
05

–
m
et
ri
c
re
m
ov
ed

by
th
e
V
IF

an
al
ys
is

Software Qual J

Ta
bl
e
16

H
ie
ra
rc
hi
ca
lA

na
ly
si
s
of

L
in
ea
r
R
eg
re
ss
io
n
M
od
el
s
fo
r
iC
lo
ne
s

A
rg
oU

M
L

A
nt

JE
di
t

M
av
en

M
et
ri
cs

M
S

M
S
+E

M
S
+E

+G
M

S
M

S
+E

M
S
+E

+G
M

S
M

S
+E

M
S
+E

+G
M

S
M

S
+E

M
S
+E

+G

C
L
O
C

−0
.3
2*
**

−0
.4
3*
**

−0
.4
3*
**

−0
.0
05

−0
.1
0*
**

−0
.0
4*
**

0.
06

0.
08

0.
14
*

−0
.3
2*
*

−0
.3
7*
*

−0
.2
3

C
Fl
tF
ix

−1
.1
0*
**

−1
.1
3*
**

−1
.1
**
*

−0
.4
3*
**

−0
.6
2*
**

−0
.7
6*
**

0.
18

−0
.7
4*

−0
.7
0*

−0
.5
6*
*

−0
.9
7*
**

−0
.9
1*
*

C
Pa
th
D
ep
th

0.
36
**
*

0.
19
**
*

0.
20
**
*

−0
.5
9*
**

−0
.5
2*
**

−0
.5
0*
**

−1
.9
6*
**

−2
.4
9*
**

−2
.4
7*
**

0.
09

0.
07

0.
07

C
C
ur
St

0.
21
**
*

−0
.1
8*
**

−0
.1
5*
*

1.
29
**
*

0.
72
**
*

0.
45
**
*

1.
86
**
*

2.
16
**
*

−
−0

.2
9*

−0
.3
6*
*

−
E
xp
er
ie
nc
e

−0
.0
04

−0
.0
07

−0
.0
08

−0
.1
4*
**

−0
.1
7*
**

−0
.1
7*
**

0.
40
**
*

0.
37
**
*

0.
31
**
*

−0
.0
4

−0
.0
4

0.
02

E
fl
tD
en
s

−0
.0
3

−0
.0
4

−4
.3
2*
**

−4
.1
9*
**

4.
95
**
*

5.
09
**
*

0.
85

0.
66

T
C
hu
rn

0.
42
**
*

0.
42
**
*

0.
12
**
*

0.
12
**
*

0.
10
**
*

0.
08
**

0.
08

0.
08

T
PC

0.
01

−
0.
42
**
*

−
−

−
−0

.1
4

−0
.5
0*
**

N
um

O
fB
ur
st
s

−
−

−0
.4
4*
**

0.
28
**
*

−0
.0
4

−0
.0
8*
*

−
−

SL
B
ur
st

−0
.2
0*
**

−0
.2
2*
**

−0
.2
5*
**

−0
.2
2*
**

0.
58
**
*

0.
02

0.
10

0.
62
**

C
Fl
tR
at
e

1.
70
**
*

1.
71
**
*

2.
70
**
*

2.
60
**
*

−1
.8
9*
**

−1
.5
1*
**

0.
86
**
*

0.
86
**
*

E
E
vP

at
te
rn

−
−

−
−

E
C
on
C
hg

−
−

−
−

E
In
cC

hg
−

−
−

−
E
C
on
St
C
hg

0.
04

−
−2

.4
6*
**

0.
24

E
In
cS
tC
hg

−0
.0
03

0.
24
**
*

−
−

E
Fl
ts
C
on
St
C
hg

−0
.0
7

−0
.1
9

−1
.5
7*
*

1.
03
**

E
Fl
tI
nc
St
C
hg

−0
.0
4

0.
27
**
*

2.
61
**
*

−0
.3
8

E
C
hg
T
im

eI
nt

−0
.0
2*

0.
10
**
*

−0
.1
7*
**

0.
19
**
*

D
ev
ia
nc
e

34
34
1

32
58
5

32
57
6

52
13
9

47
70
6

47
42
8

30
76
0

29
89
1

39
35
0

18
36

18
16

17
76

D
ev
.E

xp
la
in
ai
ne
d

3.
1%

8.
0%

8.
1%

6.
2%

14
.2
%

14
.7
%

14
.2
%

16
.6
%

18
.1
%

1.
4%

2.
5%

4.
6%

D
el
ta
de
vi
an
ce

17
56

9
44
33

27
8

86
9

54
1

20
40

To
p
va
ri
ab
le
s

T
C
hu
rn

C
Fl
tR
at
e

C
Pa
th
D
ep
th

E
ch
gT

im
eI
nt

C
Fl
tR
at
e

C
pa
th
D
ep
th

E
ch
gT

im
eI
nt

C
Fl
tR
at
e

C
Fl
tF
ix

ex
pe
ri
en
ce

E
xp
er
ie
nc
e

T
PC

*
p
va
lu
e

<
0.
05
,*

*
p
va
lu
e

<
0.
01
,*

**
p
va
lu
e

<
0.
00
1;

ot
he
rw

is
e,

p
-v
al
ue

≥
0.
05

–
m
et
ri
c
re
m
ov
ed

by
th
e
V
IF

an
al
ys
is

Software Qual J

all of these commits involved with a large amount of new classes or reconstructions.
Examining these genealogies helped us to better understand why there are a large num-
ber of clone genealogies detected in some systems, such as ArgoUML, and helped us
