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Abstract—Much research has investigated the common reasons for build breakages. However, prior research has paid little attention
to builds that may break due to reasons that are unlikely to be related to development activities. For example, Continuous Integration
(CI) builds may break due to timeout or connection errors while generating the build. Such kinds of build breakages potentially introduce
noises to build breakage data. Not considering such noises may lead to misleading results when studying CI builds. In this paper, we
propose three criteria to identify build breakages that can potentially introduce noises to build breakage data. We apply these criteria to
a dataset of 350, 246 builds from 153 GITHUB projects that are linked with TRAVIS CI. Our results reveal that 33% of the build breakages
are due to environmental factors (e.g., errors in CI servers), 29% are due to (unfixed) errors in previous builds, and 9% are due to
build jobs that were later deemed by developers as noisy (there is an overlap of 17% between these three types of breakages). We
measure the impact of noises in build breakage data on modeling build breakages. We observe that models that use uncleaned build
breakage data can lead to misleading associations between build breakages and development activities (e.g., the role of developer).
However, such associations could not be observed after eliminating noisy build breakages. Moreover, we replicate a prior study that
investigates the association between build breakages and development activities using data from 14 GITHUB projects. We observe that
some observations reported by the prior study (e.g., pull requests cause more breakages) do not hold after eliminating the noises from
build breakage data.
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1 INTRODUCTION

CONTINUOUS Integration (CI) is a software development
practice that allows software development teams to

generate software builds more quickly and periodically
(e.g., daily or hourly) [1]. CI brings many advantages, such
as the earlier identification of code integration errors [2, 3].
CI builds consist of multiple jobs, each of which runs on a
different runtime environment. A CI build can break if any
of its jobs breaks. A build breakage may occur due to several
reasons, such as configuration errors, installation errors,
compilation errors, or test failures [4, 5]. Much research has
been devoted to studying breakages of CI builds. Rausch et
al. [4] explored the common reasons for build breakages in
CI and how frequent they break CI builds. Vassallo et al. [5]
studied how build breakages in CI differ in open source and
industrial projects. Researchers also studied the possibility
of predicting build breakages [4, 6–10]. Other studies in-
vestigated the factors that share a strong association with
CI build breakages [4, 7, 9, 11, 12]. These studies found
that process metrics (e.g., commit complexity and file types),
developer roles (i.e., core or peripheral), and build breakage
history are among the factors with the strongest association
with the likelihood of a build breakage.
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However, prior research has paid little attention to builds
that may break due to reasons that are unlikely to be related
to the activities of developers. For example, a build may
break due to environmental factors, such as timeouts, con-
nection resets, or memory allocation errors. Zhao et al. [13]
studied the types of build breakages in 250 open source
projects spanning a 10-month period. They observed a de-
creasing trend over time in the number of build breakages
that are caused due to timeouts or missing dependencies.
Rausch et al. [4] studied build breakages in 14 open source
Java projects and observed a non-negligible amount of noise
in build breakage data. Gallaba et al. [12] found that builds
may have ignored breakages (i.e., do not impact the build
status) or breakages that are not caused by the building tool
(e.g., MAVEN1). Other studies have investigated flaky tests,
where tests are broken non-deterministically [14–17].

Despite the valuable insights reported by existing stud-
ies, there was no discussion as to whether build breakages
are really caused by the developers who triggered the
builds. In particular, build breakages that are caused due
to environmental errors should not be used to study the
association of build breakages with development activities.
Additionally, prior studies did not consider that builds can
break due to (unfixed) errors introduced in previous builds
or due to noisy build jobs that were excluded from the
build later. Although prior studies discussed noises that
may exist in build breakage data, the impact of modeling
build breakages using clean data (i.e., after removing the
noises) has not been investigated. Studying build breakages

1http://maven.apache.org
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without considering the aforementioned factors may lead to
misleading observations. For example, development activ-
ities (e.g., being a core developer) may be deemed as the
culprits for breaking CI builds when it is not the case.

In this paper, we (i) study breakages that can potentially
introduce noises in build breakage data and (ii) measure
the impact of such noises on the observations reported
in the literature. Noisy build breakages may occur due to
(a) environmental factors (e.g., errors in CI servers), (b)
previous (unfixed) build errors, or (c) build jobs that are later
deemed by developers as noisy. We conduct an empirical
study on data collected from TravisTorrent [18], a commonly
used dataset to study CI build breakages [5, 9–12, 19].
Our dataset contains 350, 246 CI builds from 153 GITHUB
projects linked to TRAVIS CI, a cloud-based CI service. In
our study, we address the following research questions:

RQ1: What is the proportion of build breakages that
can introduce noises in build breakage data? It is important
for researchers and practitioners to identify the proportion
of build breakages data that can negatively affect their
analyses. We define three criteria for identifying CI build
breakages that can taint the results of the prior research.
Our results show that 33% of broken builds are impacted
by environmental factors that are unlikely to be related to
development activities. We identify 60 (sub)categories of
environmental build breakages. In addition, we observe that
29% of broken builds are potentially cascading (unfixed)
errors from previous builds. Finally, we observe that 9% of
broken builds are primarily broken by jobs that were later
deemed by developers as noisy. We identify an overlap of
17% between the identified types of breakages. For example,
jobs with environmental breakages, which are allowed to
fail later, may generate cascading breakages (in addition to
allowed breakages).

RQ2: What is the impact of using uncleaned build data
on modeling build breakages? We measure the impact of
using uncleaned build breakage data (i.e., containing noisy
build breakages) on modeling CI build breakages and the
subsequent analyses. We construct two mixed-effects logis-
tic models using both the original (uncleaned) data and our
cleaned data. We use the build status (i.e., passed or broken)
as the dependent variable in both models. We also use the
same metrics as independent variables in both models. We
observe that using uncleaned build data to model CI build
breakages has a considerable impact on the performance
of models (i.e., an AUC reduction of 6%). In addition, we
observe that models that use uncleaned build breakage data
can lead to misleading conclusions. For example, in the
model that uses uncleaned data, build breakages are signif-
icantly associated with core developers, whereas the model
fitted using the cleaned data shows no evidence for such
an association. Furthermore, we observe that observations
reported by prior research (e.g., pull requests cause more
breakages) may not hold if noisy build breakages are filtered
out from build breakage data.

In summary, this paper makes the following contributions:
• Three criteria to identify build breakages that can po-

tentially corrupt the data used by the prior research.
• A catalogue of environmental build breakages and their

frequency of occurrences in 153 GITHUB projects that
are linked with TRAVIS CI.

• An empirical study of the impact of using uncleaned
build breakage data on the observations reported by
prior research studying build breakages.

Paper organization. The rest of this paper is organized
as follows. Section 2 discusses build breakage examples that
motivate our work. Section 3 introduces the experimental
setup of our study. Section 4 describes the criteria to identify
build breakages that can potentially introduce noises to
build breakage data. Section 5 presents the results and
findings of our study. Section 6 discusses the implications
of our findings for researchers and practitioners. Section 7
describes the threats to the validity of our results. Section 8
outlines the prior research related to our study. Finally,
Section 9 concludes the paper and outlines avenues for
future work.

2 MOTIVATING EXAMPLES
Prior studies have relied heavily on the build statuses
generated by TRAVIS CI to perform the analyses [4, 5, 8,
9, 19–21]. For example, researchers have proposed models
to study the relationship between the build status (i.e.,
passed or failed) and several metrics that are related to the
development process (e.g., committing code changes by core
developers or at night) [4, 10, 12]. However, in this section,
we illustrate three types of build breakages that could
potentially impact the results reported by these models.

