
END-USER DRIVEN SERVICE COMPOSITION FOR 

CONSTRUCTING PERSONALIZED SERVICE ORIENTED 

APPLICATIONS 

 

 

 

by 

 

HUA XIAO 

 

 

 

 

A thesis submitted to the School of Computing 

In conformity with the requirements for 

the degree of Doctor of Philosophy 

 

 

 

 

Queen’s University 

Kingston, Ontario, Canada 

(September, 2011) 

 

Copyright ©Hua Xiao, 2011 



ii 

 

Abstract 

Service composition integrates existing services to fulfill specific tasks using a set of 

standards and tools. Existing service composition techniques and tools are mainly designed for 

SOA professionals. The business processes used in the service composition systems are primarily 

designed by experienced business analysts who have extensive process knowledge. Process 

knowledge is the information about a process, including the tasks in a process, the control flow 

and data flow among tasks. It is challenging for end-users without sufficient service composition 

skills and process knowledge to find desired services then compose services to perform their daily 

activities, such as planning a trip. Context-aware techniques provide a promising way to help end-

users find services using the context of end-users. However, existing context-aware techniques 

have limited support for dynamic adapting to new context types (e.g., location, time and activity) 

and context values (e.g., “New York City”). 

To shelter end-users from the complexity of service composition, we present our techniques 

that assist non-IT professional end-users in service composition by dynamically composing and 

recommending services to meet their requirements. To acquire the desired process knowledge for 

service composition, we propose an approach to automatically extract process knowledge from 

existing commercial applications on the Web. By analyzing the context of end-users, our 

techniques can dynamically adapt to new context types or values and provide personalized 

service recommendation for end-users. Instead of requiring end-users to specify detailed steps for 

service composition, the end-users only need to describe their goals using a few keywords. Our 

approach expands the meaning of an end-user's goal using process knowledge then derives a 

group of tasks to help the end-user fulfill the goal. The effectiveness of our proposed techniques 

is demonstrated through a set of case studies. 



iii 

 

Co-Authorship 

The content of this thesis has been published in the following papers. More specifically, 

paper [1] and [2] are based on chapter 3. Paper [3] is based on Chapter 4 and Section 7.1. Paper 

[4] is based on Chapter 5 and Section 7.2. Paper [5] and the extended journal version paper [6] 

are based on Chapter 6 and Section 7.3.  

[1] H. Xiao, Y. Zou, J. Ng, L. Nigul, “Personalized Service Discovery and Composition,” Proc. 

Smart Internet Technologies Working Conference (SITCON), Markham, Ontario, Canada, 

November 2, 2009 

[2] H. Xiao, Y. Zou, R. Tang, J. Ng, L. Nigul, “A framework for Automatically Supporting End-

Users in Service Composition,” In book “The Smart Internet”, Lecture Notes in Computer 

Science (LNCS), Springer-Verlag, Vol. 6400, 2010 .   

[3] H. Xiao, B. Upadhyaya, F. Khomh, Y. Zou, J. Ng and A. Lau, “An Automatic Approach for 

Extracting Process Knowledge from the Web,” Proc. The 9th  International Conference on 

Web Services (ICWS) 2011, Washington DC, USA, July 4-9, 2010 

[4]  H. Xiao, Y. Zou, J. Ng, L. Nigul, “An Approach for Context-aware Service Discovery and 

Recommendation,” Proc. The 8th International Conference on Web Services (ICWS 2010), 

Miami, Florida, USA, July 5-10, 2010 

[5] H. Xiao, Y. Zou, R. Tang, J. Ng, L. Nigul, “An Automatic Approach for Ontology-Driven 

Service Composition,” Proc. IEEE International Conference on Service-Oriented Computing 

and Applications 2009, Taipei, Taiwan,  December, 2009, pages: 17-24 

[6] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul, “Ontology-Driven Service Composition for 

End-Users”, In journal Service Oriented Computing and Applications (to appear), 2011  



iv 

 

The aforementioned papers resulting from this thesis were co-authored with my supervisor Dr. 

Ying Zou, researchers (Ms. Joanna Ng, Mr. Leho Nigul and Mr. Alex Lau) at IBM Toronto Lab, 

and students (Mr. Ran Tang, Mr. Bipin Upadhyaya and Dr. Foutse Khomh) in our lab. In all 

cases, I am the primary author. More specifically, Dr. Ying Zou supervised all the research 

related to those papers and polished those papers. Ms. Joanna Ng, Mr. Leho Nigul, Mr. Alex Lau 

and Mr. Bipin Upadhyaya participated the discussion meeting of the research projects related the 

papers which they are co-authors and gave feedback as well as suggestions to improve the 

research. In the paper “A framework for Automatically Supporting End-Users in Service 

Composition”, Mr. Ran Tang contributed the content related to business process mining which is 

not a part of this thesis. In the paper “An Automatic Approach for Ontology-Driven Service 

Composition”, Mr. Ran Tang collected the experiment data for the case studies. Dr. Foutse 

Khomh polished the paper “An Automatic Approach for Extracting Process Knowledge from the 

Web”. 

 

 



v 

 

Acknowledgements 

Ph.D. study is a long journey but I am not alone. There are many people who have helped and 

supported me all the way through this journey. Firstly, I would like to take this opportunity to 

thank my supervisor Dr. Ying Zou whose expertise, encouragement, understanding, kindness, and 

patience have been extremely helpful in supporting and guiding my Ph.D. study. She is actively 

involved in the work of all her students. She is always accessible and willing to help her students. 

I appreciate her efforts to improve the quality of this thesis. I really feel lucky to work with her.  

I would also like to thank the rest of the members in my supervisory committee: Dr. James R. 

Cordy, and Dr. Thomas R. Dean. I am grateful to Dr. Cordy and Dr. Dean for their generous help 

on providing me insightful advices and guidelines on my research. I also want to thank the other 

members of my thesis examining committee, Dr. Chung-Horng Lung and Dr. Scott Knight, for 

their time and comments on my thesis.  

It was a huge help to my research to work with the people at IBM Canada laboratory. I would 

like to thank Ms. Joanna Ng, Mr. Alex Lau, Mr. Leho Nigul, Mr. Jay W Benayon, Mr. Bill 

O’Farell, Ms. Elena Litani and Ms. Jen Hawkins for their ideas, feedback and support. 

The Software Reengineering Research Group is like a big family. We help and support each 

other both in study and personal life. I would like to thanks all the members in the Software 

Reengineering Research Group: Dr. Ying Zou, Dr. Xulin Zhao, Ms. Jin Guo, Mr. Brian Chan, 

Mr. Ran Tang, Mr. Bipin Upadhyaya, Dr. Foutse Khomh, Mr. Lionel Marks, Mr. Derek Foo, Ms. 

Liliane Barbour, Mr. Dwaipayan Sinha, Mr. Tejinder Dhaliwal, and Mr. Maokeng Hung for their 

supports, opinions and friendship. Especially, I am very thankful to Ms. Jin Guo, Mr. Brian Chan, 

Mr. Ran Tang, Mr. Bipin Upadhyaya and Dr. Foutse Khomh for their collaboration and 

contributions to the projects that I participated in during my Ph.D. study. 



vi 

 

I am grateful to the faculty, staff and students in School of Computing at Queen’s University 

for making my Ph.D. study colorful and assisting me in many different ways. Especially, I would 

like to thank Ms. Debby Robertson for her assistance in organizing the defense and many other 

matters related to the defense procedure.   

This research would not have been possible without the financial support of Queen’s 

University, IBM Centers for Advanced Studies (CAS), and the Natural Sciences and Engineering 

Research Council of Canada. I would like to express my gratitude to those organizations.     

Finally, I would like to thank my wife, my parents and family for their endless love and 

unconditional support. They have encouraged, supported, understood, and loved me at every 

moment. None of this would happen without them.  

  



vii 

 

Statement of Originality 

I hereby certify that research presented in this dissertation is my own, conducted under the 

supervision of Dr. Ying Zou. Any published (or unpublished) ideas and/or techniques from the 

work of others are fully acknowledged in accordance with the standard referencing practices. 

 

(Hua Xiao) 

 

(September, 2011) 



viii 

 

Table of Contents 

Abstract ............................................................................................................................................ ii 

Co-Authorship ................................................................................................................................ iii 

Acknowledgements .......................................................................................................................... v 

Statement of Originality ................................................................................................................. vii 

Chapter 1 Introduction ..................................................................................................................... 1 

1.1 Major Steps in Service Composition ..................................................................................... 2 

1.2 Challenges for Supporting End-Users in Service Composition ............................................. 5 

1.3 Thesis Objectives ................................................................................................................... 7 

1.4 Research Statement ................................................................................................................ 9 

1.5 Outline of the Thesis .............................................................................................................. 9 

Chapter 2 Background and Related Work ..................................................................................... 11 

2.1 Ontologies ............................................................................................................................ 11 

2.2 Introduction on Service Oriented Architecture .................................................................... 14 

2.3 Service Description Models ................................................................................................. 17 

2.3.1 Web Services Description Models ................................................................................ 17 

2.3.2 Semantic Web Service Description Models .................................................................. 20 

2.3.3 Summary of Service Description Models ..................................................................... 22 

2.4 Service Discovery and Recommendation ............................................................................ 24 

2.4.1 Techniques to Collect Service Description ................................................................... 24 

2.4.2 Service Matching Mechanisms ..................................................................................... 26 

2.4.3 Context-Aware Service Discovery and Recommendation ............................................ 30 

2.4.3.1 Context Modeling and Context-aware Systems ..................................................... 30 

2.4.3.2 Discovering and Recommending Services using Context ..................................... 32 

2.5 Service Composition ............................................................................................................ 34 

2.5.1 Model Driven Service Composition ............................................................................. 34 

2.5.2 Goal Driven Service Composition ................................................................................ 37 

2.5.2.1 Hierarchical Task Network Planning ..................................................................... 38 

2.5.2.2 Situation Calculus .................................................................................................. 39 

2.5.2.3 Interface Matching and Backward-chain Reasoning ............................................. 40 

2.5.2.4 Comparison ............................................................................................................ 41 



ix 

 

2.5.3 Context-Aware Service Composition ........................................................................... 43 

2.5.4 Comparison of Service Composition Techniques ......................................................... 43 

2.5.5 Supporting End-Users in Service Composition ............................................................ 45 

2.5.6 Process Knowledge Acquisition for Service Composition ........................................... 46 

2.6 Summary .............................................................................................................................. 49 

Chapter 3 Overview of a Framework for Supporting End-Users in Service Composition ............ 50 

3.1 An Ad-hoc Process Model ................................................................................................... 50 

3.2 An Overview of a Framework for End-User Driven Service Composition ......................... 52 

3.3 Summary .............................................................................................................................. 58 

Chapter 4 Process Knowledge Extraction ...................................................................................... 59 

4.1 A Meta-model for Describing Websites .............................................................................. 59 

4.2 Steps for Extracting Process Knowledge from the Web ...................................................... 61 

4.3 Algorithm for Identifying a Menu from a Website .............................................................. 62 

4.4 Extracting Ontologies with Process Knowledge .................................................................. 65 

4.4.1 Selecting Websites with Process Knowledge ............................................................... 65 

4.4.2 An Algorithm for Extracting Process Knowledge from a Website ............................... 66 

4.4.3 Extracting Properties and Tasks from Associated WebPages ....................................... 69 

4.5 Integrating Process Knowledge Extracted from Different Websites ................................... 70 

4.6 Summary .............................................................................................................................. 73 

Chapter 5 Context-Aware Service Discovery and Recommendation ............................................ 75 

5.1 Overview of an Approach for Context-Aware Service Discovery and Recommendation ... 76 

5.2 Searching for Matching Ontologies ..................................................................................... 78 

5.3 Identifying Context Relations .............................................................................................. 79 

5.3.1 Identifying Relations of Two Context Values .............................................................. 79 

5.3.1.1 Similarity of Entities in Ontologies ....................................................................... 79 

5.3.1.2 User-Defined Relations Using Domain Knowledge .............................................. 81 

5.3.1.3 Relations between Two Context Values ................................................................ 82 

5.3.1.4 Inferring Relations among Multiple Context Values ............................................. 85 

5.4 Generating Service Searching Criteria ................................................................................. 87 

5.4.1 Identifying End-user’s Requirements in Given Context Scenarios .............................. 87 

5.4.2 Generating Service Searching Criteria .......................................................................... 89 

5.5 Summary .............................................................................................................................. 92 



x 

 

Chapter 6 Ontology Driven Service Composition ......................................................................... 93 

6.1 An Overview of an Approach for Composing Ad-Hoc Processes ....................................... 94 

6.2 Tag-based Service Description ............................................................................................ 95 

6.2.1 Schema of the Tag-based Service Description.............................................................. 96 

6.2.2 Management of Tags ..................................................................................................... 97 

6.3 Searching for Ontology from Ontology Database ............................................................... 99 

6.4 Searching for Services ....................................................................................................... 101 

6.5 Generating Ad-Hoc Processes ........................................................................................... 104 

6.5.1 Identifying Tasks ........................................................................................................ 104 

6.5.2 Identifying the Relations among Tasks ....................................................................... 108 

6.5.3 Merging Tasks ............................................................................................................ 113 

6.6 Overview of our Prototype ................................................................................................. 114 

6.7 Summary ............................................................................................................................ 116 

Chapter 7 Case Studies ................................................................................................................ 117 

7.1 Evaluation of Extracting Process Knowledge from the Web ............................................. 117 

7.1.1 Experiment Setup ........................................................................................................ 117 

7.1.2 Evaluation Methods .................................................................................................... 118 

7.1.3 Experimental Procedure .............................................................................................. 119 

7.1.4 Result Analysis ........................................................................................................... 121 

7.2 Evaluation of Context-aware Service Discovery and Recommendation ........................... 122 

7.2.1 Experimental Setup ..................................................................................................... 123 

7.2.2 Evaluation Methods .................................................................................................... 124 

7.2.3 Experimental Procedure .............................................................................................. 124 

7.2.4 Result Analysis ........................................................................................................... 125 

7.3 Evaluation for Ontology Driven Service Composition ...................................................... 129 

7.3.1 Experiment Setup ........................................................................................................ 130 

7.3.2 Evaluation Methods .................................................................................................... 131 

7.3.3 Experimental Procedure .............................................................................................. 132 

7.3.3.1 Evaluating the Generated Ad-hoc Processes........................................................ 132 

7.3.3.2 Evaluating the Performance of Service Discovery .............................................. 133 

7.3.3.3 Evaluating User Experience of the Service Composition .................................... 134 

7.3.4 Results Analysis .......................................................................................................... 135 



xi 

 

7.3.4.1 Results of Evaluating the Generated Ad-hoc Processes ...................................... 135 

7.3.4.2 Results of Evaluating Service Discovery ............................................................. 135 

7.3.4.3 Results of Evaluating User Experience ................................................................ 137 

7.4 Summary ............................................................................................................................ 140 

Chapter 8 Conclusions and Future Work ..................................................................................... 141 

8.1 Thesis Contributions .......................................................................................................... 141 

8.2 Future Research Directions ................................................................................................ 143 

Bibliography ................................................................................................................................ 145 

  

  



xii 

 

List of Figures 

Figure 1-1 An overview of service composition (edited from [122]) .............................................. 3 

Figure 1-2 An example business process (from [159]) .................................................................... 4 

Figure 2-1 An example ontology ................................................................................................... 12 