validate our clone detection scripts. For example, in ArgoUML, based on iClones’ detec-
tion, 230 different clone genealogies started from the commit 559aca3 (SVN revision
122992), because there are 1818 new files created in this commit. Another example
is, in Ant, based on NiCad’s detection, 3257 different clone genealogies start from
the commit d1064de, because there are 1903 new Java classes created in this commit.
In our manual validation, we also examined whether a clone genealogy was intro-
duced from the first commit in the genealogy, and whether it disappeared after the last
commit in the genealogy. For example, the zipFile method was introduced in respec-
tively two classes (proposal/myrmidon/src/main/org/apache/tools/ant/taskdefs/Ear.java and
proposal/sandbox/antlib/src/main/org/apache/tools/ant/taskdefs/Antjar.java) in Ant commit
d1064de. The two methods were very similar at the beginning. They experienced three
consistent changes (b8c5034, 7c0bc50C, and 669a7ea). However, at the commit 0a07be8,
the second file changed the algorithm of the method zipFile, i.e., the clone pair became
inconsistent. Finally, the second file was removed from the system at the commit
99cdb67. Another example is, in ArgoUML, the buildConnection method which was intro-
duced at commit a6a72d7 (SVN revision 11634) in respectively two new files src/
model-euml/src/org/argouml/model/euml/UmlFactoryEUMLImpl.java and src/model-mdr/src/
org/argouml/model/mdr/UmlFactoryMDRImpl.java. The two methods were identical at the
beginning. They experienced consistent changes at commits 1eb1d05(revision 11993) and 964f
121 (revision 11994). But since the commit 4e6285c (revision 12105), the first file changed its
exception handling statements. The clone pair became dissimilar until the last studied commit.

We expected that INC pattern would be the most fault-prone However, according to
the results, DIV pattern is highly fault-prone, because a fault could be fixed by prop-
agating changes performed on one clone segment to the other segments. Here are two
examples that we manually examined in Ant. In Bug 41353, running tasks in paral-
lel generated a problem. The solution to the fault was to clone the properties in data
which was accessed in parallel, which resulted in an inconsistent change on the clone
contained in files src/main/org/apache/tools/ant/PropertyHelper.java @ 472:480 and pro-
posal/embed/src/java/org/apache/tools/ant/PropertyHelper.java @ 501:513. As a result of
this, the clone pair evolved into a DIVp genealogy pattern. In the case of Bug 42736, in
order to encapsulate the reference to a method inside the delegate object, the clone has
created an interface with add method add(...) and getDelegates and getDelegateInterfaces
invoked methods to retrieve a collection of delegates of the specified type. This modifi-
cation resulted into the two clone segments diverging, resulting into an INCp genealogy
pattern.