Environmental breakages. Environmental breakages are
caused by the environment that generates the builds (e.g.,
the TRAVIS CI servers). Examples of Environmental break-
ages are connection timeouts or exceeded time limits when
running commands or tests. Such breakages are unlikely
to be caused by developers. A real example from the
Diaspora project2 is illustrated in Table 1. As shown in the
table, a sequence of builds were generated from September
7th, 2011 to September 8th, 2011. At a first glance, one might
assume that developer A broke the build (i.e., build 192) and,
after several failed attempts to fix the breakage (i.e., at builds
193-204), developer E finally fixed the breakage (i.e., at build
208). Nevertheless, by taking a deeper look at the logs of
the builds listed in Table 1, we uncover a different story.
In reality, developer A did not break the build, since the real
reason for the breakage of build 192was a server connection
timeout (see the “Detailed Status” column of Table 1). In
fact, developer B broke the build when generating build
194. Moreover, developer E did not fix the breakage. In fact,
developer A fixed the breakage when generating build 202.
However, build 202 was broken due to another connection
timeout. Interestingly, the two consecutive builds (builds
203 and 204) were not really broken. Both builds received
a broken status due to a bug on the TRAVIS CI service. As
a result, all the jobs of builds 203 and 204 have passed,
however, TRAVIS CI wrongly generated broken statuses.

Cascading breakages. Cascading breakages occur because
of inherited mistakes from previous builds. For example,
considering builds ranging from 194 to 201, one might
assume that they all represent different breakages. However,
by analyzing their logs, we observe that only build 194
has a new error when compared to its predecessor (see
“Detailed status”, in Table 1). The remaining builds (i.e.,

2https://github.com/diaspora/diaspora
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TABLE 1: An excerpt of CI builds in the Diaspora project
Build No. Developer* Timestamp Duration Status Broken jobs Detailed status Breakage reason

191 C Sept. 7, 2011 - 19:46 24 mins passed 0 Successful
192 A Sept. 7, 2011 - 20:05 24 mins errored 1 Timeout No actual breakage
193 A Sept. 7, 2011 - 20:27 23 mins errored 1 Timeout No actual breakage
194 B Sept. 7, 2011 - 20:49 11 mins errored 6 Failure/Error: Resque.should receive(:enqueue) First occurrence of the breakage
195 A Sept. 7, 2011 - 21:19 11 mins errored 6 Failure/Error: Resque.should receive(:enqueue) Not related to the breakage
196 C Sept. 7, 2011 - 21:40 12 mins errored 6 Failure/Error: Resque.should receive(:enqueue) Not related to the breakage
198 B Sept. 7, 2011 - 23:01 11 mins errored 6 Failure/Error: Resque.should receive(:enqueue) Failed Fix attempt
199 D Sept. 8, 2011 - 00:03 10 mins errored 6 Failure/Error: Resque.should receive(:enqueue) Not related to the breakage
200 B Sept. 8, 2011 - 17:26 11 mins errored 6 Failure/Error: Resque.should receive(:enqueue) Failed Fix attempt
201 B Sept. 8, 2011 - 17:48 11 mins errored 6 Failure/Error: Resque.should receive(:enqueue) Failed Fix attempt
202 A Sept. 8, 2011 - 18:01 29 mins errored 1 Timeout Successful Fix attempt
203 B Sept. 8, 2011 - 19:01 23 mins errored 0 Errored, but all jobs have passed Not related to the breakage
204 E Sept. 8, 2011 - 19:03 23 mins errored 0 Errored, but all jobs have passed Not related to the breakage
208 E Sept. 8, 2011 - 22:00 22 mins passed 0 Successful

∗ Developer names are encoded

195-204) share the same error as build 194, meaning that
these builds are unlikely to represent new breakages. In
other words, the newly pushed commits are unlikely to be
the cause of the breakage. Therefore, researchers should be
careful when including Cascading breakages in their models
if the main goal is to predict new build breakages.

Allowed breakages. Allowed breakages occur when
builds are broken by jobs that are disregarded by devel-
opers and later deemed as noisy. Builds can have jobs with
integration environments that are under experimentation.
If these jobs recurrently break the builds, developers may
decide later to exclude such jobs in one of the three forms: (a)
marking the job as allow failures, (b) completely removing
the job from the build, or (c) changing the job configuration
to a different environment. Therefore, builds that are broken
only because of such jobs could have passed if such jobs
were excluded earlier by developers. To illustrate this type
of breakage, we show in Table 2 an example of the Puma3

project. Table 2 shows a sequence of 17 builds that were
generated from December 3rd, 2013 to January 25th, 2014.
As shown in Table 2, there are 14 builds that are broken
due to different job breakages. We observe that job C and
job D are recurrently broken and, as a result, 14 builds
are broken. However, in build 473, both jobs are marked
as allow failures, which allowed build 473 to pass. As a
consequence, build 456 and builds 458-472 could also pass
if either jobs or both of them were excluded earlier. Build
471 could also pass, since its status was partially impacted
by both jobs and partially by jobs E and F, which were
removed in build 472. However, builds 453 and 454 would
not passed, since they were broken due to two other broken
jobs (i.e., A and B).

3 EXPERIMENTAL SETUP
This section presents the experimental setup and the steps
of collecting and processing the data for our studied RQs.

3.1 Data collection
Fig. 1 shows an overview of our empirical study. We col-
lected data from TravisTorrent [18]. TravisTorrent, in its
11.1.2017 release, stores CI build breakage data of 1, 283
projects. Prior research regarding CI builds relies heavily on
the TravisTorrent data when conducting empirical studies
on CI [4, 8, 9, 19]. TravisTorrent contains projects that are
written in three programming languages: Ruby, Java, and

3https://github.com/puma/puma

TABLE 2: An excerpt of CI builds in the Puma project
Build No. Status Broken jobs∗ Build configuration action

450 passed
453 failed A & B & C & D
454 failed A & B & C & D
456 failed C & D
457 passed
458 errored D
459 failed D
461 failed C & D
462 failed C & D
466 errored C & D
467 failed C & D
468 failed C & D
469 failed C & D
470 failed D
471 errored C & D & E & F Jobs added: E & F & G
472 errored C & D Jobs removed: E & F
473 passed Jobs marked as allow failures: C & D

∗ A: Ruby: 1.9.3, B: Ruby: 2.0.0, C: Ruby: jruby-19mode, D: Ruby: rbx,
E: Ruby: jruby-18mode, F: Ruby: 1.8.7, G: Ruby: 2.1.0

JavaScript. We filter the studied projects using two criteria
to ensure that we have sufficient data for our analyses.
Some projects in TravisTorrent do not actively generate CI
builds (e.g., toy projects), which leads to a small number of
builds for such projects. Therefore, we select projects with
at least 1, 000 unique builds in TravisTorrent. Using this
criterion, we obtain 154 projects (66 Java, 87 Ruby, and one
Javascript). We exclude the Javascript project, since it cannot
be used as a representative of the Javascript language. Our
dataset contains builds that are triggered by different events:
git pushes (83.69%), pull requests (15.98%), API requests
(0.32%) and scheduled Cron jobs (0.01%).

Due to space restrictions, we show a complete overview
of the 153 studied projects in our online appendix [22].
These projects are of a range of domains, including, but
not limited to, applications, programming languages, and
tools. The number of CI builds of our selected projects is
350, 246, which represents about 52% of the total builds in
TravisTorrent. The total number of build jobs in our dataset
is 1, 927, 239 with an average of 5 jobs per build. Each build
job runs (and may pass or break) independently from each
other. We use the TravisPy4 API to collect more metrics
about build jobs (e.g., the job status and configuration). We
also use the boto35 API to download the plain-text build
logs from Amazon S3, the storage backend of TRAVIS CI. .
Moreover, we compute additional metrics for builds (e.g.,
the number of configuration files that are modified) using
the commits that trigger the builds in our dataset.

4https://pypi.python.org/pypi/TravisPy/0.1.1
5https://aws.amazon.com/sdk-for-python
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Fig. 1: Overview of our empirical study of the noises in build breakage data

3.2 Data processing
We sort builds of our studied projects in a chronological
order according to the triggering time of each build. We also
exclude Canceled builds because they are incomplete and
do not give a clear picture about whether they would pass
or fail if they had not been interrupted. Considering that
a build may contain multiple jobs, the breakage could be
partial (i.e., some jobs are broken) or complete (i.e., all jobs
are broken). In our analyses, we only consider the broken
jobs of broken builds. We use the build logs for such jobs to
investigate the categories of environmental build breakages.
We include allow failures jobs in our analyses at the job level.
However, we disregard the allow failures jobs when we label
a breakage as Allowed breakage (i.e., at the build level).