Figure 2-2 Components of ontology definition model ................................................................... 13 

Figure 2-3 The basic service oriented architecture (edit from [45] and [70]) ................................ 15 

Figure 2-4 The life-cycle of SOA development (from [101]) ........................................................ 16 

Figure 2-5 The relations of UDDI core types (from [106]) ........................................................... 19 

Figure 2-6 Top level of the service ontology (from [94]) .............................................................. 21 

Figure 2-7 The goal of AI planning ............................................................................................... 38 

Figure 3-1 Description of an ad-hoc process ................................................................................. 52 

Figure 3-2 An overview of our framework .................................................................................... 53 

Figure 3-3 Architecture of our framework ..................................................................................... 54 

Figure 4-1 A meta-model for describing websites ......................................................................... 60 

Figure 4-2 An example of a Web page .......................................................................................... 61 

Figure 4-3 An overview of our approach ....................................................................................... 62 

Figure 4-4 Algorithm to identify menu items ................................................................................ 63 

Figure 4-5 An example to identify menu items ............................................................................. 64 

Figure 4-6 An algorithm for extracting the ontology from a website ............................................ 68 

Figure 4-7 Algorithm to integrate process knowledge ................................................................... 71 

Figure 4-8 An example of integrating ontologies .......................................................................... 73 

Figure 5-1 Steps for context-aware service recommendation ........................................................ 76 

Figure 5-2 An example of extending context value using ontology .............................................. 77 

Figure 5-3 Main structure of defining a link specification statement ............................................ 82 

Figure 5-4 An example link specification ...................................................................................... 82 

Figure 5-5 Examples of relations between two context values ...................................................... 83 

Figure 5-6 An example of integrated E-R diagram ........................................................................ 86 

Figure 6-1 Steps for composing ad-hoc processes ......................................................................... 94 

Figure 6-2 Schema for tag-based service description .................................................................... 95 

Figure 6-3 An example of the service description in WSDL ........................................................ 97 

Figure 6-4 Algorithm for searching for ontologies ...................................................................... 100 



xiii 

 

Figure 6-5 Algorithm for searching for services .......................................................................... 103 

Figure 6-6 Algorithm of identifying task list ............................................................................... 105 

Figure 6-7 An example of generating task list ............................................................................. 107 

Figure 6-8 An example of a generated ad-hoc process ................................................................ 112 

Figure 6-9 Annotated screenshot for our prototype ..................................................................... 114 

Figure 6-10 Ordered ad-hoc process in the Mashup page ............................................................ 115 

Figure 7-1 Top-k precision .......................................................................................................... 136 

Figure 7-2  Recall vs. precision curves ........................................................................................ 137 

 



xiv 

 

List of Tables 

Table 2-1 Summary of service description models ........................................................................ 23 

Table 2-2 Comparison of service registries and service search engines ........................................ 25 

Table 2-3 Comparison of service matching approaches ................................................................ 30 

Table 2-4 Comparison of approaches used in goal driven service composition ............................ 42 

Table 2-5 Comparison of service composition technologies ......................................................... 44 

Table 4-1 Map form elements to class properties .......................................................................... 70 

Table 4-2 Operations to add a child class ...................................................................................... 72 

Table 5-1 Generic rules to derive end-user’s requirements ........................................................... 88 

Table 5-2 Mapping ontology entities in potential task set to WSDL query and webpage query ... 91 

Table 6-1 Convert relations from ontology to ad-hoc process ..................................................... 110 

Table 7-1 List of goals ................................................................................................................. 118 

Table 7-2 Recall and precision for ontologies extracted from each website ............................... 121 

Table 7-3 Recall and precision for integrated ontologies ............................................................ 122 

Table 7-4 Context types used in our case study ........................................................................... 123 

Table 7-5 Recall and precision for detecting potential tasks ....................................................... 125 

Table 7-6 Evaluation results of service recommendation ............................................................ 127 

Table 7-7 Characteristics of generated ad-hoc processes ............................................................ 130 

Table 7-8 Characteristics of the six ad-hoc processes ................................................................. 134 

Table 7-9 Recall and R-precision comparison ............................................................................. 135 

Table 7-10 Results of satisfaction evaluation .............................................................................. 138 

 



 

1 

 

Chapter 1 

Introduction 

Web services are considered as self-contained, self-describing, modular applications that can 

be published, located, and invoked over the Web. Service-Oriented Architecture (SOA) 

[111][113] uses loosely coupled Web services as basic units to build more complex systems in a 

flexible and rapid way. In particular, a single service generally cannot fulfill the functionality 

required by organizations. A significant amount of efforts from industry and academia intend to 

provide infrastructure, languages and tools to compose services using well-defined business 

processes to streamline business operations. Such SOA systems tackle complex business 

requirements across organizations. However, little attention has been paid to allow non-IT 

professional end-users to compose services to fulfill their daily activities.  

In today’s on-line experience, end-users, who are not familiar with Web service standards and 

tools, frequently re-visit websites and use on-line services to perform daily activities, such as 

planning a trip. The end-users potentially compose an ad-hoc process to fulfill their needs. Such 

an ad-hoc process is characterized by a set of tasks performed by end-users without a strict pre-

defined plan. For example, planning a trip is an ad-hoc process for many end-users. It involves 

several tasks, such as searching for transportation, booking accommodation, and checking the 

weather at the destination. These tasks can be performed in any order to achieve the goal of trip 

planning.   

Specialized service mediators, such as expedia.com, can be used to search for accommodation, 

flight and train information. However, the services provided by service mediators are pre-defined 

and limited. For example, the end-user has to visit other websites to check the reviews about a 



 

2 

 

hotel or a restaurant, and check if the airline suggested by expedia.com is in part of the same 

alliance so they can collect their frequent flyer points. The end-user has to repeat the same step 

when planning the next trip. Moreover, service mediators cannot automatically provide services 

that are personalized to a particular end-user. For instance, consider a scenario that a person plans 

a trip to Vancouver in two contexts: (1) John, a business man, lives in Toronto and travels to 

Vancouver for a business meeting. He would like to take Air Canada, as a reliable transportation 

vehicle, to stay in Marriott Hotel since he is a valued member of Marriott Hotel, and to find a 

formal seafood restaurant for an important business dinner. (2) Emily, who is a student at the 

University of Calgary, wants to take a vacation in Vancouver. She chooses to plan her trip at the 

lowest cost. She will take Greyhound bus, search for a motel in Vancouver and look for fast food 

chains, such as Wendy’s and MacDonald’s. In above contexts, John and Emily have to manually 

browse different services offered by websites and Web services to gather information for 

performing the same tasks in the trip planning. It is often challenging for end-users to know all 

the relevant Web services or websites that help them to make a decision. It would be ideal if an 

end-user can compose a travel planning service using the SOA techniques. Then the composed 

service automatically gathers the needed information and presents it to the end-user based on their 

preferences.  

1.1 Major Steps in Service Composition 

A service can fulfill a basic task through simple interactions between a customer and the 

service. However, a single service is not enough to perform complex tasks. Therefore, it is 

necessary to combine multiple services. The process of integrating existing services to create new 

service (i.e., composite services) is known as service composition. Figure 1-1 gives an overview 



 

3 

 

of service composition. A service composition framework involves the following seven steps 

[122]:  

 

 

Figure 1-1 An overview of service composition (edited from [122]) 

 

(1) Specify business requirements: A requirement (e.g., “buy a book online”) for composing 

services could be a declarative expression using formal or informal languages, an abstract process 

model (e.g., a business process model), or a design model (e.g., Unified Modeling Language 

(UML) diagrams). 

(2) Analyze service description: Service descriptions specify the capabilities of services, such 

as inputs, outputs, exceptions, functional and non-functional description. There are different 

models and standards [32] [94] to describe services. The service composition system generally 

analyzes the service description and represents them as a uniform internal specification for further 

processing (e.g., selecting services and composing services).   

 (3) Discover relevant services: Service discovery is the process of locating a service that meets 

certain searching criteria [56]. For example, we search for an appropriate service that offers a 

weather forecasting service.  The searching criteria for the service discovery can be specified by 

keywords, such as “weather forecast”.  



 

4 

 

 (4) Obtain process knowledge: Process knowledge, such as tasks involved in a process and the 

control flow and data flow among tasks, is critical for service composition systems to generate 

business processes or ad-hoc processes. The process knowledge mainly comes from the business 

analysts, service descriptions, business requirements and process description documents.  

Business processes are a set of logically related tasks that are performed to achieve business 

objectives. A process defines tasks, connections, roles and resources. Tasks define the operations 

for achieving business objectives. Connections include control flows and data flows among tasks. 

A role performs a set of designated tasks. Resources are necessities for executing tasks. An 

example of a business process could be a “purchase order processing”, shown in Figure 1-2. The 

“purchase order processing” contains five tasks, such as “receive purchase order”, “select a 

shipper”, and “schedule production”. The data, “purchase order”, flow from “receive purchase 

order” task to “select a shipper” tasks [160].  

 

 

Figure 1-2 An example business process (from [160]) 

 

 (5) Generate composition process model: A business requirement usually cannot be fulfilled 

by a single service. We need to integrate various services using process models. A process model 

contains a set of selected services, as well as control flows and data flows among those services 

[122]. Standards, such as Business Process Execution Language (BPEL) [139], are used to 

formally specify process models.  



 

5 

 

(6) Evaluate composition results: It is quite common that many returned services have the same 

or similar functionalities. It leads to more than one composition result to fulfill the business 

requirements. We need to evaluate different composition results and select the best one that meets 

the functional and non-functional requirements.  

(7) Execute the composite process: After a unique composite process is determined, the 

framework executes the process on an execution engine and returns the result to the service 

requester.   

1.2 Challenges for Supporting End-Users in Service Composition 

In the current state of practices, composing services requires a large number of professionals 

(e.g., business analysts, system integrators and service developers) with strong SOA background. 

The composition process involves various technical tools (e.g., IBM WebSphere Business 

Modeler (WBM) [73] and IBM WebSphere Integration Developer (WID) [74]) and languages 

(e.g., BPEL) to specify, compose, and deploy services. To produce a composite service, the 

professionals in different roles and tools must interact in harmony. Unfortunately, non-IT 

professional end-users do not have the knowledge of these tools and SOA standards. In short, 

involving end-users in service composition has the following three major challenges: 

• Difficult to obtain process knowledge. Process knowledge provides the information for 

service composition systems to create processes. In the current state of practices on service 

composition, business processes are primarily designed by experienced business analysts who 

have extensive process knowledge. It is challenging for non-IT professional end-users to 

orchestrate a process due to the lack of process knowledge.  

Research efforts have been devoted to sharing knowledge in public. Several knowledge 

bases are designed to allow machines to retrieve and process the knowledge stored in the 



 

6 

 

knowledge bases. Ontologies are widely used for knowledge representation and sharing in 

knowledge bases. Ontologies use a formal way to represent knowledge as a set of concepts 

and relationships among the concepts. For example, the ontology of “travel” lists relevant 

concepts, such as “booking flight tickets”, “hotel reservation”, and “weather forecast”. 

DBpedia [40] and Freebase [54] are examples of knowledge bases that extract the knowledge 

from Wikipedia [142] and store it as ontologies. Information extraction tools, such as 

Text2Onto [35], are used to extract ontologies from textual resources, such as text files or 

Web pages. However, existing knowledge bases and extraction tools focus on explaining high 

level concepts using more concrete concepts. Such knowledge description is lack of a stepwise 

description on how to complete a collection of tasks to achieve a goal. To enable non-IT 

professional end-users to compose services, we need an effective approach to extract the 

process knowledge and construct a process knowledge database. 

• Difficult to find appropriate services. Given the large amount of existing services and the 

diversified end-user's requirements nowadays, it is time-consuming for end-users to find 

appropriate services for a specific requirement from the large number of services. Context-

aware techniques provide a promising way to help end-users obtain their desired services by 

automatically analyzing an end-user’s context and recommending desired services for the end-

user. A context characterizes the situation of a person, place or the interactions between 

humans, applications and the environment [20]. However, most existing context-aware 

techniques require system designers to manually define reactions (e.g., recommend services) 

to contexts based on context types (e.g., location) and context values (e.g., Toronto). Those 

context-aware techniques have limited support for dynamic adaption to new context types and 

values. Due to the diversity of end-user’s environments, the available context types and 



 

7 

 

potential context values are changing overtime. It is challenging to anticipate a complete set of 

context types with various potential context values to provide corresponding service 

recommendation. We need an effective way to provide services recommendation using the 

context of end-users. 

• Limited support for composing services on-the-fly for end-users. A system integrator can 

specify BPEL processes to compose Web services using tools, such as IBM WID. After 

deploying a Web service, the composition logic can hardly be customized to accommodate 

changes to consumer’s requirements, as this involves a long lifecycle from design, 

development and testing to deployment. Moreover, it is also infeasible to expect an end-user 

to specify the details of each task and orchestrate a well-defined process in BPEL. In the 

current practices, there is very limited support for end-users to compose ad-hoc processes 

which involve the dynamic integration of various services (e.g., Web services, and websites) 

on-the-fly.  

1.3 Thesis Objectives 

To address the aforementioned challenges, we focus on the following objectives:  

• Extracting process knowledge from the Web. Websites, such as on-line stores, and travel 

agencies provide specialized services to end-users. Such websites capture domain specific 

process knowledge which can be used to assist end-users in achieving a user’s goal. For 

example, expedia.com provides interactive end-user interfaces to allow end-users to complete 

various tasks in a trip planning process such as “buying flight tickets”, “booking hotels” and 

“purchasing travel insurance”. To leverage the domain knowledge embedded in specialized 

websites and obtain the process knowledge for service composition, we propose techniques to 

extract the process knowledge from various websites. 



 

8 

 

• Personalizing service recommendation using contexts. Effective personalized service 

recommendation requires the ability to detect and analyze an end-user’s context at the run-

time environment. The context characterizes the conditions for an end-user to fulfill a goal, 

such as end-user’s profiles, computation resources, scheduled tasks, and end-user’s 

preferences. To recommend personalized services, we design and develop techniques that 

capture an end-user’s dynamically changing context and formulate searching criteria to 

discover the desired services. Different from existing approaches which depend on context 

models to know the relations among context types and values, then use predefined rules to 

infer user’s needs, we seek an automatic approach to recognize the relations between context 

values and a user’s needs. For example, luxury hotel and limited budget are two potential 

user’s needs in conflict. Therefore, the services for booking luxury hotels are automatically 

filtered when a user has a limited budget. We expect that such relations can be used to express 

more accurate searching criteria which better reflect a user’s context. 

• Supporting end-users to compose services on-the-fly. In the current state of practices, SOA 

practitioners manually describe the details of each task and the interactions among tasks using 

BPEL. In an end-user environment, most of the activities, such as planning a trip, are 

spontaneously prompted from an end-user. An end-user may not have a clear plan on 

achieving a goal (e.g., planning a trip). To guide an end-user to achieve their goal, we devise 

techniques that dynamically search and compose services on-the-fly to assist an end-user in 

fulfilling their desired goals (such as planning a trip). We aim to provide an approach to 

shelter the end-user from complex programming issues.  



 

9 

 

1.4 Research Statement 

In this thesis, we propose a generic framework for supporting non-IT professional end-users to 

compose services. The framework enables end-users, who do not have SOA background, to 

compose services easily. To shelter non-IT professional end-users from the complexity of service 

composition, the framework extracts the process knowledge from the Web instead of requiring 

end-users to provide the process knowledge, automatically recommends services based on the 

context of end-users, and generates ad-hoc processes on-the-fly using the extracted process 

knowledge.  