An interesting phenomenon is the migration of clones across repositories. Among the
genealogies that were analyzed, we observe that faults occur more frequently among clones
from files located in different directories. And to fix these faults, developers often propagate
changes from one clone segment to the other. This was the case for example for Ant’s
bugs 19897, 22326, and 7552. A closer look at the files involved in these clones reveal
that developers duplicated code to experiment on new changes. However instead of doing
this in separate branches, they performed it in the main code base and committed their
experimentations in the trunk, whenever they were satisfied with their experimentations, the
modifications are propagated to the main files of Ant that would be released to the public.
We found that this phenomenon explains a large proportion of the fault fix observed on the
DIV genealogies.

Software Qual J

7 Threats to validity

In this section we discuss the threats to validity of our study.
Construct validity threats involve the relationship between theory and observation. The

source of threats in this study are due to measurement errors experienced by the clone
detection tools. To reduce the number of false positive clone detection results, we repeat the
study using two clone detection tools that use different clone detection techniques and that
have both been used in previous studies and reported to achieve good precision and recall
(see Svajlenko Roy 2014).

In this study, we have chosen to analyze clone pairs instead of clone groups since clone
pairs within the same clone group are not equally risky. However, all analysis presented in
this paper can be replicated on clone groups easily.

The SZZ heuristic used to identify fault-inducing changes is not 100% accurate. How-
ever, it has been successfully used in multiple previous studies from the literature, with
satisfying results. In our implementation, we remove all fault-inducing commit candidates
that only changed blank lines or comment lines.

Threats to internal validity do not affect this study, as it is an exploratory study (Yin
2002). We cannot claim causation, we simply report observations and correlations, although
our discussion tries to explain these observations.

Threats to conclusion validity address the relationship between the treatment and the
outcome. We are careful to acknowledge the assumptions of each statistical test. We used
non-parametric tests that do not require making assumptions about the data set distribution.
To exclude test files from our study, we manually examined all files in our data set.

Threats to External validity address the generalizability of our results. We examine four
different sized systems from four different domains. Nevertheless, more studies on more
systems should be done to further validate our results. All of our subject systems are written
in Java. Our results may not be able to generalized to systems with other programming lan-
guages. However, Java, C, and C++ all belong to the “C-family programming languages”
(Wikipedia 2017), i.e., they share some common features in syntax. We believe that our
approach can yield similar results on C/C++ systems. In the future, we plan to extend
this study on more programming language, such as C and C++. We also welcome soft-
ware practitioners and researchers to replicate and validate our work on other programming
languages.

Threats to reliability validity take into account the possibly of replicating our study. In
this paper, we provide all the details needed to replicate our study. All our four subject
systems are publicly available for study. The data and scripts used in this study is also
publicly available and can be downloaded here.1

8 Conclusion

In this paper, we examine the states within clone genealogies and changes to clone pairs to
determine their relationship with faults in software systems.We formally define six different
clone evolutionary patterns and four types of changes experienced by a clone pair. Using
these definitions, we show that clone pairs exhibiting inconsistent and divergent patterns
are more likely to experience a fault than clone pairs that are maintained consistently. We
also show that the size of the cloned region of a clone pair can impact the fault-proneness

1https://github.com/swatlab/clone genealogies

https://github.com/swatlab/clone_genealogies

Software Qual J

of the clone pair. But, there is no clear relationship between the cloned code changed time
and the fault-proneness of a clone pair. Next, we investigate the statistical relationships
between product, process, genealogy metrics, and the number of future faults in cloned
code. Our results show that adding genealogy information to a fault prediction model built
using product and process metrics can increase the explanatory power of the model. We
found that clone pairs causing faults in the past can help indicate future faults in the clone
fragments. In the future, we intend to explore more factors that can be correlated with fault-
proneness of code clones, such as the number of different maintainers, and the domain of the
system. We also plan to replicate our study on more systems using different clone detection
tools. Moreover, we will use the results of our study to build recommendation systems to
assist maintenance teams in the management of software clones. The data used in this study
is publicly available and can be found at: https://github.com/swatlab/clone genealogies.

Acknowledgements The authors would like to thank the anonymous reviewers for their detailed feed-
back and useful suggestions that greatly contributed to improving this paper. This work has been partially
supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

An, L., & Khomh, F. (2015). An empirical study of crash-inducing commits in mozilla firefox. In Proceedings
of the 11th international conference on predictive models and data analytics in software engineering
(p. 5). ACM.