4 CRITERIA TO IDENTIFY NOISY BUILD BREAK-
AGES
In this section, we explain how we apply three criteria to
identify (1) Environmental breakages, (2) Cascading break-
ages, and (3) Allowed breakages in the studied projects. After
we apply the three criteria, we clean our studied dataset by
excluding builds that have the three types of breakages. A
replication package of the heuristics used in this Section is
available in our online appendix [22].

4.1 Identifying Environmental breakages
To identify Environmental build breakages, we analyze the
raw build log files for all broken jobs that belong to broken
builds in our dataset. The total number of broken jobs is
321, 855. We label build logs of broken jobs based on the
error or failure messages found. Our log labeling process
is semi-automated as it involves manual and automated
analyses of build logs. In the manual analysis, we scan build
logs to find any error messages that correspond to the build
breakage. TRAVIS CI may recover from errors but keeps a
record of such errors in the build log. Therefore, we label
build logs according to the last logged error message. For ex-
ample, a build may experience a dependency installation er-
ror but, because failed commands may rerun several times,
the command that installs the dependency may succeed
later. After a successful dependency installation, however,
the build may experience an environmental error (e.g., a
timeout error). In such a case, we ignore the message of the
recovered error and label the build log according to the last
error message (i.e., the timeout error).

Build logs contain heterogeneous and inconsistent
error messages. A certain build error may be re-
ported using different forms of error messages. For ex-
ample, “The command xyz exited with 8”, “ERROR

404: Not Found”, and “Error: 404 Client Error”
are different forms of error messages to report a server
connection error. Therefore, we employ a thematic analy-
sis [23] to manually identify themes (i.e., categories) of En-
vironmental build breakages. Two of the co-authors perform
the manual analysis using a statistically significant sample
of 384 out of 321, 855 build logs (a confidence level of 95%
and a confidence interval of ±5%). We use open coding [24]
to produce an initial set of categories of Environmental break-
ages. In addition, we tag each build log with one of three
labels: Developer, Environmental, and Suspicious. We assign
the Developer label to the jobs in which the build breakage is
most likely caused by errors introduced by developers. We
assign the Environmental label to the jobs in which the build
breakage is most likely caused by environmental factors.
We assign the Suspicious label to the jobs in which we
could not identify the underlying cause of breakage (e.g.,
empty logs, accidentally trimmed logs, or terminated logs
with a successful exit code). Each build log is assigned a
single label, which represents the label of the broken job.
We conduct consensus meetings to resolve all labeling and
categorization disagreements.

After the manual analysis, we use the identified la-
bels and categories to generate heuristics (i.e., python
scripts [22]) that automate the process of identifying error
messages, categorizing, and labeling the build logs in our
dataset. After the automated labeling, the two co-authors
perform a manual analysis of another statistically significant
sample (i.e., additional 384 build logs) to validate the labels
and categories generated by the automated labeling. We
use the Cohen’s kappa inter-rater agreement statistic [25] to
measure how reliable is the manual validation of the auto-
matically generated labels. To compute the agreement level,
we used two codes in which the raters indicate whether
there is a match or mismatch between the automatically gen-
erated and manually assigned labels We discuss the cases in
which there is (i) a disagreement between the raters or (ii) a
mismatch between the manual and automated labeling. We
resolve the disagreements using consensus meetings, refine
our heuristics, and repeat the same process for the set of
unlabeled build logs. We provide more details about the
obtained level of agreement in Section 5−RQ1: Findings.

We approach online resources to identify whether an
error messages is related to Environmental issues. For ex-
ample, we study issues related to these error messages on
different issue reporting websites (e.g., TRAVIS CI,6 rvm,7

6https://github.com/travis-ci/travis-ci/issues
7https://github.com/rvm/rvm/issues
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and rubygems8). Some build breakages require a deeper
investigation prior to classifying them as Environmental. For
example, in the cases where errors are caused due to missing
objects (e.g., files, configuration, or gems), we analyze the
commits that trigger the broken builds to check whether
such objects exist in the repository or not. To do this,
we automatically perform a git diff command for the
commits that triggered the build. Then, we check whether
the reported objects are truly missing in that revision. If a
missing object is found in the repository, we consider the
build breakage as Environmental. Otherwise, we consider the
build breakage as Developer.

Considering that a build may have more than one job,
we label builds using the labels of their jobs. We exclude
the jobs that are marked as allow failures when we label
builds, since such jobs do not break the build if they are
broken. We assign the Developer label to builds that have at
least one broken job with the Developer label. We assign the
Environmental label to builds that have all the broken jobs
labeled as Environmental or Suspicious. Builds that have the
Developer label are the only builds that we should associate
with developers’ activities. However, environmentally bro-
ken builds cannot be considered as passed, since Developer
errors may potentially occur if such builds are restarted.
Therefore, a clean build breakage dataset should contain
only build breakages that have the Developer label.

4.2 Identifying Cascading breakages
To identify Cascading build breakages, we sort the builds of
each branch of the studied projects in a chronological order
based on the build triggering timestamp. Then, we analyze
every pair of consecutively broken builds to identify which
builds are simply broken because of a former (unfixed)
breakage. First, we compare the number of broken jobs
between each pair of consecutively broken builds. If both
builds have a matching number of broken jobs, we compare
the number of errors in all broken jobs. If both builds
have a matching number of errors, we compare their error
messages. If both builds have identical error messages, we
consider that the current build breakage is broken due to
existing (unfixed) errors introduced by the commits that
triggered by the previously broken build. However, we
cannot assume that the commits of the currently broken
build are free of errors, since errors of former commits
may hinder showing the errors that might be introduced
by current commits.

4.3 Identifying Allowed breakages
To identify Allowed build breakages, we use the chrono-
logically sorted builds to identify the broken jobs that are
later removed from the builds or marked as allow failures.
The excluded jobs may contain errors that are deemed
by developers to be noisy or unimportant at a particular
point of development. We identify unique build jobs by
two attributes: the language runtime version (e.g., Ruby:
2.1) and the integration environment (e.g., DB=mysql2).
If a build has multiple broken jobs, we consider the build
to have an Allowed breakage if all the broken jobs are later
excluded from the build. Builds in which only a subset of

8https://github.com/rubygems/rubygems/issues

the broken jobs are excluded (i.e., other jobs are fixed by
developers) are considered to have Developer breakages.

5 EXPERIMENTAL RESULTS
This section discusses the results of our research questions.

5.1 RQ1: What is the proportion of build breakages that
can introduce noises in build breakage data?

Motivation: Despite the research invested on build break-
ages [4, 5, 26–28], there is a lack of awareness about Envi-
ronmental, Cascading, and Allowed breakages. These types of
build breakages can potentially taint the current conclusions
about build breakages that exist in the literature. Therefore,
it is important to study the proportion and frequency of
build breakages that can potentially introduce noises in
build breakage data.
Approach: To address this RQ, we analyze the results ob-
tained from the build breakage categorization and labeling
using the three proposed criteria proposed in Section 4. We
use the breakage labels at both the job and build levels.
We report statistics about the proportion of Environmental,
Cascading, and Allowed breakages in our studied projects.
In addition, we report the ratio and frequency of each
(sub)category of Environmental build breakages. We also
perform additional manual analyses to gain more insights
about the identified noisy build breakages.
Findings: About 55% of build breakages are environmen-
tal, cascading, and/or allowed. Fig. 2 shows the ratios
of Environmental, Cascading, and Allowed build breakages
in our dataset. As Fig. 2 indicates, there is an overlap of
17% between the three types of breakages. For example,
ignoring environmentally broken builds may cascade the
breakage to the next builds. Likewise, jobs with Environmen-
tal breakages, which are allowed to fail later, may generate
Cascading breakages (in addition to Allowed breakages).