1.5 Outline of the Thesis 

Chapter 2 reviews the background and related work for supporting end-users in service 

composition.  

Chapter 3 overviews our proposed framework that automatically uses contextual data to 

discover and recommend services, then composes services on-the-fly. This chapter introduces the 

major components of our framework and the general steps to help end-users composition 

services. We further provide the definition of the ad-hoc process which is used to describe the 

process for fulfilling the daily activities of end-users.   

Chapter 4 presents our approach that extracts process knowledge from various websites and 

merges the extracted process knowledge to generate an integrated ontology with rich process 

knowledge.  

Chapter 5 provides an approach for context-aware service discovery and recommendation. 

We use ontologies to enhance the meaning of context values and automatically identify the 



 

10 

 

relations among different context values. Based on the relations among context values, we 

recommend the potential service which the end-user might need.  

Chapter 6 presents an ontology-driven service composition approach which can automatically 

generate ad-hoc processes to help end-users fulfill their daily activities.  

Chapter 7 presents three case studies to evaluate the approaches for process knowledge 

extraction, context-aware service recommendation and ontology-driven service composition 

respectively.   

Chapter 8 concludes the thesis by illustrating the major contributions and discussing the 

future research directions.  

  



 

11 

 

Chapter 2 

Background and Related Work 

This section presents the background and surveys of the related work. Section 2.1 introduces 

the background of ontologies which are used to extend the semantics of contexts and describe the 

process knowledge in the thesis. Section 2.2 covers the background of SOA. Section 2.3 discusses 

different service description models which characterize the capabilities of services. The accuracy 

of service discovery increases the success in service composition and eventually enhances the 

satisfaction of the composition requirement. Section 2.4 compares different service discovery and 

recommendation approaches. Service composition systems take the composition requirements 

and available services as inputs. Then composition systems produce executable process models 

(e.g., BPEL processes) automatically or with the help of service integrators. Section 2.5 discusses 

the research related to process model generation. Finally, Section 2.6 summarizes the chapter. 

2.1 Ontologies 

An ontology models a domain of knowledge or discourse as a set of  concepts (e.g., people, 

travel and weather), and the relations between these concepts [61]. An ontology can be visualized 

as a graph that contains nodes representing concepts and edges representing relations among the 

concepts. Figure 2-1 illustrates an example ontology for defining the concept “Travel”. More 

specifically, the concept “Travel” is related to four more specific concepts: “Transportation”, 

“Accommodation”, “Tourist Attraction” and “Car Rental”. 

Ontologies are defined using various ontology specification languages, such as Web Ontology 

Language (OWL) [129], Resource Definition Framework (RDF) [16] and DARPA Agent Markup 

Language + Ontology Inference Layer (DAML+OIL) [37]. To capture the entities and general 



 

12 

 

structures specified in various ontology specification languages, we summarize the commonality 

of different ontology specification languages using an ontology definition model. Figure 2-2 

illustrates the main components of our ontology definition model and their relations.  

 

 

Figure 2-1 An example ontology 

 

• Class: is an abstraction description of a group of resources with similar characteristics. For 

example, “Accommodation” is a class which describes the common characteristics of different 

types of accommodation.   

• Individual: is an instance of a class. Individuals are the objects and a class describes a set of 

individuals. 

• Property: is an attribute that a class and an individual can have. The properties defined in a 

class are applied to the individuals. 



 

13 

 

PartOf Complement IntersectionSubclass InstanceOf DomainSpecificRelationEquivalence

InstanceOf <<use>>
Individual Class Relation

<<use>>

Property

0…* 1

0…* 1

has

has

Ontology

 

Figure 2-2 Components of ontology definition model 

 

• Relation: defines various ways that classes or individuals can be related to one another. For 

example, entity “BudgetHotel” is a subclass of “Accommodation”. The relations among classes 

are applied to the corresponding individuals. Figure 2-2 lists the common relations defined in 

various ontology specification languages. We summarize seven types of relations among 

classes and individuals. 

⎯ Subclass: extends an abstract class to convey more concrete knowledge. The subclass 

relation describes the parent and children relations among the connected classes. The 

subclasses can inherit the attributes in its parent class. As shown in Figure 2-1, “Budget 

Hotel” and “Luxury Hotel” are the subclasses of “Accommodation”.  

⎯ InstanceOf: describes that an individual belongs to a class. For example, individual “Hilton 

Hotel” is an instance of class “Luxury Hotel”.  

⎯ PartOf: indicates that a class is a part of another class or an individual is a part of another 

individual. For example, class “Accommodation” is a part of class “Travel”. In some 



 

14 

 

ontology specification languages, such as OWL, a class could be defined as a union of 

several classes, i.e., a class contains distinct member classes. For example, “Weather” is a 

union of “Forecast”, “Wind”, “Temperature” and “Precision”. To simplify the ontology 

definition model, we treat the union relation as a PartOf relation since the classes in a union 

relation are a part of the united class. For example class “Forecast”, “Wind”, 

“Temperature” and “Precision” is in a PartOf relation with class “Weather”.  

⎯ Complement: selects all the classes from the domain that do not belong to a certain class. 

For instance, class “Budget Hotel” could be defined as a complement of class “Luxury 

Hotel”.  

⎯ Intersection: defines a class which has the common individuals of several classes. For 

example, “Luxury Hotel” is the intersection of “Hotel” and “Expensive Consumption”. 

⎯ Equivalence: declares that two classes contain exactly the same individuals.  For example, 

we can define that class “Nation” is equivalent to class “Country”.  

⎯ DomainSpecificRelaion: specifies domain specific relations among classes. For example, 

airline company “Air Canada” is the sponsor of “2010 Winter Olympics”. Therefore, the 

relation between “Air Canada” and “2010 Winter Olympics” is “Sponsorship”.  The 

ontology specification languages, such as OWL, use properties to describe domain specific 

relations. To distinguish properties from relations, we convert such a type of property 

description to DomainSpecificRelation in our ontology definition model.  

2.2 Introduction on Service Oriented Architecture 

Today’s organizations face a rapidly changing market and global competition. These 

situations require the IT infrastructure of organizations to respond quickly in support of new 

business models and requirements. Integration is the key element of an on demand IT 



 

15 

 

infrastructure. Integration can optimize operations across organizations and enable them to 

interoperate seamlessly through the efficient and flexible combination of resources. 

Service Oriented Architecture (SOA) [111][113] provides a logical way of designing a 

software system to support integration. SOA wraps applications as services. New applications can 

be assembled by a set of existing distributed services across organizations and platforms. SOA 

increases reuse and cooperation among services. Therefore, applications can be built in a rapid 

way with relatively low cost. 

                                              

Figure 2-3 The basic service oriented architecture (edit from [45] and [70]) 

 

In SOA, services are the primary units. A service is a software component designed to support 

machine-to-machine interaction over a network [130]. A service could be as simple as a query, or 

as complicated as a sophisticated business process. Any component of an application can be 

wrapped as a service and published to the network for other applications to reuse. SOA consists 

of three major stakeholders: the service provider, the service registry, and the service consumer 

(client), shown in Figure 2-3 [45][70]. Service providers deliver services and are responsible for 

publishing descriptions of the delivered services. Service consumers search for and invoke 

services to achieve their goals. A service registry organizes services and facilitates the service 

searching for service consumers. In a typical scenario, service providers set up an environment to 

Service 
Provider

  

Publish Bind

Find
Consumer Registry



 

16 

 

hold a service and publish the service to a service registry. A service consumer finds the service 

from the service registry, and integrates the service with their existing applications.  To execute a 

service, a service consumer needs to bind the abstract properties obtained from the service 

registry to a concrete service, and then remotely invoke the service.    

The life-cycle for developing an SOA system has four steps, shown in Figure 2-4 [101]: 1) 

Business processes are modeled to reflect the business objectives. 2) We search for services to 

accomplish the tasks defined in business processes. Returned services are assembled and bound to 

executable business processes.  3) We deploy the executable business processes and execute 

them. 4) After the processes are deployed, we manage processes by considering their business 

functions and technical issues. Monitoring the execution of processes and collecting execution 

data are the most important aspects of business processes management. When a problem which 

impacts the performance or execution of a business process is identified, we refine the business 

process and repeat the cycle.  

 

Figure 2-4 The life-cycle of SOA development (from [101]) 



 

17 

 

2.3 Service Description Models 

When publishing a service, service providers hide the implementation details of a service. In 

the perspective of end-users, services are black boxes. To enable potential consumers to find and 

execute services successfully, it is necessary to provide service description models to support the 

description and discovery of services.  

Service description models specify the capabilities of services, which usually includes input 

and output parameters, exceptions, functional and non-functional description. For example, Web 

Services Description Language (WSDL) [32] uses Extensible Markup Language (XML) to 

describe the operations offered by a service, the input and output messages of operations, and the 

address to access a Web service. OWL-S [94] uses ontology to describe the semantics of Web 

services, especially the functional description.  

Service composition depends on service description models to find required services for 

processes. There are a variety of service description models. This section gives an introduction of 

different service description models and illustrates their pros and cons through comparison.  

2.3.1 Web Services Description Models 

WSDL is an XML based language to specify how a potential client can access a service 

[32][33]. WSDL is a well accepted industry standard. WSDL describes Web services as a set of 

operations. An operation is an interaction between the service and a service consumer. Each 

interaction contains a set of messages exchanged between a service and a service consumer. The 

messages themselves are described abstractly and are bound to a concrete network protocol and 

message format [32]. 



 

18 

 

The Universal Description, Discovery, and Integration (UDDI) [36] framework is defined on 

top of WSDL. UDDI is a platform-independent framework for describing, publishing and 

discovering services. A UDDI registration is a directory service to allow service providers and 

service consumers to register and search for Web services. A UDDI model is composed of the 

following core types [36][106][135].  Relations among these types are described in Figure 2-5. 

• BusinessEntity: A BusinessEntity describes a provider of Web services. The 

BusinessEntity includes company information, contact information, industry categories, and 

business identifiers.  

• Business Service: A BusinessService describes a list of services provided by a 

BusinessEntity. Each businessService is the child of a BusinessEntity.  

• BindingTemplate: A BindingTemplate represents an individual Web service. The 

BindingTemplate provides the technical information of a Web service which helps other 

application to bind and interact with the described service. The BindingTemplate includes the 

access point of a service or an indirection mechanism that leads to the access point. An example 

BindingTemplate is a WSDL file that describes the programming interface of a Web service.   

• tModel (Technical Model): tModels are used in UDDI to represent concepts or constructs 

which allow reuse and standardization within a system. To describe a Web service that 

conforms to a particular set of specifications and protocols, we use BindingTemplate to refer to 

tModels which define the specifications and protocols. In such a way, a tModel could be used by 

multiple BindingTemplaetes.   



 

19 

 

 

Figure 2-5 The relations of UDDI core types (from [106]) 

 

Before accessing a service, a service client usually needs to know the precondition of using the 

Web service. The Web Services Policy [136] provides a general purpose model and the 

corresponding syntax to describe the policies of entities in a Web services-based system. Policies 

describe conditions, capabilities or other properties of a behavior (e.g., an operation). For 

example, a policy could declare that a specific message body must be encrypted in order to 

protect the context of the message. In Web Service Policy specification, a policy is associated 

with entities (e.g., messages, operations and resources). Therefore, we can use policy to enhance 

the description of entities defined in service description models, such as WSDL and UDDI.  

Neither WSDL nor UDDI describes the quality of services. To represent the performance 

characteristics of Web services (e.g., response time, throughput, utilization), D’Ambrogio 

[38][39] proposes a Performance-enabled WSDL (P-WSDL) meta-model. P-WSDL extends 

WSDL with performance descriptions: PStep, PHostingEnv, PNetwork, PWorkload, 

PClosedWorkload, POpenWorkload, and PData. PStep describes the attributes of an operation 

provided by a service, such as execution time and response time. PHostingEnv presents the 

hosting environment which executes the service. PNetwork represents the characteristics of the 



 

20 

 

network, such as network speed. PWorkload, PCloseWorkload and POpenWorkload specify the 

workload of a specific operation. PData describes the size of operation messages.  

2.3.2 Semantic Web Service Description Models 

Conventional Web service description models specify the syntax of the data, but cannot 

describe the semantics of the data. Without semantic description, service consumers and service 

integrators need additional background or additional documents to understand and access a 

service. The lack of semantic description makes automatic service composition difficult. To add 

semantics to Web services, various semantic Web service description models [5] [50] [94] [120] 

[127] are proposed by researchers. Semantic Web service description models are generally built 

on accepted standards to exchange semantic data. Semantic data decrease the difficulty for 

service consumers and machines to understand the service description.  

 As an industry standard, WSDL does not include semantic description. To enhance the 

WSDL model, there are some specifications and research adding semantic models to WSDL. 

Semantic Annotation for WSDL and XML Schema (SAWSDL) [50] is a World Wide Web 

Consortium (W3C) recommendation to add semantics to WSDL and XML. The specification 

provides mechanisms to associate semantic models (e.g., Ontologies) to WSDL and XML schema 

components. The semantic models are defined outside the WSDL document. SAWSDL does not 

denote any specific language for representing the semantic models. Sivashanmugam et al. [127] 

add semantics to WSDL using the extensibility supported by WSDL specification. They also 

enable end-users to search for Web services using UDDI by annotating semantic descriptions to 

UDDI.  Rajasekaran et al. [5][120] create a language called WSDL-S to extend WSDL with 

semantic description.  In their approach, Rajasekaran et al. assume that the semantic models 



 

21 

 

already exist. The semantic models are maintained outside of WSDL documents and are 

referenced from the WSDL document through WSDL extensible elements.   

Instead of extending WSDL with semantics, many researchers create a full framework for 

semantic Web services. Ankolekar et al. [9] use a DAML+OIL based ontology, named DAML-S, 

to add semantic service description on top of WSDL.  OWL-S is developed based on DAML-S. 

OWL-S provides an OWL-based framework for describing semantic Web services. The OWL-S 

ontology is written in Ontology Web Language (OWL). In OWL-S, the class “Service” provides 

an organizational point of references for a declared Web service. Each published service is 

mapped to an instance of “Service”. Class “Service” contains ServiceProfile, ServiceModel and 

ServiceGrounding shown in Figure 2-6.  

 

Figure 2-6 Top level of the service ontology (from [94]) 

 

1) ServiceProfile provides information needed for an agent to discover a service, i.e., what the 

service does. ServiceProfile includes a description of what is accomplished by the service, 

limitations and quality of service, and preconditions for invoking the service.  



 

22 

 

2) ServiceModel describes how to use the service. ServiceModel provides the semantic 

content of requests, the conditions of some particular outcome, and the detailed process.  

3) ServiceGrounding provides information about how a service client can access the service, 

such as communication protocol and message formats. Using ServiceGrounding, the 

OWL-S description can be bound to a WSDL description or other service description 

models. For example, if a service is described by both OWL-S and WSDL, we can use  

ServiceGrounding to specify  the mapping from  the inputs and outputs defined in OWL-S 

to the corresponding inputs and outputs in the WSDL description. 

2.3.3 Summary of Service Description Models 

To summarize the aforementioned service description models, we create a table to show the 

characteristics of different service description models. As shown in Table 2-1, each service 

description model addresses different perspectives of services. With the cooperation of different 

models, we can describe different perspectives of services.  