Arisholm, E., & Briand, L.C. (2006). Predicting fault-prone components in a java legacy system. In Pro-
ceedings of the 2006 ACM/IEEE international symposium on empirical software engineering (ISESE)
(pp. 8–17). NY, USA: ACM.

Aversano, L., Cerulo, L., & Di Penta, M. (2007). How clones are maintained: An empirical study. In
Proceedings of the 11th European conference on software maintenance and reengineering (pp. 81 –90).

Barbour, L., Khomh, F., & Zou, Y. (2011). Late propagation in software clones. In Proceedings of the 27th
IEEE international conference on software maintenance (ICSM) (pp. 273 –282).

Barbour, L., Khomh, F., & Zou, Y. (2013). An empirical study of faults in late propagation clone genealogies.
Journal of Software: Evolution and Process, 25, 1139–1165.

Bernstein, A., Ekanayake, J., & Pinzger, M. (2007). Improving defect prediction using temporal features and
non linear models. In 9th international workshop on principles of software evolution (IWPSE) (pp. 11–
18). NY, USA: ACM.

Briand, L.C., Daly, J.W., & Wüst, J.K. (1999). A unified framework for coupling measurement in object-
oriented systems. IEEE Transaction Software Engineering, 25, 91–121.

Cataldo, M., Mockus, A., Roberts, J.A., & Herbsleb, J.D. (2009). Software dependencies, work dependencies,
and their impact on failures. IEEE Transaction Software Engineering, 35, 864–878.

Chidamber, S.R., & Kemerer, C.F. (1994). A metrics suite for object oriented design. IEEE Transaction
Software Engineering, 20, 476–493.

Corley, C.S. (2016). whatthepatch - Python’s third party patch parsing library. Online; Accessed August 29th,
2016 https://pypi.python.org/pypi/whatthepatch.

Dmitrienko, A., Molenberghs, G., Chuang-Stein, C., & Offen, W. (2005). Analysis of clinical trials using
SAS: a practical guide. SAS Institute.

El Emam, K., Melo, W., & Machado, J.C. (2001). The prediction of faulty classes using object-oriented
design metrics. Journal of Systems and Software, 56, 63–75.

Fischer, M., Pinzger, M., & Gall, H. (2003). Populating a release history database from version control and
bug tracking systems. In 2003. ICSM 2003. Proceedings of the international conference on software
maintenance (pp. 23–32). IEEE.

Fowler, M. (2009). Refactoring: improving the design of existing code. Pearson Education India.
Göde, N., & Harder, J. (2011). Clone stability. In Proceedings of the 15th European conference on software

maintenance and reengineering.
Göde, N., & Koschke, R. (2011). Frequency and risks of changes to clones. In Proceedings of the 33rd

international conference on software engineering (ICSE), ACM (pp. 311–320).

https://github.com/swatlab/clone_genealogies
https://pypi.python.org/pypi/whatthepatch

Software Qual J

Göde, N., & Harder, J. (2011). Oops!... I changed it again. In Proceedings of the 5th international workshop
on software clones (pp. 14–20). ACM.

Gode, N., & Koschke, R. (2009). Incremental clone detection. In 13th European conference on software
maintenance and reengineering, 2009. CSMR’09 (pp. 219–228). IEEE.

Graves, T.L., Karr, A.F., Marron, J.S., & Siy, H. (2000). Predicting fault incidence using software change
history. IEEE Transactions on Software Engineering, 26, 653–661.

Hassan, A.E. (2009). Predicting faults using the complexity of code changes. In Proceedings of the 31st
international conference on software engineering (ICSE).

Harrell, F.E. (2013). Regression modeling strategies: with applications to linear models, logistic regression,
and survival analysis. Springer Science and Business Media.

Juergens, E., Deissenboeck, F., Hummel, B., & Wagner, S. (2009). Do code clones matter?. In Proceed-
ings of the 31st international conference on software engineering (pp. 485–495). IEEE Computer
Society.

Kamiya, T., Kusumoto, S., & Inoue, K. (2002). Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on Software Engineering, 28, 654–670.

Kapser, C., & Godfrey, M.W. (2006). Cloning considered harmful considered harmful. In Proceedings
of the 13th working conference on reverse engineering (pp. 19–28). DC, USA: IEEE Computer
Society.