Environmental build breakages occur in 39% of the
broken jobs. We observe that 39% of the analyzed broken
jobs (i.e., 126, 673 out of 321, 855) are impacted by environ-
mental factors. At the build level, we observe that 33% of
broken builds in the studied projects (a median of 30%)
are broken due to environmental factors. Approximately,
one-third of environmentally broken builds experienced test
failures, suggesting that such builds may contain flaky tests.

The statuses of 29% of builds are likely due to cas-
cading breakages. Our results show that 29% of builds in
our dataset are unlikely to be caused by the developers
who triggered those particular builds. In addition, 76% of
these builds are triggered by different developers from the
developers who first introduced the breakage.

About 9% of broken builds are allowed breakages. We
identify 2, 022 (i.e., 8%) of the unique jobs in the stud-
ied projects that are later excluded from broken builds
(15% marked as allow failures and 85% completely removed
from the builds). Although we find that 33% of broken
builds in our dataset contain excluded jobs, only 9% of such
builds are primarily broken by those jobs. To understand
the reasons behind job exclusion, we manually analyze a
statistical sample of 62 commits (a confidence level of 95%
and a confidence interval of ±10%) in which developers
mark jobs as allow failures. We find that developers identify

https://github.com/rubygems/rubygems/issues
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Environmental breakages

Cascading breakages

Allowed breakages                     

3.39%
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9.05%

1.78%

Fig. 2: Ratios of Environmental, Cascading, and Allowed build
breakages in our dataset

the excluded jobs to be noisy (or flaky) in 68% of the cases
(e.g., “CI: allow JRuby build to fail, too flaky to be useful”9). In
16% of the cases, developers express their inability to fix the
breakage (e.g., “Sick of jruby breaking travis”10) or indicate
that the breakage is unimportant (e.g., “allow jruby 1.9 mode
to fail, cuz I don’t care”11). In 16% of the cases, developers
do not provide clear reasons why they exclude jobs (e.g.,
“[travis-ci] allow failures for truffle for a green build”12). There-
fore, we advise researchers to filter builds affected by those
jobs out, since the breakages could be due to the abnormal
behavior of the excluded jobs.

There are 60 (sub)categories of Environmental build
breakages. Table 3 presents the ratio and frequency of each
Environmental (and Suspicious) breakage identified in our
dataset. Each breakage subcategory represents the potential
cause of the Environmental breakage. The last column of
Table 3 shows the number of projects in which a breakage
(sub)category exists. We obtain a strong inter-rater agree-
ment (i.e., k = 0.82) with a strong observed agreement of
0.93 in manually validating the automated labeling and cat-
egorization of build breakages. We observe that, in 40% of
the cases in which there was a disagreement with the auto-
mated breakage categorization, build logs are unexpectedly
terminated (e.g., logging stopped progressing). In such cases,
build logs are automatically categorized according to the
last logged error messages. However, since the termination
of such build logs is abnormal (i.e., the underlying cause
of breakage is unknown), we consider them as Suspicious.
In addition, 32% of disagreement was related to error
messages that are associated with other preceding error
messages (e.g., ‘bundle: command not found’ should
precede ‘Command failed with status (127)’).

The majority (i.e., 78%) of Environmental build break-
ages are caused by internal CI errors or issues related to
external connections and exceeding limits. Internal CI errors
introduce about 39% of the total Environmental breakages.
We identify 18 reasons that may influence internal CI errors
and, consequently, break CI builds. We observe that both
the Connection issues and Exceeding limits categories form

9https://travis-ci.org/rails/rails/builds/125719232
10https://travis-ci.org/middleman/middleman/builds/1641894
11https://travis-ci.org/teamcapybara/capybara/builds/1923320
12https://travis-ci.org/jruby/jruby/builds/94375071

TABLE 3: Categories of Environmental build breakages
Category Subcategory # % Freq.

Internal CI issues Unidentified branch/tree/commit 29, 297 23.10% 132
Failure to fetch resources 7, 658 6.00% 106
Error building gems 7, 107 5.60% 58
Logging stopped progressing∗ 1, 632 1.30% 90
Error fetching CI configuration 1, 092 0.90% 49
Error finding gems 753 0.60% 27
Cannot execute git command 506 0.40% 24
Multithreading issues 405 0.30% 3
Unknown TRAVIS CI error 241 0.20% 34
Build script compilation error 142 0.10% 8
Cannot access GITHUB 883 0.70% 87
Empty log∗ 65 0.00% 20
Caching problems 44 0.00% 5
Writing errors 32 0.00% 2
Remote repository corruption 20 0.00% 2
Cannot allocate resources 15 0.00% 3
Storage server offline 9 0.00% 2
Path issues 7 0.00% 3
TOTAL 49,908 39.40% 152

Exceeding limits Stalled build (not output received) 16, 798 13.30% 136
Command execution time limit 3, 816 3.00% 78
Log size limit 3, 613 2.80% 52
Test running limit 2, 691 2.10% 59
Time limit waiting for response 259 0.20% 12
Job runtime limit 234 0.20% 7
API rate limit 67 0.00% 3
TOTAL 27,478 21.70% 144

Connection issues Connection timeout 4, 763 3.80% 95
Connection refused, reset, closed 4, 716 3.70% 111
Server or service unavailable 3, 370 2.70% 89
Broken connection/pipes 3, 072 2.40% 23
Unknown host 2, 927 2.30% 16
Connection credentials error 2, 242 1.80% 11
Remote end hung up unexpectedly 377 0.30% 36
Network transmission error 177 0.10% 26
SSL connection error 152 0.10% 17
Connection, proxy, & sync errors 79 0.10% 9
SSL certificate error 18 0.00% 9
TOTAL 21,893 17.30% 140

Ruby & bundler issues No compatible gem versions 5, 521 4.40% 36
Cannot find, parse, execute gems 2, 477 2.00% 51
Command loading failure 2, 839 2.20% 52
Bad file descriptor 1, 515 1.20% 5
Dependency request error 1, 009 0.80% 36
Bundler not installed 873 0.70% 35
TOTAL 14,234 11.20% 81

Memory & disk issues Out of memory/disk space 3, 395 2.70% 45
Segmentation fault 1, 924 1.50% 41
Core dump problems 1, 301 1.00% 33
Memory stack error 540 0.40% 18
Corrupted memory references 7 0.00% 2
TOTAL 7,167 5.70% 84

Platform issues Language installation issues 1, 785 1.40% 59
Invalid platform 13 0.00% 2
Unexpected failure 4 0.00% 1
TOTAL 1,802 1.40% 60

Virtual Machine issues Improper VM shut down 1, 114 0.90% 51
VM creation error 82 0.10% 10
VM connection problem 17 0.00% 7
Invalid VM state 12 0.00% 4
Stalled VM 11 0.00% 6
TOTAL 1,236 1.00% 61

Accidental abruption Build crashes unexpectedly 2, 182 1.70% 39
TOTAL 2,182 1.70% 39

Buggy build status‡ Build exited successfully∗ 425 0.30% 28
Jobs passing but build broken∗ 114 0.10% 20
TOTAL 539 0.40% 44

Database (DB) issues DB creation quota 159 0.10% 1
DB connection error 37 0.00% 2
TOTAL 196 0.20% 2

External bugs E.g., interpreter bugs 38 0.00% 8
TOTAL 38 0.00% 8

TOTAL ENVIRONMENTAL BREAKAGES 126,673 100% 152

∗ Suspicious build breakages, i.e., the cause of the breakage is unidentified
‡ Issues reported to TRAVIS CI 13,14,15

– Bold subcategories represent breakages that are likely to be exclusively environmental

around 39% of Environmental build breakages. Connection-
related breakages mostly occur due to requesting data from
external servers. Limits are usually set by TRAVIS CI to
prevent builds, commands, and tests from running forever.