To interact with Web services, the programming interface of Web services is a necessary part 

of a service description model. Since WSDL is a well-accepted industrial standard to describe the 

programming interface of services, many service description models are constructed on top of 

WSDL. Based on the compatibility of WSDL, we can classify the service description models 

listed in Table 2-1 into two types.  

1) Service description models built on top of WSDL. Such models reuse WSDL schema to 

describe the programming interface of Web services. UDDI, Web service Policy, SAWSDL, 

OWL-S, and WSDL-S are in this category. By keeping the WSDL description, it is easy to adapt 

those models by extending existing WSDL Web services.  



 

23 

 

2) Service description models constructed by extending the WSDL schema, (e.g., P-WSDL in 

[38][39]). This type of models might be simpler than the other type since it does not have to 

consider the compatibility issue between the new model and the WSDL schema. However, 

changing the schema of WSDL may impact other components of a SOA system. For example, the 

business process execution engine depends on the schema of WSDL to invocate Web services. 

The lack of compatibility may hinder the adoption of this type of models.     

Table 2-1 Summary of service description models 

Description 
model name 

Programming 
Interface 

Service 
Provider 
info. 

Support 
Semantic 
Description

Requirements 
(pre-
conditions) for 
invoking 
services 

Describe 
processes 
inside a 
composite 
Web 
services   

XML- 
based 

 

QoS References

WSDL √     √  [33][32] 

P-WSDL √     √ √ [38][39] 

UDDI  √    √  [36] 

[106][135] 

Web Services 
Policy 

   √  √  [136] 

SAWSDL √  √   √  [50] 

WSDL-S √  √   √  [120][5]  

OWL-S 

(developed 

from DAML-

S) 

√  √ √ √ √  [9][94] 

 

 

However, the service description models listed in Table 2-1 are designed for programmers or 

machines to read. It is difficult for non-IT professional end-users to understand these service 

description models. In addition, due to the complexity of applying semantic descriptions for Web 

services in practice, it is challenging for service developers to provide formalized semantic 



 

24 

 

descriptions. In our approach, we use descriptive tags to enhance the description of WSDL, which 

can be easily understood by end-users. Instead of requiring the formal semantic descriptions from 

service developers, we use structured tags to enhance the descriptions of service descriptions. By 

simplifying the services description using tags and encouraging the participation of end-users, our 

approach can use the knowledge from end-users to enhance the existing service description model 

(i.e., WSDL) with a certain level of semantic meanings.  

2.4 Service Discovery and Recommendation 

The accuracy of service discovery increases the success in service composition and eventually 

enhances the satisfaction of the service composition requirements. This section discusses different 

approaches to collect service descriptions from service providers and introduces different 

algorithms to match services descriptions with the requirements from the service consumer.  

2.4.1 Techniques to Collect Service Description  

Service providers advertise their services in the service registry and enable service consumers 

to search for services from the registry. A service registry creates a bridge between service 

providers and service consumers and enables service consumers to access wide range of Web 

services that match specific searching criteria. UDDI service registry is a representative service 

registry which can be used to register and search for services. The first public UDDI business 

registry (UBR) nodes were run by IBM, Microsoft, and SAP [123].  

Centralized registries [110][34] provide an efficient way to manage service registrations. 

However, centralized registries suffer from problems of single point of failure, bottleneck, and 

scalability.  



 

25 

 

Service registries can also be organized by maintaining multiple distributed registries. The 

distributed UDDI registries are connected together as a registry federation. Many decentralized 

solutions have been proposed to create registry federations.  For example, Sivashanmugam et al. 

[45] provide a discovery mechanism for publishing Web services on a federated registry 

environment.  

In addition to service repository, service search engines, such as Google [59], Yahoo [154], 

and Bing [18], are another source for searching for Web services. Service engines find the service 

description documents such as WSDL. Moreover, some service search engines, such as Seekda 

[125] and Woogle[143], are particularly designed to retrieve Web services. Service search 

engines use a focused crawler [17][81] to collect Web service information and index service 

description data in a database. Service consumers can use keywords or some specific query 

languages to find services using these search engines.  

Table 2-2 Comparison of service registries and service search engines 

Approach of 
discovering 

services 

Way to find a 
service 

Service 
description 

Number of 
services 

References 

Service Registry Passive: assume 
that service 
providers would 
voluntarily 
registry their 
services. 

Service providers 
can give structured 
and detailed 
description of 
services, such as  
UDDI 

Depends on the 
service providers 

[45] 
[110][34] 

Search Engine Active: 
automatically 
crawl the Web to 
search for service 
description 
documents (e.g., 
WSDL) 

Mainly are WSDL Easy to collect 
service 
description; 
Better coverage 
comparing with 
service registries 

[17][125] 
[143] [81] 

 



 

26 

 

Table 2-2 compares service registries and service search engines. The key difference is the way 

of obtaining service descriptions. The service registry approach requests service providers to 

manually publish the services to the service registry. On the contrary, the service search engine 

automatically finds services by crawling the Web. In addition, as discussed in [12], service 

engines have a better coverage than service registries. Service registries are not well accepted by 

the public. In January 2006, IBM, Microsoft and SAP closed their public UDDI hosts [123].  

2.4.2 Service Matching Mechanisms  

After a service registry or a service search engine collects service descriptions, the service 

discovery system needs to find proper services based on the requests from potential service 

consumers. The service matching mechanisms can be classified into two categories: information 

retrieval approaches and semantic matching approaches.  

Information Retrieval Approaches: Document matching and classification are the typical 

problem in the field of information retrieval (IR). IR techniques are used to find desired services.   

• Keyword based matching: Keyword matching is the most common form of text search in the 

field of IR. It retrieves the document by matching the keywords provided by the end-user and 

the keywords extracted from the text.    

UDDI [36] natively supports simple keyword searching. The textual descriptions of 

services are indexed and stored in the database. Given a search query (i.e., keywords), the 

service discovery systems search the textual descriptions and return a candidate answer set. 

End-users can select the appropriate one from the answer set.  However, simple keyword 

matching cannot use the semantics represented by structured documents. It is difficult for 

keyword matching approaches to distinguish the differences of semantic meanings for a word 



 

27 

 

which has different meanings. To use the structure information of documents, WSXplorer 

[64] analyzes the structure of input and output parameters of services and converts the input 

and output structured data into trees. Given the description of input and output data for the 

desired service, WSXplorer finds services by anaylzing the structures and nodes of input and 

output data trees. If end-users give a service, WSXEplorer uses the tree matching algorithm 

to find similarity services. In addition, WSXEplorer identifies the association relations 

between services by matching the output data of a service with the input data of another 

service. A set of services are associated if they potentially contribute to an end-user’s service 

composition, i.e., is able to compose together to fulfill a task.   

• Classification: Services are manually or automatically classified into different categories (or 

domains). Given a query for searching services, the system identifies the category that the 

query belongs to then returns the services which are in the same category as the query.  For 

example, Woogle [43] supports similarity search for Web services. Woogle uses clustering 

techniques to group operation names, parameter names of inputs and outputs into meaningful 

concepts. Given a service, Woogle can return the similar services.  Arabshian et al. [10] use 

service classification ontology to classify services into different classes. When an end-user 

gives a query to search for services, the service classification ontology identifies the class of 

the query, and guides end-users to provide more detailed data to trace the service 

classification ontology from high-level class to concrete services.  

• Link Ranking: If there is more than one service matching the required functionality, it is 

necessary to rank those matching services and select the best one. Service rank is a 

quantitative metric which shows the importance of a service within a Web service network. 

Service rank can be used to select services [57]. PageRank[21] is  a link analysis algorithm 



 

28 

 

used by Google Internet search engine to evaluate the importance of Web pages. Similar to 

pageRank algorithm, Gekas al et. [57][58] propose an approach to rank services using 

dynamic data flows among Web service operations. 

Semantic Matching Approaches: A limitation of traditional information retrieval approaches is 

the lack of semantic matching [110]. Service providers and service consumers have very different 

perspectives and knowledge about the same service. It is unrealistic to expect that service 

providers and service consumers would give the same description of services. Furthermore, the 

service providers would not provide exactly the service that a service consumer needs. For 

example, a service provider may describe a service as a financial news provider. While the 

service consumer might need a service to obtain updated stock information which is a part of the 

financial news. We cannot match the service request with the service description using the 

traditional information retrieval approaches.   

To improve the quality of service searching, research efforts are focused on semantic matching 

approaches. Paolucci et al. [110] propose a semantic matching approach for DAML-S service 

description model. Given a searching query, i.e., the input and output of a service, the approach 

uses ontologies to examine the relations between input and output of the request and the input and 

output of the service description. Then a matching degree is calculated based on relations of the 

request and the service description. The matching algorithm defines four levels of matching 

between two concepts (i.e., concepts that describe inputs and outputs): a requested concept, CReq, 

and an advertised concept, CAdv. 

-- Exact: if CReq = CAdv or CReq is a direct subclass of CAdv 

-- Plug in: if CAdv subsumes CReq, in other word, CAdv could be used in the place of CReq. 



 

29 

 

-- Subsume: if CReq subsumes CAdv, in this case, the service does not completely fulfill the 

request. Therefore, another service may be needed to satisfy the rest of the expected data. 

-- Fail: failure occurs when no subsumption relation is identified between the advertised 

concept and the requested one. 

Wang and Stroulia [138] synthesize the issues of UDDI related to service discovery by 

combining the similar textual description of Web services with semantic structure similarity. The 

textual description similarity is calculated using WordNet [116]. WordNet is a lexical database 

which groups words into sets of synonyms and connects words to each other via semantic 

relations. The semantic structural similarity depends on the similarity of data types used in 

WSDL files.  

Benatallah et al. [17] transform service searching requests and service description into 

description logics (DLs). DLs use a formal way to define the structure and semantics of concepts 

in ontologies. The authors treat the service matching as the best covering problem. Benatallah et 

al. provide an approach to automatically transform service description model DAML-S into DLs 

description. When service searching request (Q) is also specified using DLs, the process of 

service matching is to find services which have the best cover of Q. The descriptions of matching 

services should contain as much common information with Q as possible and as little extra 

information with Q as possible.  

Table 2-3 summarizes different service matching approaches discussed in this section. 

Keyword searching is the basic searching approach and supported by most of existing service 

searching engines, such as UDDI registry and Seekda. To refine the keyword matching approach, 

WSXploer combines the keyword searching with structures matching to provide better searching 



 

30 

 

results. However, WSXplorer requires the user to provide structure description of the input and 

output data of services. Woogle focuses on finding similar services for a given service by 

comparing different service descriptions. Link-ranking is the complement of service searching 

which helps the system to refine the searching result and select the best services.  

Table 2-3 Comparison of service matching approaches 

Service 
matching 
model 

Content of 
Service Request 

Matching method 
Service 
description 
model 

References 

UDDI registry keywords 
Searching by categories 
(classified by service providers) 
and keywords matching 

UDDI and 
WSDL 

[36] 

WSXplorer 
Input and output 
data description 

Matching the structures and 
keywords of input and output 
parameters 

WSDL [64] 

Woogle A given service 
Cluster services according to 
parameter names of inputs, 
outputs and operations names 

WSDL [43] 

Link Ranking 
A set of available 
services 

Ranking servers using the 
dynamic data flow among Web 
service operations 

OWL-S or 
DAML-S 

[58][57] 

Paolucci’s 
model 

The input and 
output of services 

Ontology based matching DAML-S [110] 

Wang and 
Stroulia’s 
mdoel 

A textual 
description of the 
desired service 

Calculate the similarity between 
request and UDDI & WSDL 
description 

UDDI and 
WSDL 

[138] 

Benatallah’s 
model 

Provided using 
description logics 
(DLs) 

Treat the service matching as a 
best covering problem in 
description logics area 

DAML-S [17] 

 

2.4.3 Context-Aware Service Discovery and Recommendation 

2.4.3.1 Context Modeling and Context-aware Systems 



 

31 

 

In general, context is the information that characterizes the situation of a person, place or the 

interactions between humans, applications and the environment [41].  In Web services, the term 

“context” can be differentiated into two parts: the context of service consumers, and the context 

of Web services [157]. The context of service consumers includes the surroundings information 

about the consumers.  The surroundings information could be utilized by a Web service to adjust 

its execution and output to provide the consumers with a customized and personalized behavior. 

The surroundings information can help service consumers discover and access services. Examples 

of a service consumer’s context could be consumers’ preferences, locations, and activities. The 

context of services includes common data about the current status of a service and the capability 

of collaborating with other services, such as network protocols, platforms and computing devices 

for services execution.  

Several context models and context-aware systems are proposed in the literature [13][28][131] 

[131]. Strang and Linnhoff-Popien [131] survey existing context models and classify them into 

different types based on the data structures. The context models are classified into 6 types: key-

value models, markup scheme models, graphical models, object oriented models, logic based 

models, and ontology based models. The context models are evaluated using six requirements. 

Ontologies are the most expressive model that can fulfill most of the requirements according to 

their evaluation. Chen and Kotz [28] investigate the research on context-aware mobile computing. 

Chen and Kotz discuss the types of context used, the ways of using context, the system level 

support on collecting context, and approaches to adapt to the changing context. Baldauf et al. [13] 

present a layered conceptual design framework to describe the common architecture principles of 

context-aware systems. Based on their proposed design framework, Baldauf et al. compare 



 

32 

 

different context-aware systems on various issues: the context sensing, context models, context 

processing, resource discovery, historical context data, security and privacy. 

2.4.3.2 Discovering and Recommending Services using Context 

Applying context-aware techniques to discover and recommend services has gained lots of 

attention. Yang et al. [29][157] design an event-driven rule based system to recommend services 

according to people’s context. Yang et al. define an ontology-based context model to represent a 

context. Requester ontology and service ontology are developed for specifying the context of 

requesters and services respectively. Using context inference rules, further contextual information 

can be inferred from the current contextual information. For example, an end-user’s activity at a 

given time can be derived by examining the time and calendar. When searching for Web services, 

Yang et al. firstly identify the similarities of inputs and outputs between requests and published 

services using capability matching. If there is no matched service, a semantic matching 

component decomposes the request into sub-requests based on requester’s contextual information 

and searches for services for each sub-request. Balke and Wagner [14] propose an algorithm to 

select a Web service based on end-user’s preferences. The algorithm starts with a general query. 

If there are too many results, the algorithm expands the service query using end-user’s 

preferences. The algorithm expands the query with loose constraints extracted from end-user’s 

preferences. If too many results are retrieved, it extends the query with restrict constraints and 

searches for Web services again. The algorithm adds constraints step by step to narrow down the 

number of service searching results to a small value.  

Chen et. al [31] use collaborative filtering technique to recommend services based on the 

Quality of services. Their approach clusters users into several regions using the physical locations 

and historical QoS data of users. When the system needs to recommend a Web service from a set 



 

33 

 

of candidate Web services, their approach uses the historical data of the user to find the regions 

that the user belongs to, then predicts the QoS of the candidate Web services. Based on the 

predication, the service with the best predicated QoS is recommended to the user. Qi et al. [118] 

combine UDDI and OWL-S to describe the context of Web services. In OWL-S, class “process: 

local” allows the users of OWL-S to define local parameters in terms of their needs. Qi et al. use 

“process: local” to describe context information.  Qi et al. define 6 types of contexts: load of 

server, performance of server, response time of service, geographical position of client, 

geographical position of server, and distance between client end and server. Dynamic context can 

be updated on time. After finding services using semantic matching, Qi et al. use context data to 

evaluate the quality of services and rank the matching services. Mosefaoui et al. [154] present a 

Context-Based Service Composition (CB-SeC) service description model. Mosefaoui et al. define 

an optional part called the context function In the CB-SeC service description model. The context 

function represents the context of the service (e.g., the current workload of the service) and is 

shipped with other service description. The context function is used to select the best services 

from the matching Web service list if there is more than one matching Web service. The value of 

context function is not known in advance. It needs to be calculated during run time when it is 

needed.  