Khoshgoftaar, T.M., Allen, E.B., Goel, N., Nandi, A., & McMullan, J. (1996). Detection of software mod-
ules with high debug code churn in a very large legacy system. In Proceedings of the 7th international
symposium on software reliability engineering. ISSRE ’96 (pp. 364-371). DC, USA: IEEE Computer
Society.

Kim, M., Sazawal, V., Notkin, D., & Murphy, G. (2005). An empirical study of code clone genealogies. In
Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on foundations of software engineering. ESEC/FSE-13 (pp. 187–196). NY,
USA: ACM.

Krinke, J. (2007). A study of consistent and inconsistent changes to code clones. Proceedings of the 14th
Working Conference on Reverse Engineering, 0, 170–178.

Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., & Godfrey, M.W. (2015). Investigating code review qual-
ity: Do people and participation matter? In 2015 IEEE international conference on software maintenance
and evolution (ICSME) (pp. 111–120). IEEE.

Kutner, M., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models. 4th International Edition
McGraw-Hill/Irwin.

Lakhotia, A., Li, J., Walenstein, A., & Yang, Y. (2003). Towards a clone detection benchmark suite and
results archive. In 2003. 11th IEEE international workshop on program comprehension (pp. 285–
286).

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A.E. (2015). An empirical study of the impact of modern
code review practices on software quality. Empirical Software Engineering. To appear.

Mondal, M., Roy, C.K., & Schneider, K.A. (2016). A comparative study on the intensity and harmfulness of
late propagation in near-miss code clones. Software Quality Journal (pp. 1–33).

Moser, R., Pedrycz, W., & Succi, G. (2008). A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In Proceedings of the international conference on software
engineering (pp. 181–190). NY, USA: ACM.

Nagappan, N., & Ball, T. (2005). Use of relative code churn measures to predict system defect density. In
Proceedings of the 27th international conference on software engineering (ICSE) (pp. 284–292). NY,
USA: ACM.

Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component failures. In Proceedings of
the 28th international conference on software engineering (ICSE) (pp. 452–461). NY, USA: ACM.

Rahman, F., Bird, C., & Devanbu, P. (2012). Clones: What is that smell? Empirical Software Engineering,
17, 503–530.

Rogerson, P.A. (2010). Statistical methods for geography: a student’s guide. Sage Publications.
Roy, C.K., & Cordy, J.R. (2007). A survey on software clone detection research. School of Computing TR

2007-541, Queen’s University, 115.
Roy, C., & Cordy, J. (2008). Nicad: Accurate detection of near-miss intentional clones using flexible pretty-

printing and code normalization. In 2008. ICPC 2008. The 16th IEEE international conference on
program comprehension (pp. 172 –181).

Sheskin, D. (2007). Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman &
All.

Software Qual J

Svajlenko, J., & Roy, C.K. (2014). Evaluating modern clone detection tools. In Proceedings 30th IEEE
international conference on software maintenance and evolution (ICSME), IEEE (pp. 321–330).

Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? In ACM sigsoft software
engineering notes (Vol. 30, pp. 1–5). ACM.

Thummalapenta, S., Cerulo, L., Aversano, L., & Di Penta, M. (2010). An empirical study on the maintenance
of source code clones. Empirical Software Engineering, 15, 1–34.

Wheeler, D.A. (2016). SLOCCount. http://www.dwheeler.com/sloccount/ (2016) Online.
Wikipedia (2017). C-family programming languages. https://en.wikipedia.org/wiki/List of C-family

programmin languages.
Xie, S., Khomh, F., & Zou, Y. (2013). An empirical study of the fault-proneness of clone mutation and clone

migration. In Proceedings of the 10th working conference on mining software repositories. MSR ’13
(pp. 149–158). Piscataway, NJ, USA: IEEE Press.

Xie, S., Khomh, F., Zou, Y., & Keivanloo, I. (2014). An empirical study on the fault-proneness of clone migra-
tion in clone genealogies. In Proceedings of 2014 software evolution week-IEEE conference on software
maintenance, reengineering and reverse engineering (CSMR-WCRE) (pp. 94–103). Reengineering and
Reverse Engineering (CSMR-WCRE).