13https://github.com/travis-ci/travis-ci/issues/646
14https://github.com/travis-ci/travis-ci/issues/891
15https://github.com/travis-ci/travis-ci/issues/2533

https://travis-ci.org/rails/rails/builds/125719232
https://travis-ci.org/middleman/middleman/builds/1641894
https://travis-ci.org/teamcapybara/capybara/builds/1923320
https://travis-ci.org/jruby/jruby/builds/94375071
https://github.com/travis-ci/travis-ci/issues/646
https://github.com/travis-ci/travis-ci/issues/891
https://github.com/travis-ci/travis-ci/issues/2533
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Developers may reduce the amount of logged information
in order to not exceed the TRAVIS CI log size limit of 4
MB. Developers may also customize build configuration
to fix certain Environmental breakages. For example, the
travis_wait attribute allows developers to let TRAVIS CI
wait for commands that may take longer than the default
10 minutes.16 Developers may also fix issues related to de-
pendencies or long-running commands. However, in many
cases, developers have no other way to fix Environmental
breakages than restarting builds. In Table 3, we highlight
(in bold) the (sub)categories of Environmental breakages that
are most likely to be exclusively outside the ability of de-
velopers to control. Moreover, we find that changing build
configuration may not always be deemed as the cause or fix
of a breakage (more details in Subsection 7.1). Therefore, we
consider all (sub)categories of Environmental breakages to be
noisy.

55% of broken builds in our dataset are impacted by En-
vironmental, Cascading, and/or Allowed breakages. Internal
TRAVIS CI errors, connection issues, and exceeding limits
issues cause most, i.e., 78%, of environmental breakages in
CI builds.

5.2 RQ2: What is the impact of using uncleaned build
data on modeling build breakages?
Motivation: Uncleaned build breakage data can distort pre-
diction/regression models as broken builds are assumed to
be associated with the development process (e.g., trigger-
ing commits) and developer metrics. Not considering the
breakages that can introduce noises to build breakage data
may affect the accuracy of prediction/regression models
and drive researchers to misleading conclusions.
Approach: We measure the impact of noises on modeling
build breakages using two approaches: (1) we construct two
regression models: one model using the uncleaned data—
the original data containing Environmental, Cascading, and
Allowed breakages—and another model using the cleaned
data; (2) we replicate a prior study [4] that investigates the
associations between build breakages and 16 process and CI
metrics using build data from 14 projects.

Approach1: We use the build status (i.e., passed or
broken) as a dependent variable in both models. We use a set
of metrics (presented in Table 4) as independent variables
in both models. These metrics have been used by prior
research to study their association with build breakages [4,
8–11]. All these metrics are computed at the commit level.
We compute the previous build status metric for the un-
cleaned datasets and recompute such a metric again for the
cleaned dataset. For example, assume we have the builds
{B1:‘passed’, B2:‘broken’, B3:‘broken’} and the breakage of
buildB2 is identified to be noisy. In such a case, the previous
status of build B3 is ‘broken’ in the uncleaned data but
‘passed’ in the cleaned data. We remove highly correlated
variables, since they can adversely affect our models [29].
To this end, we use the varclus function (from the rms17

R package) that performs the Spearman rank ρ [30]. For
each pair of correlated variables that have a correlation of

16https://docs.travis-ci.com/user/common-build-problems/
#build-times-out-because-no-output-was-received

17https://cran.r-project.org/web/packages/rms/rms.pdf

|ρ| ≥ 0.7, we remove one variable and keep the other
in our models. For example, we remove the Configuration
lines added and Configuration lines deleted metrics, since they
are highly correlated with the Configuration files changed.
Similarly, we remove the Source files changed metric, since
it is highly correlated with the Files changed metric. The
number of builds in the uncleaned and cleaned datasets are
350, 246 and 296, 982, respectively.

Builds in our datasets are from different languages,
projects, and ages. We use these variables as random effects
in our models to control (i) the overrepresentation of Ruby
projects, (ii) the variation between projects in terms of sizes
and domains, and (iii) the potential impact of triggering
builds at different stages of CI adoption on the obtained
results. To this end, we use the Generalized Linear Mixed
Models (GLMM) for logistic regression. GLMM uses mixed
(i.e., fixed and random) effects to investigate the variables
that are associated with build breakages [31]. This means
that our models assume a different random intercept for
each category of the random effect [32]. We use the ANOVA
test [33] to find the significant variables to model build
breakages (i.e., variables that have Pr(< |χ2|) less than
0.05). Pr(< |χ2|) is the p-value that is associated with the
χ2 test, which shows if our model is statistically different
from the same model in the absence of a given indepen-
dent variable—according to the degrees of freedom in our
model. We also use upward and downward arrows to indicate
whether a variable has a direct or an inverse relationship,
respectively, with build breakages.

We evaluate the performance of our models using the
Area Under the receiver operating characteristic Curve
(AUC), the marginal R2, and the conditional R2. The AUC
evaluates the diagnostic ability of our mixed-effect models
to discriminate broken builds [34]. AUC is the area below
the receiver operating characteristic (ROC) curve created by
plotting the true positive rate (TPR) against the false positive
rate (FPR) using all possible classification thresholds. The
value of AUC ranges between 0 (worst) and 1 (best). An
AUC that is greater than 0.5 indicates that the explanatory
model outperforms a random predictor. We use the method
proposed by DeLong et al. [35] to compare the ROC curves
of the models. We compute the number of Events Per
Variable (EPV) for the uncleaned and cleaned datasets to in-
vestigate the likelihood of our models to be overfitting. EPV
measures the ratio of the number of build breakages to the
number of factors used as independent variables to train the
models [36]. The EPV values of the cleaned and uncleaned
datasets are 4, 726 and 2, 127, respectively (i.e., EPV ≥ 40).
Hence, our models are considered stable and have reliable
AUC values (i.e., the optimism is small) [37]. Moreover, our
models are unlikely to have overfitting problems [36], since
the EPV values are above 10. Higher values of the condi-
tional R2 indicate that the proportion of variance explained
by both fixed and random effects is much higher than
the proportion of variance explained by fixed effects only.
A high difference between the conditional and marginal
R2 values suggests that random effects significantly help
explain the dependent variable (i.e., the build breakage).

One could argue that the differences between the results
of the two models could be influenced by the differences in
the sizes of the cleaned and uncleaned datasets. To study

https://docs.travis-ci.com/user/common-build-problems/#build-times-out-because-no-output-was-received
https://docs.travis-ci.com/user/common-build-problems/#build-times-out-because-no-output-was-received
https://cran.r-project.org/web/packages/rms/rms.pdf
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TABLE 4: Metrics used as independent variables in our models
Metric Data type Used by Description Effect

Project name Factor The name of the project in which a build is triggered

R
an

do
m

Language Factor The programming language of the project in which a build is triggered (Ruby or Java)
Build age Factor The difference (in days) between a build starting date and the date of the first build in a project

Core developer Factor [4, 8, 11, 12] The author(s) who triggered the build have committed at least once in the last three months

Fi
xe

d

Team size Numeric [8, 10, 11] The number of developers in the team
Source churn Numeric [8, 10, 11] The number of source lines of code changed by the commits that trigger the builds
Test churn Numeric [8, 10, 11] The number of test lines changed by the commits that trigger the builds
Doc files changed Numeric [8, 10, 11] The number of documentation files by all build commits
Other files changed Numeric [8, 9, 11] The number of non production nor documentation files by all build commits
Previous build status Factor [4, 8–11] The status of the build that precedes the triggered build (passed, broken, or NA)
Files changed Numeric [4, 8–11] The number of files modified by all the build commits
Source files changed Numeric [8–11] The number of source files changed the commits that trigger the builds
Configuration files changed Numeric [9, 10] The number of build configuration files (e.g., .xml and .yml) modified by the build commits
Configuration lines added Numeric [9, 10] The number of lines added to configuration files
Configuration lines deleted Numeric [9, 10] The number of lines deleted from configuration files
Tests added Numeric [8, 11] The number of added test cases
Tests deleted Numeric [8, 11] The number of deleted test cases
Commits on touched files Numeric [8, 11] The number of unique commits on the files touched by the commits that triggered the build
Is a pull request Factor [4, 11] Whether a commit belongs to a pull request or a Git push
Time of day Factor [4, 10] The time-zone adjusted time of day of the commit that triggered the build
Day of week Factor [4, 10] The time-zone adjusted day of week of the commit that triggered the build
Belongs to the default branch Factor [3] Whether the build is triggered by a commit that belongs to the default branch of the repository

this argument, we randomly remove sample builds from
the original (uncleaned) datasets. The size of the removed
sample builds is equal to the size of the builds identified as
noisy. We repeat this process 10 times, each with a different
random set of samples.