Abbar et al. [2] provide an approach to recommend services using the logs of an end-user and 

the current context of the end-user. To select and recommend services, the proposed approach 

requires historical data which are usually not available in the practice. Blake et al. [19] use an 

agent to detect the execution of applications and the behavior of human end-users, such as 

browsing the Internet. Then the agent extracts the context data from applications and end-users’ 

behaviors. Based on the contextual data, the agent generates a query to search for available Web 



 

34 

 

services. The agents recommend services by matching the similarity of input and output and the 

operation name of Web services with the contextual information extracted by the agent.  

However, to select and recommend services, those approaches either require historical data 

which are usually not available in practice, or need to predefine the specific reactions on context 

using rules which are hard to provide due to the diversity of context types and values in the real 

world. Our approach can automatically recommend services based on the semantics of context 

scenarios without needing the historical data or requiring the designer of context-aware systems 

to provide specific rules. In addition, Chen, Qi, and Mosefaoui’s approaches focus on using 

contexts to select services with high QoS, our approach is intended to detect the functional 

requirements of end-users and recommend services. 

2.5 Service Composition 

Programming models for service composition provide the basic framework and composition 

strategies required to compose services. The goal of research on programming models for service 

composition is to increase the automation of service composition and improve the quality of 

composition results.  

In this sub-section, we identify the methods used for service composition in 2 categories: 1) 

Model-driven service composition; and 2) Goal-driven service composition. In addition, we 

introduce the current research on using context-awareness techniques to support end-users in 

service composition. Finally, we introduce different techniques in acquiring process knowledge to 

build business processes for service composition. 

2.5.1 Model Driven Service Composition 



 

35 

 

Model driven service composition uses design data, such as UML diagrams and workflows, as 

the start point to transform the design data to executable business processes such as BPEL.  

IBM WebSphere Business Modeler (WBM) [73] and WebSphere Integration Developer 

(WID) [74] are representative products of model driven service composition. In the design stage, 

business analysts use WBM to capture business requirements and model business processes. 

Business analysts can verify the requirements by simulating the business process. Then business 

processes are transformed into WID as abstract BPEL processes since BPEL is an industrial 

standard and is easy for SOA developers to implement the business processes. In the integration 

stage, SOA developers use WID to add details to BPEL processes, search services and bind 

services to BPEL processes.  

Existing software products such as IBM WBM and WID provide a systematic way to develop 

SOA systems and generate high quality business processes using model-driven service 

composition techniques. However the existing products need a lot of manual work and also 

requires experienced designers as well as SOA developers. To reduce the manual work, research 

efforts have aimed at increasing the automation of model driven service composition. Given a 

composition requirement, an abstract BPEL process and relevant services, Pistore et al. 

[114][115] propose an approach to automatically generate an executable BPEL process. Their 

approach automatically translates the abstract BPEL process and a set of relevant services into 

state transition systems. Then Pistore’s approach formalizes the requirements of the composite 

service. Using the state transition systems and the formalized requirements, Pistore et al. can 

automatically generate a state transition system to satisfy the requirements. Finally, the generated 

state transition system is automatically translated into an executable BPEL process.    



 

36 

 

Orriens et al. [107][108] propose a model driven approach to compose services. Orriens et al. 

define a set of information models (e.g., activity, condition, event, flow, message) to represent the 

basic building blocks of service composition. They also specify five types of rules to describe 

relations among information models: structure related rules, role related rules, message related 

rules, event related rules, and constraint related rules. To compose services, Orriens et al. use the 

following steps: define abstract composition, schedule composition, construct composition, and 

map constructed composition to executable composition. In the phase of defining abstract 

composition, the system receives requests from users and determines the relevant activities based 

on requested functionalities. Business rules are defined to constrain activities and messages 

among activities. In the scheduling phase, Orriens’ approach derives relations among relevant 

activities and messages using business rules and the input and output of activities. The approach 

produces different composition schedules and asks the application developers to select the best 

composition schedules. The composition construction phase constructs a concrete process and 

then assigns concrete services to activities.  Finally, the concrete process is mapped to an 

executable process and is executed on a process engine.  

To consider the QoS in service composition, Gao et al. [55] propose a method to dynamically 

compose Web service with high QoS using Markov Decision Process. A Markov Decision 

Process treats the decision problem as discrete time stochastic control process. A Markov 

Decision Process includes:  

- A finite set of states: S 

- A finite set of actions: A 

- Transition function: Φ: S×A  π(S). The transition function maps each action in a state 

to a probability distribution over S for the possible resulting state. 



 

37 

 

- R(s, a, s’) is the reward when the system transits from s to s’ under the action a.  

The solution to a Markov Decision Process (MDP) is expressed as a policy which maps each 

state to an action. The goal of MDP is to find a policy that maximizes the total expected reward. 

In Gao’s work, composite Web services are defined as an abstract representation of a business 

process. The task nodes in a business process are independent of any concrete Web services. A 

QoS evaluation function is defined and treated as the reward in the Markov Decision Process. The 

QoS evaluation function considers the cost of invoking services, response time, reliability, and 

availability. Markov Decision Process is used to select the appropriate Web service for each task 

based on the overall QoS in the entire business process.   

2.5.2 Goal Driven Service Composition 

In the goal driven service composition, the requirements of service composition are provided 

as a goal. The goal is expressed in a declarative way which could use both formal and informal 

languages. Process models are created on-the-fly to realize the goal.  

Most approaches in this category treat service composition as an Artificial Intelligence (AI) 

planning problem [122]. A planning problem can be described as a quintuple <S, S0, G, A, Г>, 

where S is a set of all possible states; S0⊂S represents the initial state of the world; G ⊂ S 

represents the goal state of the world which the AI planning system tries to achieve; A is a set of 

actions that the AI planning system can perform; and Г⊆
 
S×A×S defines the precondition and 

effects for the execution of each action. For example, S1×A1×S2 means that after executing action 

A1, the system transits from the state S1 to state S2. In service composition, the target state is an 

end-user’s goal; actions are available services and Г is the effect of executing services. The goal 



 

38 

 

of AI planning techniques is to find a path from the initial state to the target state as illustrated in 

Figure 2-7. 

1 2
action i

...
action j

m
action x

n
action y

Initial State Target State

  

Figure 2-7 The goal of AI planning 

2.5.2.1 Hierarchical Task Network Planning 

Hierarchical Task Network (HTN) planning is a type of AI planning techniques that creates a 

plan by decomposing a task (i.e., goal). HTN planning decomposes a task into smaller sub-tasks 

until all the tasks can be achieved by the primitive tasks (i.e., existing services). Three types of 

tasks are defined in HTN planning: goal task which is the desired properties of the final state; 

primitive tasks that can be achieved by invoking available actions (i.e., existing services); and 

compound tasks that can be fulfilled by composing of a set of primitive tasks and other compound 

tasks. The compound tasks enable planning systems to add domain knowledge for decomposing 

complex tasks into simple tasks.    

Wu et al. [144] use SHOP2, which is an HTN planner, to automatically compose DAML-S 

Web services. SHOP2 plans for the tasks in the same order as the tasks later be executed, which 

ease the transition from SHOP2 to processes. SHOP2 uses operators, methods and various non-

action related facts and axioms to capture the domain knowledge. A SHOP2 operator describes 

inputs, preconditions, effects of executing a primitive task. A SHOP2 method describes the way 

to decompose a compound task into partially ordered subtasks. Wu et al. translate DAML-S 

models into the SHOP2 domains, and use SHOP2 to compose services. The domain knowledge 



 

39 

 

of SHOP2 is converted from atomic processes and composite processes defined in DAML-S 

models.   

Paolucci et al. [95] use the RESTSINA planner to create autonomous Web services which can 

automatically discover and interact with other Web services. Similar to SHOP2, RESTSINA is a 

planner based on the HTN planning paradigm. The RESTINA planner allows the Web service to 

execute before a plan is completely generated. Therefore, the planner can react to the real time 

situation. For example, if a Web service does not give any response, the planner is able to look 

for an alternative Web service. However, Paolucci et al. do not reveal the details of how the HTN 

planning is used in the system. 

2.5.2.2 Situation Calculus 

In the situation calculus, the state of the world is described by functions. Situation calculus has 

three basic elements: action, situation and fluent. An action defines a task that can be performed 

in the world. For example, call-taxi(me, home) is an action which means  “I (me) perform the task 

call-taxi at home”. A situation represents a history of actions performed from a given situation. A 

fluent is a state variable and the value of a fluent is subject to change over time. For example, 

do(pay-driver(A),  do(ride(A, s)),  do(call-taxi(A, s0) )) represents the sequence of actions: [Call-

taxi(A),  ride(A),  pay-driver(A)]. There are also a set of formulae in the situation calculus to 

describe action preconditions, action effects, and state transit axioms.  

GoLog is a programming language built on the situation calculus. Mcllraith et al. [96] 

[97][102] extend GoLog to compose services automatically. They convert Web services into 

actions based on the semantic service description model DAML-S. The process model defined in 

DAML-S are used to transform a complex action to a set of primitive actions. By extending 

GoLog, individuals can customize the GoLog program by specifying personal constraints. The 



 

40 

 

extension enables the service composer to add additional constraints to the system and customize 

the composition results.    

2.5.2.3  Interface Matching and Backward-chain Reasoning 

A conversation is an exchange of messages between participants involved in joint services.  By 

examining the conversation among services, we can compose services together to form a 

composite service to satisfy the required inputs and outputs.   

Carlson et al. [24] provide an approach to progressively compose services based on the 

interface matching. Given a service, they extract semantic description of the output interface from 

the service, and use the output description to match the inputs of existing services in the 

repository. The next potential component can be identified by matching the input and output 

descriptions. A user can finally compose an executable business process based on the 

recommended components. 

Arpinar et al. [11] use inputs and outputs matching to compose a business process. In the 

approach, DAML-S Web service ontology and process ontology are needed to describe the 

interfaces of services and the relationships among services. The procedure of service composition 

is to find the best path which can convert a set of inputs provided by end-users to a set of outputs 

desired by end-users. A service is treated as a node to convert the input of the service into the 

output of the service.  

Conversation-driven service composition only considers the interfaces and input and output 

data of services. However, the input and output data of services cannot always reflect the full 

functions of services. Thus, this type of approach might ignore the functions of some services. To 

improve the conversation-driven service compositions, some approaches adopt both the interface 

matching and the semantic descriptions of Web services to compose services.  



 

41 

 

Sheshagiri et al. [126] present a backward-chain planner that composes services described in 

DAML-S into a composite service. The action (i.e., service) consists of inputs, preconditions, 

outputs and effects of services [25]. The planner starts from the final goal and repeats the 

following two steps using backward chaining to trace the required actions (i.e., services): (1) Find 

services that fulfill the existing goal and save the service in a set, and (2) Convert the inputs and 

preconditions of all the services in the set into new goals, and go to step (1) until all the inputs 

and preconditions are satisfied or provided by the initial state.    

Similar to Sheshagiri’s work, Ma [90] uses an ontology to decompose goals into sub-goals. Ma 

searches service repository to find matching services for each sub-goal. The relations of those 

matching services are automatically found using partial-order planning which is a backward 

reasoning AI planning technique. Then, the relations are matched with workflow patterns and 

matching services are composed as a business process using the workflow patterns. Finally, the 

business process is converted into a BPEL process and is executed in a process engine.   

2.5.2.4 Comparison 

Table 2-4 summarizes and compares different service composition approaches used in goal-

driven service composition. HTN planners (e.g., SHOP2 and RESTSINA) and situation calculus 

use the top-down approach to compose services. HTN planners and situation calculus start from 

the overall goal and keep decomposing the goal into small tasks until the planer finds existing 

services to achieve the tasks. By importing the domain knowledge to tell the planner how to 

decompose tasks, HTN planners and situation calculus can handle the composition requirement in 

different domains. Backward-chain reasoning uses the preconditions, input, output and effects of 

Web services to compose a process. Comparing with HTN planners and situation calculus, purely 



 

42 

 

backward-chain reasoning approaches are difficult to use domain knowledge during service 

composition.   

Most existing goal driven service composition techniques use semantic services description 

models and assume that the service providers provide the required semantic descriptions of 

services. However, the formal semantic descriptions are not generally available on the Internet 

and the majority of available services on the Internet are used WSDL. The approaches listed in 

Table 2-4 have limited support for dynamic services composition when there is no formal 

semantic description available. Instead of requiring semantic descriptions of Web services, in this 

thesis, we present an approach that is designed based on the existing industrial standard WSDL 

services which do not have formal semantic descriptions. Our approach uses the knowledge in 

ontologies to dynamically identify required tasks and generates ad-hoc processes. 

 

Table 2-4 Comparison of approaches used in goal driven service composition 

Authors or tool 
name 

Involved 
techniques 

Dynamic 
process 
generation 

Based on 
semantic 
services 
description 

Generate 
BPEL 
Process 

Automated 
service 
discovery 

Failure 
recovery 

References

Wu et al. SHOP2 √ √ × * - [144] 

Vukovic and 
Robinson 

SHOP2 and 
Context-
aware 

√ √ √ * - [137] 

Paolucci et al. RESTSINA 
planner 

√ √ √ √ √ [95] 

Mcllraith et al. situation 
calculus 

√ √ × × - [96] 
[97][102] 

Sheshagiri et 
al. 

backward-
chain planner 

√ √ √ * - [126] 

Ma Backward-
chain 
reasoning 

√ √ √ * - [90] 

    Legend:  × means not support; * means partial or proposed support, √ means full support, - means unknown. 
 
 



 

43 

 

2.5.3 Context-Aware Service Composition 

Context-aware service composition uses contextual data to improve the quality of composition 

results. Most approaches in context-aware service composition are designed by extending the 

model-driven, goal-driven or data-driven approaches.  

Vukovic and Robinson [137] employ SHOP2 to compose web services which are aware of the 

context changing. Vukovic and Robinson use the SHOP2 planner to define different SHOP plans 

corresponding to different context scenarios. Given a context scenario, the SHOP2 planner can 

provide a plan which reflects the requirement of the context. The SHOP2 plans are then translated 

into BPEL processes.   

Hesselman et al. [68] present a platform to dynamically discover and compose services in 

response to context changes in pervasive computing environments. The platform consists of a 

composition component, a context-aware discovery component and a basic discovery component. 

The composite service is not a business process. It collects a set of services and allows clients to 

subsequently access these services.  To discover services, the platform defines a registration 

interface to register services, and a discovery interface to find services by matching the discovery 

requests with the description of registered services. The discovery interface supports two ways to 

find services: active discovery and passive discovery. In active discovery, clients request the 

platform to search for a specific service. In passive discovery, clients wait for the platform to 

push services to them.   

2.5.4 Comparison of Service Composition Techniques 

In this sub-section, we classify different service composition approaches into three categories 

shown in Table 2-5 based on the form of requirement descriptions.  