Yin, R.K. (2002). Case study research: Design and methods, 3rd edn.: SAGE Publications.
Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting defects for eclipse. In Third international

workshop on predictor models in software engineering.

Liliane Barbour is a software development engineer. She received
her BSc in Electrical Engineering from Queen’s University in 2009
and her MASc in Software Engineering from Queen’s University in
2012. Her research interests include clone genealogies and mining
software repositories.

Le An is a Ph.D. candidate in the Computer Engineering depart-
ment at Polytechnique Montréal, Canada. He received his Bachelor
of Engineering at Beijing University of Technology, and his Master
of Applied Science at Polytechnique Montréal. His research interests
lie in the areas of empirical software engineering including mining
software repositories, data analytics, cloud computing, and software
reliability.

http://www.dwheeler.com/sloccount/
https://en.wikipedia.org/wiki/List_of_C-family_programmin_languages
https://en.wikipedia.org/wiki/List_of_C-family_programmin_languages

Software Qual J

Foutse Khomh is an associate professor at Polytechnique Montréal,
where he heads the SWAT Lab on software analytics and cloud
engineering research (http://swat.polymtl.ca/). He received a Ph.D
in Software Engineering from the University of Montreal in 2010,
with the Award of Excellence. His research interests include soft-
ware maintenance and evolution, cloud engineering, service-centric
software engineering, empirical software engineering, and software
analytic. He has published several papers in international conferences
and journals, including ICSM(E), MSR, SANER, ICWS, HPCC,
IPCCC, JSS, JSEP, and EMSE. His work has received two Best
Paper Awards and many nominations. He has served on the program
committees of several international conferences including ICSM(E),
SANER, MSR, ICPC, SCAM, ESEM and has reviewed for top inter-
national journals such as SQJ, EMSE, TSE and TOSEM. He is on the
Review Board of EMSE. He is program chair for Satellite Events at
SANER 2015 and program co-chair for SCAM 2015. He is one of the

organizers of the RELENG workshop series (http://releng.polymtl.ca) and has been guest editor for special
issues in the IEEE Software magazine and JSEP.

Ying Zou is an associate professor in the Department of Electri-
cal and Computer Engineering at Queen’s University in Canada. She
is a Canada research chair in Software Evolution. She is a visiting
scientist of IBM Centre for Advanced Studies, IBM Canada Lab.
Her research interests include software engineering, software reengi-
neering, software reverse engineering, software maintenance, and
service-oriented architecture.

Shaohua Wang is currently a Postdoctoral researcher, under the
supervision of Professor Ying Zou, in the School of Computing at
Queen’s University. He received an IBM Ph.D Fellowship Award
during his Ph.D studies at Queen’s University. His research interests
include: service-oriented computing, web mining, software mainte-
nance and evolution, empirical software engineering and artificial
intelligence. He has published several papers in international confer-
ences and journals, including ICSOC, ICWS, ICWE, MSR, TSC and
EMSE.

http://swat.polymtl.ca/
http://releng.polymtl.ca

	An investigation of the fault-proneness of clone evolutionary patterns
	Abstract
	Introduction
	Organization

	Related work
	Clone genealogies
	Bug-proneness of code clone
	Analysis of clone genealogies
	Statistical explanatory models

	Clone evolutionary patterns
	States and transitions of clone pairs
	Six clone evolutionary patterns

	Study design
	Subject systems
	Data preprocessing
	Detecting faulty changes
	Extracting clone genealogies
	Removing test files
	Detecting clones
	Building clone genealogies

	Study results
	RQ1: Which clone evolutionary patterns and clone changes are most at risk of faults?
	Motivation
	Approach
	Faults vs. clone evolutionary patterns
	Faults vs. Changes
	Faults vs. evolutionary patterns and changes
	Results
	Faults vs. clone evolutionary patterns
	Faults vs. changes
	Faults vs. evolutionary patterns and changes

	 RQ2: Does the size of a clone or the time interval between changes affect the fault-proneness of a clone pair?
	Motivation
	Approach
	Results
	Faults and time interval between changes
	Faults and size of clone

	RQ3: Can we predict faults in software clones using clone genealogy information?
	Motivation
	Approach
	Results

	Discussion
	Threats to validity
	Conclusion
	Acknowledgements
	References