Approach2: We use the data used by Rausch et al. [4]
containing 121, 258 builds from 14 projects. We apply our
criteria to identify Environmental, Cascading, and Allowed
breakages in the dataset. Then, we process the data similarly
to Rausch et al., i.e., (a) we stratify the data by removing
builds with unknown previous builds; and (b) we remove
data that are outside the 99th percentile of numeric metrics
(e.g., the number of commits or lines added). After that,
instead of removing builds that perpetuate or fix build
failures (as Rausch et al. have done), we remove builds that
have Environmental, Cascading, and Allowed breakages. Our
results are unlikely to be impacted by the differences in the
sizes of the uncleaned and cleaned datasets, since Rausch et
al. also filtered out builds from the original dataset. Finally,
we perform the statistical tests used by Rausch et al. to study
the association between build breakages and 16 metrics.
Similarly to Rausch et al., we exclude inconclusive results
obtained from projects that have insufficient data for some
metrics (e.g., missing build types). Finally, we compare our
observations on the cleaned version of the data used by
Rausch et al. with their reported findings.
Findings: Table 5 shows the variable importance results
obtained from our both mixed-effect logistic models. All the
metrics are descendingly sorted based on the χ2 values of
the cleaned model. For each metrics, we show its χ2 value,
the p-value (Pr(< χ2)), its significance, and whether the
variable has a direct or an inverse impact on build breakages
(the upward and downward arrows).

The model fit on the cleaned data significantly improves
the AUC by 6%. Our model fit on the clean data obtains a
good AUC value of 0.83 for discriminating build breakages.
This AUC outperforms the model fit on the uncleaned data,
which obtains an AUC value of 0.77. By comparing the ROC
curves of the two models, we observe that the model fit on
the cleaned data has a statistically significant improvement
in discriminating build breakages (i.e., we obtain a DeLong’s

test p-value < 2.2e−16). Moreover, when we remove build
samples randomly from the uncleaned data, we observe that
the (i) average AUC obtained from all the models is 0.77 and
(ii) the significant variables obtained from the uncleaned
model hold in 90% of the models (results of all the generated
models can be found in our online appendix [22]). This re-
sult suggests that the noises in build breakage data is likely
to distort prediction/regression models for build breakages.
In particular, not excluding builds with noisy breakages may
influence models to generate incorrect associations between
the independent variables and the build breakage.

The uncleaned breakage data generates models that
are more sensitive to language, project, and build age
variations. The marginal R2 of the model fit on the cleaned
data is 0.21 and the conditional R2 is 0.36 (i.e., an increase
of 71%). On the other hand, the marginal R2 of the model
fit on the uncleaned data is 0.07 and the conditional R2

is 0.30 (i.e., 329% more). Such results suggest that the
difference between the conditional and marginal R2 values
in the cleaned model is smaller than the difference in the
model fit on the uncleaned data.

Build breakages have conflicting associations with the
variables before and after cleaning the dataset. We observe
that the model fit on the cleaned data produces contradict-
ing results compared to the model fit on the uncleaned data.
The significant variables observed in the uncleaned data are
in agreement with the results reported in prior studies on
modeling build breakages [4, 10, 12]. However, according
to the model fit on the cleaned data, the vast majority of
the explanatory power of the model comes from the status
of the previous build (i.e., χ2 = 0.97). The explanatory
power of the status of the previous build in the uncleaned
data is most likely reduced due to noisy build breakages.
In conclusion, our findings using the cleaned data disagree
with the findings of prior research, in the sense that:

• builds triggered at night are less likely to produce build
breakages (as opposed to [4]).

• being a core developer does not have a strong associa-
tion with build breakages (as opposed to [4, 12]).

• team size is unlikely to be associated with build break-
ages (as opposed to [4, 10]).
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TABLE 5: Results of our mixed-effects logistic models — sorted by Pr(< χ2) of the cleaned model

Metric Cleaned model Uncleaned model
χ2 Pr(< χ2) Signf.∗ Rel. χ2 Pr(< χ2) Signf.∗ Rel.

(Intercept) 0.0176 < 2.2e−16 *** - 0.0623 < 2.2e−16 *** -
Previous build status 0.9672 < 2.2e−16 *** - 0.5550 < 2.2e−16 *** -
Is Pull Request 0.0044 < 2.2e−16 *** ↗ 0.0820 < 2.2e−16 *** ↗
Belongs to the default branch 0.0040 < 2.2e−16 *** ↘ 0.2425 < 2.2e−16 *** ↘
Source churn 0.0036 < 2.2e−16 *** ↗ 0.0270 < 2.2e−16 *** ↗
Commits on touched files 0.0016 0.000 *** ↗ 0.0019 0.014 * ↗
Day of week 0.0007 0.005 ** - 0.0170 0.000 *** -
Files changed 0.0004 0.001 ** ↗ 0.0018 0.016 * ↗
Triggered at night 0.0002 0.025 * ↘ 0.0009 0.089 . ↘
Configuration files changed 0.0001 0.070 . ↗ 0.0002 0.415 ↗
Team size 0.0000 0.259 ↘ 0.0045 0.000 *** ↗
Other files changed 0.0000 0.272 ↗ 0.0008 0.108 ↗
Tests added 0.0000 0.294 ↗ 0.0011 0.057 . ↗
Doc files changed 0.0000 0.445 ↗ 0.0002 0.427 ↘
Core developer 0.0000 0.451 ↘ 0.0019 0.013 * ↗
Tests deleted 0.0000 0.458 ↘ 0.0001 0.531 ↗
Test churn 0.0000 0.969 ↗ 0.0008 0.114 ↘
∗Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The use of noisy build breakages may have a consider-
able impact on the observations reported by prior research.
We compare the findings reported by Rausch et al. [4] with
our observations, as follows:

• “The day of week has no significant influence on build
breakages, with little evidence that the time of day influ-
ences build breakages.” However, we observe that builds
triggered on weekends have significantly less breakage
ratios than builds triggered on weekdays in 80% of the
projects. We also observe that late night commits cause
fewer breakages in 75% of the projects.

• “Despite the significant impact of file type changes on build
breakages, there is no evidence that certain file types lead
to breakages more frequently.” However, we observe that
commits that change system files (either alone, with test,
or with configuration files) cause more breakages in 60%
of the projects.

• “Pull requests cause more breakages.” However, we ob-
serve that, in 67% of the projects, integration and merge
commits generate builds with higher breakage ratios
than any other commits. A possible reason behind
such higher breakage ratios is the incompatibility or
conflicts that may occur when integrating or merging
development branches.

• “Developers who commit less frequently cause fewer build
breakages (in 4 out of 6 projects).” However, we observe
that there is a slight difference between the cases in
which developers who commit daily or less frequently
cause fewer breakages. In particular, we observe that
both daily and less frequently committers cause signif-
icantly fewer breakages in 4 and 5 out of 9 projects,
respectively. This result suggests that frequently com-
mitting is likely to be associated with other factors (e.g.,
complexity of changes) to impact on build breakages.

Noise in build breakage data can negatively impact the per-
formance of modeling build breakages. Observations reported
by prior research may not hold and researchers may gain
misleading insights if noisy build breakages are filtered out
from build breakage data.