 

44 

 

Model-driven service composition uses abstract business processes to express the requirements 

of service composition, most approaches in model-driven service composition cannot fully 

automatically compose services.   

Goal-driven service composition describes the requirement in a declarative way. It makes the 

requirement description easily and can automatically compose services. However, except the 

interface matching approach which uses the input and output data of services to find the relevant 

services and then compose services, goal-driven service composition usually does not enable the 

interaction of users. The composition result highly depends on the knowledge defined in the 

system.  

Context-aware service composition takes the contextual data into consideration while 

composing services. Usually, context-aware service composition is achieved by enhancing an 

approach belonging to the above two categories.  

 

Table 2-5 Comparison of service composition technologies 

Composition 
technologies 

Requirement 
description 

Require semantic 
service 

descriptions 

Automatically 
generate 

business process 

Interface 
mediation 

Model-Driven Abstract 
business 
process 

Depends on the 
specific approaches 

no Manually 

Goal-driven in a 
declarative 

way 

Most approaches 
require 

Fully automatic or 
semi-automatic 

Interface 
matching or do 

not mention 

Context-
Aware 

Depends Need contextual 
data of services 

depends Depends 

 

 



 

45 

 

2.5.5 Supporting End-Users in Service Composition 

Mashups are browser-based applications. End-users can easily access Mashup applications 

using Web browsers (e.g., Internet Explorer and Firefox) without installing any software on the 

client side. Several products, such as Yahoo! Pipe [155] and IBM Mashup center [72], provide an 

end-user friendly environments for end-users to manually connect Web resources into one Web 

page. Such environments are easy for non-IT professional end-users to learn and to manually 

compose services. However, those products require end-users to manually identify all the services 

to form an ad-hoc process. Our approach reduces the workload of end-users by automatically 

generating ad-hoc processes for end-users. Liu et al. [85] propose a Mashup architecture which 

extends the SOA model with Mashups to facilitate service composition. As discussed in section 

2.5.2.3, Carlson et al. [24] provide an approach for end-users to progressively compose services 

based on the interface matching.  

The project Ubiquitous service composition for all end-users (i.e., UbiCompForAll) [134] 

provides support for non-IT professionals to compose services. UbiCompForAll conducts an 

initial experiment to evaluate a service composition tool which creates mobile tourist services for 

end-users. UbiCompForAll uses different case scenarios relevant to the city guide to develop and 

validate the end-user interfaces of the service composition tool. However, no details and concrete 

results on providing support for end-users have been revealed by UbiCompForAll. Obrenovic et 

al. [104] provide a spreadsheet-based tool to help end-users compose services. A spreadsheet 

(e.g., Microsoft Excel) is a software application that uses rectangular tables to display 

information. In a spreadsheet, the content is specified in the cells of the table, and the relations 

among the cells are defined by formulas. Obrenovic et al. enable the spreadsheet to exchange 

messages with services and support different composition patterns.  



 

46 

 

Different from above approaches, our work enhances service Mashups by providing guidance 

to end-users through the automatic composition of services. We generate ad-hoc processes to help 

end-users compose services and fulfill the goals of daily activities.  

2.5.6 Process Knowledge Acquisition for Service Composition 

Process knowledge provides the required data to transform business process requirements 

into business processes and compose services. In model-driven service composition, process 

knowledge is primarily provided by experienced business analysts who have extensive process 

knowledge. In goal-driven service composition, most approaches are built  on semantic Web 

services which contain process knowledge (e.g., pre-conditions and post-conditions) to reason 

business processes. However, there is no well-accepted semantic service description model. For 

example, the two most popular semantic service description models, OWL-S and Web Service 

Modeling Ontology (WSMO) [140], are not recommended by W3C. In the practice, WSDL is the 

default service description language. WSDL does not have semantic description and does not 

have the ability to describe process knowledge. It is challenging for novice business analysts and 

nonprofessional end-users to identify a complete set of services to orchestrate a well-defined 

business process due to the lack of process knowledge. Therefore, it is necessary for service 

composition systems, especially for the systems which are not built based on semantic Web 

services, to have the required knowledge to compose services. There are three major research 

areas involved in capturing process knowledge.  

Process mining is a technique to extract business process information from event logs recorded 

by information systems. Agrawal et al. [5] present an approach to construct process models from 

the log. The approach can generate a process model with the control flow of the business process 

from the logs of unstructured executions of a process.  Francescomarino et al. [53] trace the Web 



 

47 

 

system executions and analyze the application Graphical User Interface (i.e., the forms and their 

fields on the client Web page) during the execution to infer processes. Liang et al. [82] provide an 

approach to mine service association rules from service transactional data. Aalst et al. [1] use 

Petri nets to model processes and discuss the class of processes which can be discovered from 

logs, then they propose a mining algorithm to discover business processes. However, the business 

processes mined by the aforementioned approaches are formally defined and are not used to 

handle daily activities. Moreover, the event logs for daily activities are distributed on many 

servers. It is hard to collect the event logs from different places, especially when it involves 

personal data. In our work, we extract the process knowledge from the publicly available 

websites. The extracted process knowledge is the information related to daily activities instead of 

the formal defined business processes. 

Business Process Recovery is a technique to extract business processes from the source code of 

business applications. Zou et al. [159] presents an approach to automatically recover business 

process definitions from business applications. However, business process recovery techniques 

need to analyze the source code of business applications running on the server. The source code 

of business applications is confidential data and generally not available. The approach proposed 

in this thesis extracts process knowledge from publicly available Web pages without requiring the 

source code of business applications or event logs.   

Information extraction systems transform unstructured documents or semi-structured 

documents into structured data such as a relational database. Cimiano and Völker [35] develop a 

framework to learn ontologies from text documents. An ontology learning tool named Text2Onto 

is developed by Cimiano and Völker in their paper. Chang et al. [27] summarize and compare the 

existing Web information extraction systems which extract information from semi-structured 



 

48 

 

documents (e.g., HTML documents). Chang et al. compare the major Web data extraction 

approaches based on the task of the IE systems (i.e., the types of input documents and the 

extraction targets), the automation degree, and the techniques used (e.g., extraction rules, 

approach to assemble the extracted values). Yoshida et al. [158] provide an unsupervised learning 

method to extract ontologies from tables shown the Web pages. However, the aforementioned 

approaches are designed to extract general information from documents instead of the process 

knowledge, which makes us difficult to use the extracted information to generate processes and 

compose services. Liu and Agah [88][89] develop a process-based search engine to search 

process knowledge from the Web. The results of the search engine are text description. Their 

process-based search engine can retrieve the processes explicitly published on the Web, such as 

www.eHow.com, www.wikiHow.com and www.howtodothings.com. However, their approach 

can only extract the process knowledge from the Web pages with explicit process information. 

Meanwhile, the output of Liu and Agah’s work is unstructured text description about a process. It 

is difficult to be further processed by machines. Hoxha et al. [69] provide an approach to extract 

semantic descriptions of processes in the Web. Hoxha’s approach fills the forms on Websites, and 

recovers the process following the submission buttons step by step dynamically. However, to 

automate Hoxha’s approach, it requires automatic approaches to fill online forms, which are 

difficult to achieve nowadays and may impact the execution of the online applications. Our 

approach analyzes the static Web pages and does not require the generation of input data. By 

extracting the process knowledge from the online applications, we can collect the practical 

process knowledge from the Web. 



 

49 

 

2.6 Summary 

This chapter investigates and compares the research related to service composition. We 

summarize different service description models and discuss the approaches used in service 

discovery. Different programming models for service composition and approaches for acquiring 

process knowledge are also presented and compared. In addition, we highlight our contributions 

in these areas by comparing our approaches with existing work.  

  



 

50 

 

Chapter 3 

Overview of a Framework for Supporting End-Users in Service 

Composition 

To shelter end-users from the complexity of service composition, we propose a framework 

that supports non-IT professional end-users to dynamically compose services and recommends 

services to meet their situational needs. Section 3.1 presents an ad-hoc process model. Section 3.2 

describes our framework. Finally, Section 3.3 summarizes this chapter. 

3.1 An Ad-hoc Process Model 

Service composition languages, such as Business Process Execution Language (BPEL) [139] , 

are designed for SOA professionals to assemble services to form well-defined business processes. 

Service composition languages require very formal descriptions in different perspectives, such as 

variables, control flow, fault handling, and service binding. Although BPEL process modeling 

tools are provided to visualize service composition languages, such as IBM WebSphere 

Integration Developer (WID) [74], Oracle BPEL Process Manager [105] and ActiveVOS 

Designer [3], those tools are designed for SOA professionals instead of non-IT professional end-

users. For example, the tools require end-users to understand different components of BPEL 

before the end-users can design a BPEL process. Moreover, the ad-hoc processes needed by end-

users for daily activities generally compose services in a loose way without strict execution order 

which cannot be described by existing service composition languages. For example, when 

planning a trip, the end-user can buy the flight ticket first then book a hotel, and vice versa. 



 

51 

 

To describe the loosely coupled services in ad-hoc processes, we propose an ad-hoc process 

model. The ad-hoc process model describes the tasks performed by end-users to fulfill their 

needs. Each task in the ad-hoc process is associated with a set of services which have similar 

functionality. To ease the end-users to navigate tasks in an ad-hoc process, we also suggest the 

possible control flows to reflect the navigational relations among tasks. Figure 3-1 shows the 

model for representing an ad-hoc process. A task can be associated with more than one service 

with the similar functions. For example, the task, “Renting a Car”, can be fulfilled by different car 

rental companies. The end-users can choose their favorite services to fulfill the task. The services 

fulfilling a task are either directly discovered from a service repository or composed by other ad-

hoc processes (i.e., sub-processes). In some cases, a few tasks have to be performed in a 

particular order.  For example, two tasks, “Selecting a Product” and “Adding to a Shopping Cart”, 

must be performed before the task “Checking out”. To help an end-user perform tasks, we define 

two basic relations among tasks in our ad-hoc process model: 

• And relation indicates that all the tasks have to be executed. Some and relations can be further 

specialized as Sequence and Parallel relations.  

⎯ Sequence defines a set of tasks to be executed in a sequential order. For example, the task 

“Selecting Flight Tickets” needs to be performed before processing the payment for the 

flight tickets.  

⎯ Parallel describes independence of tasks. Tasks in a parallel relation can be executed in 

any order or at the same time. For example, an end-user can perform “Book a Flight 

Ticket” and “Check the Weather Forecast” in parallel.  

• Or relation means that end-users only need to execute one task from a given set of tasks. An 

or relation is further specialized to Alternative and Choice relations.  



 

52 

 

⎯ Alternative allows end-users to select one task among two tasks. For example, the end-

user can select a favorite transportation vehicle from “Car” and “Train”.  

⎯ Choice defines that end-users can select one task from more than two tasks.  

 

 

Figure 3-1 Description of an ad-hoc process 

    

3.2 An Overview of a Framework for End-User Driven Service Composition  

    Figure 3-2 provides an overview of our proposed framework for generating ad-hoc processes 

and recommending services. To compose an ad-hoc process, an end-user simply describes a 

desired goal using keywords. Our framework uses keywords to search for matching ontologies 

with the desired process knowledge. We search for the ontologies from ontology databases, such 

as Freebase [54]. However, the ontology databases may not contain the matching ontology for the 

given goal. In our work, we also obtain ontologies by extracting process knowledge from the 

Web. In this thesis, we use the ontology language OWL to represent ontologies and the extracted 



 

53 

 

process knowledge is represented as ontologies and is passed to the ad-hoc process generation 

component to generate ad-hoc processes for end-users.  

 

Goal 
Description

Service 
Repository

Ontologies

Generate Ad-hoc 
Process

Ad-hoc
Process

Extract 
Process 

Knowledge

Websites
WebsitesWebsites

Context Types 
and Values Recommend Services Services

Data Process Database

 

Figure 3-2 An overview of our framework 

 

    In an ontology, the semantic of a high-level goal is expanded into more concrete concepts. We 

use the concepts as keywords to search for services in a service repository. To facilitate the reuse 

of the services when the same goal re-occurs, we abstract the discovered services into tasks and 

aggregate tasks into an ad-hoc process. The ad-hoc processes are stored and shared among 

multiple end-users.  

The generated ad-hoc process may not reflect all the needs of end-users since a goal 

description is usually not able to specify all the situational needs of an end-user. To refine the 

generated ad-hoc process, we analyze the context of end-users and formulate search criteria to 

discover and recommend services for end-users. The generated ad-process and the recommended 

services are displayed in a Mashup page so end-users can modify the process and select the 

recommended services.  



 

54 

 

 

Figure 3-3 Architecture of our framework 

 

Figure 3-3 shows the architecture of our framework. The framework is built using 

client/server architecture. On the client side, end-users interact with the service composition 

system through a composition user interface (UI) which is built using Mashup pages. The 

composition UI provides a user interface to enable end-users to specify the goal, navigate through 

the generated ad-hoc process, edit the process, and select services. To capture an end-user’s 

context, context sensors are developed to monitor the end-user’s activities in their computing 

environment. We deploy context sensors as plug-ins into various applications, such as Web 

browsers and on-line calendars.  



 

55 

 

The server contains three major components that extract process knowledge from the Web, 

analyze the contextual information gathered from the client, and generate an ad-hoc process. The 

components are described as follows:  

Process knowledge extractor extracts process knowledge from the Web. Such process 

knowledge is used as the information to understand the goal descriptions from end-users and to 

automatically generate ad-hoc processes for end-users. More specifically, the process knowledge 

extractor analyzes the navigation information in a website to identify the tasks needed for 

completing an ad-hoc process. To provide comprehensive process knowledge for achieving a goal 

from end-users, the process knowledge extractor merges the process knowledge extracted from 

multiple websites that serve for the same goal (e.g., travel planning). WordNet groups words into 

sets of synonyms and connected words via semantic relations. The process knowledge extractor 

uses WordNet as a global knowledge database to integrate the process knowledge extracted from 

different websites. Generally, the extracted process knowledge in our framework is the 

knowledge of ad-hoc processes instead of the well-defined business processes. Business process 

specification languages, such as BPEL [139] and BPMN [23], are designed to describe business 

processes with complete information of the process and are not suitable for representing the 

extracted process knowledge. In our work, we use ontologies to represent the extracted process 

knowledge. 

Context-aware searching criteria generator captures and analyzes the changing context 

scenarios of an end-user. This component automatically formulates searching criteria to discover 

the desired services in the service repositories.  

A context can be described as a set of pairs of context types and context values. A context type 

describes a characteristic of the context. A context type is associated with a specific context 



 

56 

 

value. For example, the context types for an end-user include location, identity, and time. “New 

York” is a context value for the context type “location”. Furthermore, a context scenario is the 

combination of different context types with specific values to reflect a user’s situation. To 

recommend services for a context scenario, we propose an approach which can analyze 

dynamically changing context types and values, and then formulate search criteria to search for 

and recommend services for end-users. Different from existing approaches which depend on 

static context models to know the relations among context types or values and use predefined 

rules to infer end-user’s needs, we seek an automatic approach to recognize the relations between 

context values and an end-user’s needs. For example, luxury hotel and budget hotel are two user’s 

potential needs in conflict. Therefore, the services for booking luxury hotels are automatically 

filtered when the context shows that an end-user has limited budget. We expect that such relations 

can be used to express more accurate searching criteria which better reflect an end-user’s context. 