6 DISCUSSION
Build breakage data has been used as the foundation for
several empirical conclusions regarding CI [3, 4, 6–10, 26],
which is widely used in open source and industry settings.
In this section, we discuss how our findings of noisy build
breakage data may lead to direct implications for CI re-
searchers and tool builders.

6.1 Researchers
Researchers should be more careful about the quality of
historical build breakage data. Researchers have invested
a considerable effort to studying CI builds. Hilton et al. [26]
found that build breakages introduce a barrier that hinders
developers from adopting CI. Hence, studies on CI builds
have been conducted to help development teams overcome
that barrier. A build breakage may occur due to several
reasons, such as configuration errors, installation errors,
compilation errors, or test failures [4, 5]. Rausch et al. [4]
and Vassallo et al. [5] explored the types of build errors
in CI and how frequent they break CI builds. Researchers
also studied the possibility of modeling build breakages to
understand the factors that share a strong relationship with
CI build breakages [4, 6–9]. However, our results show that
build breakages can be noisy and have a great impact on
the analyses of CI build breakage data. Therefore, we advise
future research to revisit the prior analyses regarding CI
build breakages to verify whether the prior observations
and insights would change considerably after taking noisy
builds into account.

6.2 Tool builders
Feedback on CI builds should be enriched with more
information about the breakage. Existing CI tools provide
developers with an abstract build status (i.e., passed or
broken). Tool builders should consider supplying developers
with an enhanced user interface to help them understand
(a) the differences between individual job breakages, (b) the
types of build errors occurred, (c) whether the build would
possibly pass if restarted, (d) whether certain build break-
ages occurred in the past, and (e) what actions developers
have previously made to fix that breakages. Build logs are
quite rich of information about the reasons behind build
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breakages. Therefore, such information may be regularly
collected by a tool to build a history of the frequent root
causes of build breakages. In addition, if builds are fre-
quently broken due to connection errors, a useful tool may
consider increasing the number of times to rerun failing
commands. Likewise, if builds are frequently broken due
to exceeding time or log size limits, a tool may consider
increasing the time required to wait for CI commands to run
or removing redundant or unnecessary information from
being logged, respectively.

7 THREATS TO VALIDITY
This section discusses the threats to the validity of our study.

7.1 Construct validity
Construct threats to validity are concerned with the de-
gree to which our analyses measure what we claim to
analyze. We use open coding to categorize and label build
logs of broken jobs, which can be subjective. To mitigate
such a threat, multiple iterations of manual analysis are
performed by two co-authors of this paper to validate
the build log labeling and categorization using statistically
significant samples of build logs. To identify Environmen-
tal build breakages, we rely on the last error message in
the build logs.If the script phase fails, the build contin-
ues to run the subsequent phases (e.g., after_success,
after_failure, or after_script).18 Errors in the sub-
sequent phases do not impact the build status, except for
timeout errors. Hence, the last error message in the build log
might not represent the actual breakage cause. To mitigate
this threat, we validate the results of 1, 512 cases (i.e., 1.6%)
of environmentally broken builds that are configured to
implement the aforementioned phases. We find that: 63%
of the builds are errored (i.e., errors in the install phase),
15% are virtual machine issues, memory issues, or abrupt
crashes, 14% are connection or resources issues 6% are failed
due to ‘unknown host nexus.codehaus.org‘ (an issue
reported to TRAVIS CI19), and 2% are timeout errors. In
addition, after investigating a statistically significant sample
of 81 cases (a confidence level of 95% and a confidence
interval of ±10%), we find that the vast majority (i.e., 96%)
of the errors occurred during the script phase. Hence, errors
that occur in the phases that follow the script phase are
unlikely to impact our obtained results.

We consider a build breakage to be Environmental if the
error is documented or reported to be related to environ-
mental issues. Nevertheless, developers may commit code
changes that may likely induce environmental breakages.
For example, adding expensive testing code (e.g., poor
choice of algorithms) may potentially lead to time-exceeding
errors, which may break the build unexpectedly. To miti-
gate such a threat, we perform additional manual analyses
on statistically significant samples of environmental build
breakages (95% confidence level and ±10% confidence in-
terval) that might possibly be caused by developers. Overall,
we find less than 2% of Environmental breakages in which
developers change build configuration (i.e., script file), with
only 0.2% not being identified as Cascading or Allowed break-
ages. We analyze 58 builds having build script compilation

18https://docs.travis-ci.com/user/job-lifecycle#breaking-the-build
19https://github.com/travis-ci/travis-ci/issues/4629

errors. We observe that, in 93% of the cases, developers
do not change the script file. We also analyze 92 builds
having tests that timed out due to exceeding predefined
limits. We observe that developers add more expensive
code (e.g., loops) only in 9% of the cases. Of such cases,
we find that only one case in which a passing build that
follows a breakage contains code changes that fix the issues
of long-running tests. Moreover, we analyze a similarly
statistical sample of builds that have dependency-related
breakages. We find that developers do not add or change
dependencies in 89% of the cases. Such results suggest that
environmental build breakages are most likely to be related
to environmental issues rather than development activities.

Developers may exclude jobs at later stages (i.e., in
builds that are beyond our dataset). Predicting whether a
developer will exclude a certain job at a later stage is out of
the scope of this study. Therefore, we assume that a build
breakage is an Allowed breakage if the dataset has evidence
that the jobs breaking the build are excluded by developers
later. Moreover, we manually investigate the reasons behind
excluding build jobs. We find that developers identify the
exclude jobs to be noisy or flaky in 69% of the time.
However, identifying a job to be noisy at a certain point
of time may not imply that the job was noisy in the project
all the time. Still, we advise researchers to filter builds that
are primarily broken by such jobs out, since the breakages
could be due to the abnormal behavior of the excluded jobs.

All of reported results and statistics about noisy build
breakages are computed using our written Python and R
scripts. Our scripts may contain defects that might affect
the reported results. To address this threat, we perform
additional manual analyses to verify the results of each of
our proposed criteria.

7.2 Internal validity
Internal threats to validity are concerned with the ability
to draw conclusions from the relationship between build
breakages and other build characteristics. Our study does
not consider passed builds as noisy. However, in rare cases,
RSpec in Ruby may sometimes return 0 due to overwriting
the at_exit handler by different gems.20 Our scope in
this study is to focus on the factors that may lead to noisy
breakages. We leave the investigation of the potential noises
in passed builds for future work.

7.3 External validity
External threats are concerned with our ability to generalize
our results. Our study investigates noises in build breakage
data of 153 projects that have enough samples (i.e., over
1, 000 builds per each project) to perform our analyses.
Although the studied projects are of different languages (i.e.,
Ruby and Java), code sizes, team sizes, and domains, we
cannot generalize our conclusions to other projects where
these settings heavily vary. For example, we may observe
different kinds of build breakages and findings if we analyze
data of projects written in other programming languages
(e.g., Python or JavaScript) or linked with different CI build
services (e.g., Circle CI or Appveyor). Replication of this
work using additional software projects and other CI ser-
vices is required in order to reach more general conclusions.

20https://docs.travis-ci.com/user/common-build-problems

https://docs.travis-ci.com/user/job-lifecycle#breaking-the-build
https://github.com/travis-ci/travis-ci/issues/4629
https://docs.travis-ci.com/user/common-build-problems


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

8 RELATED WORK
In this section, we present the related research while high-
lighting our contributions. Related work includes five study
areas: (i) study replication/reproduction, (ii) noises in soft-
ware engineering datasets, (iii) types of build breakages, (iv)
modeling build breakages, and (v) flaky (unstable) tests.

8.1 Study replication/reproduction
Previous studies have explored the feasibility of replicating
and reproducing the results of empirical studies in software
engineering [38–40]. Shull et al. [38] highlighted that obtain-
ing similar results in a study replication can confirm a cer-
tain phenomenon, whereas obtaining contradicting results
can provide insights on why the results are not the same.
Robles [39] and Rodrı́guez-Pérez et al. [40] investigated
the potential replicability of the papers published in the
areas of mining software repositories and empirical software
engineering. The authors found that the majority of the pub-
lished papers are unlikely to be replicated due to sharing
raw data and general tool names. Study reproduction, on the
other hand, aims to reproduce or validate a phenomenon of
an original study using different data and setup [41, 42]. In
our study, we strive to reproduce observations reported by
prior studies in modeling build breakages before and after
cleaning the noises from (i) a large dataset of 153 projects
and (ii) a dataset of 14 projects used by a prior study [4].

8.2 Noise in software engineering datasets
The literature contains studies that investigate the bias in
datasets to improve the quality of the obtained results.
Mockus [43] highlighted that data quality is more impor-
tant than the choice of analysis methods, and emphasized
that invalid data may lead to a sampling bias in software
engineering. Liebchen and Shepperd [44] found that only a
few empirical studies in software engineering assessed the
quality of the data used. Herzig et al. [45] found that over
33% of bug reports are misclassified, which may impact the
validity of the results reported by earlier studies. Antoniol et
al. [46] and Bird et al. [47] reported that heuristics used to
tag bug reports or link reports to source code may introduce
bias to the data, which may impact the quality of the pro-
duced data. Nguyen et al. [48] observed that the bug linkage
bias is more likely to be a property of the software process
itself, whereas the tagging bias does not really impact bug
prediction models. Tantithamthavorn et al. [49] observed
that mislabelling issue reports in defect prediction data is
not random, and models that are trained using mislabelled
data obtain only 56 − 68% of the recall of models that are
trained using cleaned data. da Costa et al. [50] evaluated
the data generated by a tool that identifies bug-introducing
changes. They found data inaccuracies, which suggests that
the quality of the retrieved data still needs improvement.

Kalliamvakou et al. [51] indicated that researchers need
to be cautious when mining data from GITHUB, since repos-
itories could be used for data storage rather than software
projects. Howison and Crowston [52] studied the perils
and pitfalls of mining SOURCEFORGE data. They found
that a considerable amount of data are partially hosted on
other websites, which may impair the analyses performed
by researchers. Gallaba et al. [12] studied the noise and
heterogeneity in build breakage data. They observed that

builds may contain ignored breakages or breakages that are
not caused by the building tool (e.g., MAVEN). However,
the authors did not consider cleaning the data to generate
the reported observations. In addition, the impact of noise
on the findings of prior research was not studied. Ghaleb et
al. [53] studied CI build durations and observed that builds
broken due to timeouts may take longer than passed builds.

Complementing the aforementioned studies, we investi-
gate the noises that may exist in build breakage data. Our
results reveal that not considering Environmental, Cascading,
and Allowed build breakages may lead to incorrect conclu-
sions regarding build breakages.

8.3 Types of build breakages
Existing research has investigated the reasons behind CI
build breakages [4, 5, 19–21]. A study by Beller et al. [19]
shows that tests highly impact the build status. Another
study by Zolfagharinia et al. [20] shows that operating
systems and runtime environments of CI heavily impact the
build status. Rausch et al. [4] studied the causes of build
breakages and reported 14 breakage categories of CI builds.
The authors reported associations between development
activities and build breakages. Vassallo et al. [5] reported
20 categoriesof build breakages and found that open source
and industrial projects share common breakage patterns.
We complement their work by studying the categories for
environmental build breakages. Ziftci and Reardon [21]
proposed a technique to identify code changes that may
introduce test failures in CI builds and their results show
that 78% of the feedback provided by the technique was
beneficial. Vassallo et al. [54] proposed a tool that summa-
rizes reasons of build breakages and suggests how to resolve
the breakages using online resources. van der Storm [55]
proposed an approach that allows developers to backtrack
CI builds and to use earlier successful versions of builds in
which the component(s) failed.

In our work, we aim to thoroughly investigate the Envi-
ronmental, Cascading, and Allowed build breakages that can
potentially introduce noises in build breakage data but not
studied in prior studies.

8.4 Modeling build breakages
Prior to CI, studies introduced prediction models to predict
the status of builds [6, 7, 56]. Hassan and Zhang [6] used
trained decision trees with project features to predict the cer-
tification status of a build. Wolf et al. [56] and Kwan et al. [7]
constructed build breakage prediction models by leveraging
measurements of the communication networks used by de-
velopers and measurements of coordination between social
and technical activities of developers, respectively.

For CI builds, research has investigated the possibility
of predicting whether the CI build will pass or break [8, 9].
Xia and Li [8] built 9 prediction models to predict the build
status. They validated their models using a cross-validation
scenario and an online scenario. Their models achieved a
prediction AUC of over 0.80 for the majority of the projects
they studied. They found that predicting a build status
using the online scenario performed worse than that of
cross-validation, with a mean AUC difference of 0.19. They
observed that the prediction accuracy falls down due to
the frequent changes of project characteristics, development
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phases, and build characteristics across different version
control branches. Ni and Li [9] used cascade classifiers to
predict build failures. Their classifiers achieve higher AUC
values than other basic classifiers, such as decision trees and
Naive Bayes. They also observed that historical committers
and project statistics are the best indicators of build statuses.

The prior studies derive their conclusions based on the
build statuses provided by TRAVIS CI, which are identified
in this paper to be potentially noisy. In our study, we study
how modeling build breakages and subsequent findings
could be negatively impacted by the potential noises in the
build breakage data.

8.5 Flaky (unstable) tests
Flaky tests are software tests that maintain a non-
deterministic status (i.e., they sometimes pass and some-
times fail) for a given software version [57]. Errors in
flaky tests are unlikely to be related to the commit-
ted code changes but rather due to resource unavailabil-
ity/unresponsiveness or environmental factors [14, 16, 17].
Luo et al. [15] identified the most common root causes of
flaky tests and suggested ways to capture the flaky behavior
of tests. Shamshiri et al. [16] proposed an approach that
detects flaky tests by running every particular test sev-
eral times. To better understand non-determinism in tests,
Memon et al. [17] studied the relationship between test
status transitions and other development factors, such as
developer, code, committing frequency, and test execution
factors. The authors suggested guidelines for developers to
avoid test flakiness.

Despite the research invested to study flaky tests, little is
known about flakiness in CI build breakages and its impact
on research findings. In our work, we study Environmental,
as well as Cascading and Allowed build breakages that may
occur in all build phases (i.e., installation, compilation, and
testing). Moreover, we show that such breakages can impact
the findings of prior research.

9 CONCLUSION
In this paper, we conduct an empirical study to investigate
the noises that may exist in build breakage data. We define
three criteria to identify noises in build breakage data. In
particular, our criteria identify the builds that have (1) Envi-
ronmental breakages, (2) Cascading breakages, and (3) Allowed
breakages. We first clean our studied dataset and propose a
catalogue of the categories of possible Environmental build
breakages in CI. Second, we measure the impact of using
noisy build breakage data on modeling build breakages.
Our results reveal that noisy build breakage data can (a)
reduce the of modeling build breakages and (b) distort
the association between build breakages and other metrics.
Moreover, we find that observations reported by prior re-
search may not hold and researchers may gain misleading
insights if noisy build breakages are filtered out from build
breakage data.

Our study suggests that researchers and practitioners
should be more careful when they deal with build breakage
data. In particular, the build statuses (i.e., errored, failed and
passed) provided by CI services are not reliable enough to
judge that builds are broken due to development activities.
In fact, builds may be broken due to environmental factors

or simply cascade previous (unfixed) breakages. Therefore,
using such noisy data may consequently lead to lower per-
formance and incorrect observations when modeling build
breakages. Although our study identifies the proportion
of noise in build breakage data, we observe that projects
still have long sequences of consecutive breakages. We aim
in the future to conduct a qualitative study to investigate
other reasons behind not fixing build breakages as soon
as they occur. Furthermore, we aim to study the common
development practices to deal with build breakages.
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