When a new value for an end-user is detected, our approach automatically computes the relations 

between the new context value and other context values. Instead of manually defining if-then 

rules using specific context types or values as the traditional context-aware systems [1], our 

approach automatically identifies the relations among context values to infer end-user’s needs. 

Then we generate service searching criteria based on an end-user’s needs in order to discover and 

recommend services. 

   Composition engine receives the goal of service composition from end-users and automatically 

composes an ad-hoc process. We develop an approach for the composition engine to dynamically 

compose ad-hoc processes. In our approach, instead of specifying the complete tasks for fulfilling 

a goal, an end-user is required to describe a high level goal using keywords. For example, for 

planning a trip, an end-user can specify the keywords, such as “travel to Vancouver”. To 



 

57 

 

understand the semantic meaning of an end-user’s goal, we use ontologies to expand the semantic 

meanings of the keywords. Our approach uses the concepts in the ontology as keywords to search 

services from service repositories. They service repository allows service providers to advertise 

their services and provide interfaces for automatic service discovery. To enable end-users and 

composition tools to understand the properties of Web services, we use descriptive tags (i.e., 

keywords) to describe services. The detailed information of the tag-based service description 

schema is described in Chapter 6. 

In our framework, the aforementioned three components are collaborated together to help end-

users compose services and fulfill the goals of their daily activities. For example, if an end-user 

wants to plan a trip to Los Angeles, the end-user submits the keywords “Travel” or “Plan a trip” 

to the composition UI. The composition engine uses the keywords from the end-user to searches 

for the matching ontologies from an ontology database (e.g., Freebase). If the composition engine 

cannot find a matching ontology of “Travel” from the ontology database, the composition engine 

invokes the process knowledge extractor which extracts the ontology of “Travel” from the Web 

by analyzing the websites related to “Travel”. The details of extracting process knowledge from 

the Web are described in Chapter 4. Then the composition engine generates an ad-hoc process 

based on the ontology of “Travel”. The ad-hoc process includes tasks such as “Flight Ticket 

Reservation”, “Hotel Reservation” and “Tourism Attractions”. Chapter 6 presents the algorithm 

to generate ad-hoc processes using ontologies. In addition to the ad-hoc process of “Travel”, the 

end-user may need other services to satisfy the specific needs of traveling to Los Angeles. For 

example, if the end-user likes National Basketball Association (NBA) games, she or he might 

hope to know the information (e.g., game schedule and location) related to “Los Angeles Lakers” 

which is a NBA team in Los Angeles. The context-aware searching criteria generator in our 



 

58 

 

framework can analyze the context of the end-user and recommend services (e.g., game schedule 

and location of Los Angeles Lakers) based on the context of the end-user. Chapter 5 describes the 

details of our approach to recommend services based on the context of end-users.  

3.3 Summary 

In this chapter, we give an overview of our framework that dynamically generates an ad-hoc 

process and recommend services to meet the situational needs of end-users. Our framework 

automatically extracts the process knowledge from the Web to gather the required knowledge for 

service composition. To compose an ad-hoc process, an end-user only needs to use a few 

keywords to describe her/his goal and our framework can automatically generate the ad-hoc 

process for the end-user. In addition, our framework uses ontologies to extend the semantic 

meanings of context values and identifies an end-user’s needs hidden in the context values to 

recommend the desired services. To describe the loosely coupled task relations for fulfilling the 

goals of daily activities, an ad-hoc process model is also proposed in this chapter.  

  



 

59 

 

Chapter 4 

Process Knowledge Extraction  

To leverage the domain knowledge embedded in specialized websites, we propose an 

approach to extract the process knowledge from such websites. Our approach attempts to make 

the process knowledge available for end-users to use in service composition. More specifically, 

we analyze the navigation information in a website to identify the tasks needed for completing an 

embedded process. To provide comprehensive process knowledge for achieving a goal, our 

approach merges the process knowledge extracted from multiple websites that serve for the same 

goal (e.g., travel planning). 

This chapter is organized as follows. Section 4.1 presents a meta-model for websites which 

summarizes the common structures of websites. Such a meta-model captures the data related to 

process knowledge regardless of the diversity in the design and implementation of various 

websites. Section 4.2 discusses the steps of our approach that extracts process knowledge from 

multiple websites. Section 4.3 and Section 4.4 provide the algorithms to extract process 

knowledge from a website. Section 4.5 discusses our approach for integrating process knowledge 

extracted from different websites. Finally, Section 4.6 summarizes the chapter.  

4.1 A Meta-model for Describing Websites 

Due to the diversity in the design and implementation of various websites, the appearance of 

the same information can be presented differently in various websites. For example, the 

navigation information (i.e., the menu) of a website can be described as a HTML table [119], a 

HTML list [119], or parallel paragraphs with different fonts and sizes. To deal with such diversity 



 

60 

 

in the website design and implementation, we summarize the common structures of websites 

using the meta-model shown in Figure 4-1. 

 

 

Figure 4-1 A meta-model for describing websites 

 

   Generally, a website contains a collection of related Web pages. Each Web page has a Uniform 

Resource Locator (URL) to indicate the address of the Web page on the Internet. Forms in a Web 

page are used to collect inputs from end-users. A menu is intended to guide end-users to navigate 

through different Web pages in the website. A menu contains a group of menu items that link to 

different Web pages where an end-user can conduct tasks, such as selecting a product. Each menu 

item contains a label and a URL. The label shows the name of a menu item. The URL is a link to 

a Web page. Menus can be implemented in different ways, such as HTML table, HTML list or a 

set of sequential HTML hyperlinks. Figure 4-2 illustrates an example of a website with a menu. 

The menu is represented using HTML list tags, i.e., <ul> <li>… </li> … <li> … </li> </ul>. 

Essentially, the menu items indicate a set of tasks that an end-user needs to perform in order to 

complete one or more processes. The process knowledge can be captured in the menus. 



 

61 

 

 

Figure 4-2 An example of a Web page 

4.2 Steps for Extracting Process Knowledge from the Web 

Figure 4-3 illustrates the steps that extract process knowledge from Websites. As shown in 

Figure 4-3, the goal of an ad-hoc process can be described using a phrase or a set of keywords, 

such as “travel” and “apply credit cards”. We submit the goal to an existing Web search engine, 

such as Google, to search for relevant websites. However, not all the websites retrieved from a 

search engine encode rich process knowledge. In our approach, we analyze the semantics of 

menus in websites and use the semantics of menus to select the websites that provide the required 



 

62 

 

process knowledge. Then we recover tasks and sub-processes from the menus in the selected 

websites. We also capture the tasks and properties of the sub-processes. Finally, we integrate the 

process knowledge extracted from different websites to form a more comprehensive ontology that 

elaborates process knowledge of a given goal. 

 

Figure 4-3 An overview of our approach 

 

4.3 Algorithm for Identifying a Menu from a Website 

We propose an algorithm as shown in Figure 4-4 to describe the steps for identifying menus in 

a website. A Web page often contains advertisements irrelevant to the objective of the website. 

To filter out such noise, we apply the approach proposed by Gupta et al. [62] by manually 

registering the URLs of the well-known advertisement service providers. We parse the HTML 

document of a Web page to analyze the values of “src” and “href” attributes in a HTML node. 

We remove the HTML nodes if the source or hyperlink (i.e., “src” or “href”) attributes of the 

HTML nodes refer to common advertisement servers. From line 4 to line 17 in Figure 4-4, our 

algorithm traverses the tree structure of an HTML document from the root node “<HTML>” 

using breadth-first tree traversal algorithm. The queue data structure is used as a temporary 

storage to facilitate the tree traversal. Initially, the root of a HTML document (i.e., <HTML> tag) 



 

63 

 

is pushed into the queue. When the queue is not empty, a node is de-queued for further analysis. 

If the node is not a menu, we push the children of the node into the queue.  

 

Figure 4-4 Algorithm to identify menu items 

 

We identify a menu from an HTML node if the child nodes of the HTML node are identified 

as menu items. In particular, the child nodes of the HTML node satisfy the following features:   

• Menu items are sibling HTML nodes with identical HTML structures. For example as shown 

in Figure 4-2, each menu item is an element of the HTML list tag, i.e., <li>…</li>.  

• A set of menu items are encapsulated by the same parent HTML tag.  For the example shown 

in Figure 4-2, the menu items are encapsulated by the parent HTML tag <ul>…</ul>. 

• A menu item contains a URL with a short descriptive text (i.e., label) displayed on a Web page. 

As shown in Figure 4-2, the URL of a menu item is represented as a HTML href attribute 



 

64 

 

which links to another Web page. The label of the menu items in the example is surrounded by 

the HTML tag <span>…</span>.  

• Identical menu items exist in other Web pages linked by the URLs of menu items. In the 

example shown in Figure 4-2, the target Web page contains the same navigation menu items.  

 

 

Figure 4-5 An example to identify menu items 

 

Figure 4-5 is a simplified example to illustrate the major steps for identifying menus. In step 1, 

the algorithm pushes the root node “<html>” into the queue, and then pops the first node in the 

queue to check if it is a menu. The child node “<body>” does not have sibling nodes. Node 

“<html>” cannot be identified as a menu since the child of the node “<html>” does not satisfy the 

features of menu items. Therefore, we push the child nodes of “<html>” into the queue for further 

analysis. In step 2, we pop the next node (i.e., node “<body>”) from the queue to check whether it 

is a menu. Similarly, the node “<body>” is not a menu since its child node “<ul>” does not have 

sibling nodes.  We add the child node “<ul>” to the queue.  In step 3, we pop the node “<ul>” 

from the queue. Assuming that this list node “<ul>” appears in all the three linked Web pages 

(i.e., the Web pages with URLs of “/flights”, “/hotels”, “/tour” which contain the same node 



 

65 

 

“<ul>”). The children of the list node satisfy the features of menu items. Therefore, the algorithm 

identifies the children as menu items and recognizes the node “<ul>” as a menu. The algorithm is 

terminated once the queue is empty. 

4.4 Extracting Ontologies with Process Knowledge 

In this section, we discuss our approach that analyzes the semantics between the goal and the 

menus of a website in order to select the websites with the desired process knowledge. Then we 

present our algorithm for extracting process knowledge from each selected website.   

4.4.1 Selecting Websites with Process Knowledge 

Websites usually use a menu to guide an end-user through each step of an ad-hoc process. 

Quite often, a website without menus provides only simple services without detailed process 

knowledge. Such a simple website is filtered. Moreover, a website may contain more than one 

menu. Some menus are used to represent general information instead of the desired process 

knowledge to meet the goal. For example, a menu which contains menu items, such as “Home”, 

“Contact”, “About”, and “Login” are used by many websites. This menu does not reveal any 

process knowledge relevant to the goal. In our approach, we select the Websites that have at least 

one menu in a website relevant to the goal. To identify the relatedness between a menu and a goal 

described by keywords, we propose a metric, average Semantic similarity degree, to measure the 

semantic similarity between a goal and a menu. We apply the approach proposed by Wu and 

Palmer [145] to calculate the similarity degree of words which are the basic elements of a menu 

and an end-user’s goal. Wu and Palmer’s approach calculates the similarity degree based on the 

path length (i.e., the number of words connecting one word to another) between words according 

to the word relations defined in WordNet. The similarity degree is standardized into a value 



 

66 

 

between 0 and 1 (including 0 and 1). A short path length between two words means a high 

similarity degree since short path length indicates that these two words are closely connected to 

each other. For example, the similarity degree between word “Travel” and word “Travel” are 1 

since these two words are exactly the same and the path length of these two words is 0. Average 

semantic similarity degree measures the average value of the semantic similarity degrees between 

the label of each menu item and the goal, as defined in Eq. (4-1): 

n

labelgoalsim
SimAverage

n

i
i

== 1

),(
_                                                          (4-1) 

Where n is the total number of menu items in the menu; and labeli represents the label of the i-th 
menu item. 

 

To ensure that one of the menus in the website is relevant to the goal, we sort the identified 

menus based on the average semantic similarity degree from high to low. If the highest average 

semantic similarity degree is greater than a threshold, such a website is relevant to the goal. 

Otherwise, the menus identified from a website are not related to the goal. Therefore, such a 

website is filtered. 

4.4.2 An Algorithm for Extracting Process Knowledge from a Website 

We propose an algorithm for extracting process knowledge from the selected website. As 

listed in Figure 4-6, the input of the algorithm is a goal description, a website (i.e., a collection of 

Web pages in a website) which contains process knowledge, and a set of menus identified from 

the website. The extracted process knowledge is represented as an ontology. The goal description 

is created as a root class for the ontology as shown in line 2 in Figure 4-6. The menu with the 

highest average semantic similarity degree is converted to a set of classes. Each menu item in the 



 

67 

 

menu is converted to a class.  The converted classes are added to the ontology as child classes of 

the root class (as shown in lines 3 and 4). The remainder menus with lower average similarity 

degree may describe the details of a class in the ontology. For the example of a “travel planning” 

website, the menu with the highest average similarity degree may contain a menu item “flight”. 

Another menu in the website may contain menu items such as “business class”, “economy class” 

and “airport lounge”. The latter menu (i.e., “business class”, “economy class” and “airport 

lounge”) provides the detailed information for the menu item “flight”. By comparing the 

remainder menu items with the existing classes in the ontology using the word relations provided 

by WordNet, we can find the relations between the remainder menu items and the classes in the 

ontology. If our algorithm identifies a “subclass” or “PartOf” relations between a menu item from 

the remainder menus and a class in the ontology, such a menu item is created as a new class and 

added into the ontology.  

The class relations, such as “subclass” and “PartOf”, are not explicitly specified in the 

website. We need an approach to identify the class relations when extracting classes from 

websites. We use WordNet [116] to identify class relations using the following word relations 

defined in WordNet.  

• Hypernym represents a “kind of” relation. For example, car is a hypernym of vehicle. The 

hypernym relation is converted as a subclass relation in the ontology.   

• Hyponym means that a word is a super name of the other. For example, vehicle is a hyponym 

of car. Hyponym is the inverse of hypernym. In the ontology, a super class indicates a 

hyponym relation.  

• Holonym describes a whole-part (i.e., partOf) relation. For example, a building is a holonym 

of window.  



 

68 

 

• Meronym is the inverse of holonym and represents a part-whole relation. For example, a 

window is a meronym of a building. A meronym relation is converted to a PartOf relation in 

the ontology.   

 

 

Figure 4-6 An algorithm for extracting the ontology from a website 

 

WordNet can be used to identify some semantic related relations. For example, flight is a 

kind of transportation. Due to the lack of domain knowledge, the relations between two words 

cannot be recognized by WordNet when the two words are related in ad-hoc processes but do not 

have strong semantic relations. For example, in the process “travel”, word “hotel” can have a 

partOf relation with “travel”. However, WordNet cannot recognize such relations. In addition, an 



 

69 

 

ad-hoc process may use phrases (i.e., more than one word) to describe tasks or the input and 

output of tasks. For example, “first class”, “business class” and “economy class” could be the 

input parameters of task “searching for flight tickets”. WordNet is designed as a general lexical 

database and does not have the capability of recognizing phrases.  

As aforementioned, each label in a menu item is associated with a URL which indicates a path 

for the Web page to be retrieved from the server. A path shows the hierarchical structure for 

organizing the linked Web pages in different menu items. For example, a “flight” menu item is 

linked to http://www.flightcentre.ca/flights and a “business class” menu item is connected to 

http://www.flightcentre.ca/ flights/business-class. The information related to “business class” is 

stored under the directory of “flights”. The organization of the directory structure suggests partOf 

relations between the two menus items (i.e., “flight” and “business class”). We can infer that 

entity “business class” is a child of entity “flights” with PartOf relation since the URL of 

“business class” is in the sub-directory of the URL of “Flights”. 

4.4.3 Extracting Properties and Tasks from Associated WebPages 

In the extracted ontology from a website, a class in the ontology is mapped to a menu item in 

the website, and therefore a class is associated to a linked Web page by a URL. We further 

analyze the linked Web pages to recover the properties and children for each class.  

HTML forms are often designed to take an end-user's input to provide a service to the end-

user. In our approach, we extract the HTML forms from the Web page linked to a class defined in 

the extracted ontology, and check if the title and content of the HTML form is relevant to the 

class. More specifically, the label of input fields (e.g., text fields, password fields and radio 



 

70 

 

buttons) are converted to the properties of a class. Table 4-1 lists the mapping between the 

elements of forms and the properties of classes defined in an ontology. 

 

Table 4-1 Map form elements to class properties 

Form element 
Class properties and relations 

Name example 

Label with input area 
 

A class property 

Radio Buttons 

  
 Class properties with an “OR” relation 

Checkboxes  

  
 class Properties 

Select list (drop-down list) 
 

Class properties with an “OR” relation 

Title of the form 
Search Flight 

Ticket 

If the title or submission button is semantically 

similar to a class name, we convert the title or 

submission button as a child of the class with 

PartOf relation, and put all the extracted 

properties of the form as the properties of the 

child class.  

Submission Button  

 

 

4.5 Integrating Process Knowledge Extracted from Different Websites  

Each relevant website contains partial information of the process knowledge since the relevant 

website is designed for a specific group of people (e.g., graduate students, Canadian Residents). 

To obtain more complete process knowledge, we integrate the process knowledge (i.e., 

ontologies) extracted from multiple websites. Figure 4-7 presents our algorithm that integrates 

process knowledge. As a starting point, we use the goal description to create the root class of the 

integrated ontology. We gradually add the knowledge (i.e., classes, properties and relations) from 



 

71 

 

an extracted ontology into the integrated ontology. We use the variable curr_class to store a 

current class that is currently analyzed by the algorithm. As shown from lines 7 to 9 in Figure 4-7, 

starting from the root of the new ontology, we use the current class (i.e., represented by 

curr_class) to search for the matching classes defined in the input ontologies. Two classes are 

matched if the names of the classes are the same or synonyms as indicated by WordNet. The 

properties of the matching classes may vary in different ontologies.  We merge the properties of 

the matching classes to the integrated ontology, so that the curr_class in the integrated ontology 

can include all the properties. As shown in line 10 of Figure 4-7, we add the child classes of the 

matching classes from different input ontologies to the integrated ontology. We recursively merge  

 

 

 

Figure 4-7 Algorithm to integrate process knowledge 

the child classes of the matching class into the integrated ontology following the conditions listed 

in Table 4-2. If a child class of the matching class does not exist in the integrated ontology, we 



 

72 

 

insert the child class into the integrated ontology as a child class of curr_class shown in the 

second row of Table 4-2. If another class in the integrated ontology has a subclass or a partOf 

relation with the child class of the matching class, we insert the child class into the integrated 

ontology by adjusting the relations among the three classes (i.e., curr_class, a_class and 

child_class as shown in Table 4-2). More specifically, as shown in the third row in Table 4-2, if a 

class is the child of curr_class and the parent of child_class, we add the class as the child of 

curr_class and as the parent of the child_class. As shown in the fourth row in Table 4-2, if a class 

is the child of both curr_class and child_class, the class is added as a child of the child_class.   

 

 

Table 4-2 Operations to add a child class 

Condition Operation 

The child_class* does not exist in the 

integrated ontology 
 

Exist a_class**: 

  

Exist a_class**: 

  

* child_class represents the child class of the curr_class; 

** a_class is in the integrated ontology 

 

  Figure 4-8 uses an example to illustrate the main idea of the algorithm that merges two 

ontologies in a stepwise fashion. In step 1, we create a root class A using the goal description. 



 

73 

 

Then we find matching classes from the input ontologies (1) and (2) where we identify two 

matching classes for A. Consequently, we add the properties from the matching classes to A in 

the integrated ontology. In steps 2 and 3, we find the children (i.e., B and C) of A from ontology 

1 and add them into the integrated ontology. In step 4, class C is a child class of A in ontology 2. 

However, class C exists in the integrated ontology. Instead of adding another class C to the 

integrated ontology, we merge the properties of C from ontology 2 with the properties of C in the 

integrated ontology. In step 5, H is a child of A. If WordNet database indicates that H is the 

parent of B, we add H as a child of A and set B to be the child of H. 

 

Figure 4-8 An example of integrating ontologies 

4.6 Summary 

Process knowledge provides the information for service composition systems to generate ad-

hoc processes and is essential for service composition. In this chapter, we present an approach to 

extract process knowledge from the Web. We analyze the content and the structure of relevant 

websites to extract process knowledge from various websites. Our approach merges process 



 

74 

 

knowledge extracted from various websites to generate an integrated ontology with rich process 

knowledge. 

  



 

75 

 

Chapter 5 

Context-Aware Service Discovery and Recommendation 

To recommend services for a context scenario, we propose an approach that captures 

dynamically changing context scenarios of end-users and formulates searching criteria to discover 

the desired services. Instead of manually pre-defining if-then rules using specific context types or 

values as the traditional context-aware systems [13], our approach uses the relations among 

context values to infer end-user’s needs. Then we generate service searching criteria based on 

end-user’s needs to discover and recommend services.  

To facilitate the presentation of this chapter, let us consider a travel scenario as an illustrative 

example throughout this chapter. Tom is a graduate student living in Toronto. Tom is interested 

in watching Hollywood movies and National Basketball Association (NBA) games. Especially, 

Tom is a fan of Kobe Bryant who is an American professional basketball player and plays for the 

NBA team, Los Angeles Lakers. Tom plans to travel to Los Angeles and spend his vacation in 

Los Angeles next month. When examining the context in this scenario, we find that some 

contextual information can be helpful for Tom to plan his trip. For example, as a graduate student 

who has low income, Tom might prefer a budget hotel for the trip. As a fan of NBA, Tom might 

be glad to know that “Los Angeles Lakers” is in Los Angeles.  

This chapter is organized as follows. Section 5.1 gives an overview of our approach. Section 

5.2 presents our approach to search for matching ontologies from ontologies databases. Section 

5.3 discusses the details of inferring relations among different context values. Section 5.4 presents 

our approach that identifies end-user’s requirements in a given context scenario and generates 

searching criteria to search for services. Finally, Section 5.5 summarizes this chapter.  



 

76 

 

5.1 Overview of an Approach for Context-Aware Service Discovery and 

Recommendation 

 

 

Figure 5-1 Steps for context-aware service recommendation 

 

Figure 5-1 gives an overview of our approach. Context types can be dynamically added and 

removed to reflect an end-user’s situation. The value of a context type can also be changed over 

time. To correctly model relations among context values, it is critical to understand the semantic 

meanings of each context value. Ontologies capture the information related to a particular concept 

using expert knowledge. To identify the semantics of a context value, we search for publicly 

available ontology databases such as Freebase [54]  to extend the meaning of the context value. 

Figure 5-2 illustrates an example ontology for describing the information about “Los Angeles”. In 

particular, “Los Angeles” is a context value for the context type “Location”. The ontology of 

“Los Angeles” shown in Figure 5-2 expands the semantic meaning of “Los Angeles” with 

additional information, such as “Geographic Location”, “Sports Team”, and “Tourist Attraction”. 

When a context value for an end-user is detected, our approach automatically searches for 

ontologies that expand the semantic meanings of the new context value and compute the relations 

with other context values. 



 

77 

 

 

 

Figure 5-2 An example of extending context value using ontology 

 

We use the identified context relations to discover an end-user’s requirements for a given 

context scenario and generate the corresponding service searching criteria. For example, when the 

semantics (i.e., ontologies) of several context values share the same concept, the concept would 

reflect the potential requirements of the end-user. In the travel scenario, Tom is going to travel to 

“Los Angeles”, and he is interested in watching NBA games. The ontologies of “Los Angeles” 

and “NBA” have the same concept “Los Angeles Lakers”. It indicates a high likelihood that Tom 

would be interested in watching the basketball game played by “Los Angeles Lakers”. Finally, we 

use the generated service searching criteria to discover services and recommend them to the end-

user. 



 

78 

 

5.2 Searching for Matching Ontologies 

Not all the context values can find the matching ontologies. Usually there are no matching 

ontologies for long phrases. For example, it is difficult to find a matching ontology for the context 

value “plan a trip to Los Angeles” which is the value of the context type “activity”. We search for 

relevant ontologies for each context value in the following steps: 

1) Search for ontologies using the entire string of the context value. We treat the context value 

as a searching string, and use the entire searching string to search for relevant ontologies from 

ontology databases, such as Freebase [54]. If we can find a matching ontology, we annotate 

the ontology to the context value.  

2) Simplify the string of the context value by removing adjectives and adverbs. If we cannot find 

a matching ontology for the searching string, we use an adjective and adverb dictionary (e.g., 

WordNet) to identify and remove the first adjective or adverb in the searching string. 

Adjectives and adverbs describe constraints on an entity. For example, in the context value 

“luxurious travel”, the adjective “luxurious” is a constraint on the “hotel”. Therefore, 

removing the adjectives and adverbs can keep the important information in the searching 

string. If the removed adjective or adverb is followed by a stop word (e.g., “to”, “for” and 

“of”), we remove the stop word since the stop word do not contain important information to 

be used in search queries. Then we use the remainder of the searching string to search for 

ontologies.  

3) Annotate the matching ontology to the context value and convert the removed adjectives and 

adverbs to constraints of the context value if we can find a matching ontology. For example, 

if we cannot find the ontology for the context value “luxurious travel” but find an ontology 



 

79 

 

for “travel”, we map the ontology “travel” to the context value “luxurious travel”. We also 

add an annotation “luxurious” to the context value  “travel”. 

If we cannot find a matching ontology, repeat Steps 2) and 3) until we find a matching 

ontology or the string of context value is empty. When we cannot find any relevant ontology 

using the searching string of a context value, we use synonyms of the context value to search 

for ontologies and repeat the above steps. If no matching ontology is found, then we create a 

new ontology and convert the context value to be the root class of the new ontology.  

5.3 Identifying Context Relations 

The relations among context values can be used to identify an end-user’s requirement in the 

given context scenario. In our approach, we use two steps to identify the relations among multiple 

context values.  

1) Identify the relations between two context values. We compare the corresponding ontologies 

which represent the semantics of context values to identify the relations of two context values. 

To compare the entities from two different ontologies, we define the term “similarity” which 

can identify similar entities from different ontologies. We also introduce the user-defined 

relation to link dissimilar entities from different ontologies using domain knowledge.  

2) Integrate all the relations of two context values. To get the relations among multiple context 

values, we integrate the relations between two context values to construct a relation map that 

describes the relations of multiple context values. 

5.3.1 Identifying Relations of Two Context Values 

5.3.1.1 Similarity of Entities in Ontologies 



 

80 

 

Ontologies on the Internet are defined by various people from different perspectives. The 

entities (i.e., classes, individuals or properties) defined in two different ontologies may have 

different names for the same concept. Moreover, the entities of two ontologies can be defined in 

different granularity, even though both ontologies refer to the same concept. For example, 

“United States”, “USA” and “America” are different names for the same concept. As shown in 

Figure 5-5, the class “Tourist Attraction(s)” defined in ontology “Los Angeles” and ontology 

“Travel” contains different levels of details, although both classes of “Tourist Attraction(s)” refer 

to places of interest where tourists visit. To identify the same entities defined in different 

ontologies, we evaluate the semantic similarity of two entities in different ontologies in the 

following cases: 

1) Two phrases (e.g., entity names and property values) are similar, when the words are 

identical, synonyms or originated from the same stem. In this these, we use WordNet to 

identify synonyms and stems of words. For the example shown in Figure 5-5, phrases 

“Tourist Attractions” and “Tourist Attraction” are similar since both phrases are stemmed 

from the phrase “Tourist Attraction”.  

2) Entity P1 and entity P2 are atomic properties. Property P1 and property P2 are similar if and 

only if the property names and property values of property P1 and property P2 are similar. For 

example, atomic properties “Price Range: budget” and “Price Range: cheap” are similar since 

both properties have the same property name “Price Range” and  have similar properties 

values “budget” and “cheap”. 

3) Entity E1 and entity E2 are classes, individuals or non-atomic properties. Entity E1 and entity 

E2 are similar if and only if  

a. The names of entity E1 and entity E2 are similar; and 



 

81 

 

b. All the properties defined in entity E1 exist in entity E2; or all the properties defined in 

entity E2 exist in E2.   

For example, assuming that there is a class “Tourist Attractions” which has a property 

“location: Los Angeles” and there is another class “Tourist Attraction” which does not 

have any properties, we say that the two classes are similar since the two classes satisfy 

the following two conditions.  Firstly, the class name “Tourist Attractions” and “Tourist 

Attraction” are similar. Secondly, the properties (i.e., no properties) defined in the latter 

class “Tourist Attraction” belong to the former class “Tourist Attractions”.  

In case 3), entity E1 and entity E2 might have different number of properties. Some ontologies 

may provide more detailed information of an entity than others due to the different levels of 

granularity in different ontologies. If the properties of entity E1 (i.e., a class or an individual) are 

the subset of the properties of entity E2, entity E1 and entity E2 are treated as similar entities. We 

use WordNet to identify the synonyms and stem of words. By considering the synonyms and 

stems of words, we can discover two entities are similar if the entities are not described using the 

same words 

5.3.1.2 User-Defined Relations Using Domain Knowledge 

   By comparing the similarity of entities, we can discover the semantic relations between context 

values. However, the similarity of entities cannot identify the relations which require domain 

knowledge. For the example of the travel scenario, Tom is a graduate student with low income. 

We can infer that he may prefer a budget hotel instead of a luxury hotel while he is traveling. 

However, the constraint of “preferring a budget hotel” is not specified in the ontology of 

“graduate student”. The ontology of “graduate student” may only tell us that graduate students 

have low income.  To overcome this problem, we use LinQL language [65] to specify links 



 

82 

 

between entities. LinQL is an extension of Structured Query Language (SQL) and defines the 

conditions that two given entities must satisfy before a link of two entities can be established.  

 

Figure 5-3 Main structure of defining a link specification statement 

 
Figure 5-3 shows the main structure of defining a link specification statement (linkspec for 

short) using LinQL. As shown in Figure 5-3, a CREATE LINKSPEC statement defines a new 

linkspec which specifies the name of the linkspec and a method to establish the link. For example, 

Figure 5-4 defines that if a person’s income is low, then the person would prefer economical 

consumption style which is defined as terms with a property of economy.  The details of defining 

LinQL are described in [65].  

 

Figure 5-4 An example link specification 

 

5.3.1.3 Relations between Two Context Values 

Based on the definitions of the semantic similarity of entities and user-defined relations, we 

identify the following five types of relations between two context values extended by ontologies:  



 

83 

 

 

 

Figure 5-5 Examples of relations between two context values 

 

1) Intersection means that the ontologies of two context values contain similar entities (i.e., 

classes or individuals). Figure 5-5 shows three examples of intersection relations. In Figure 

5-5, the context value “travel” (i.e., its relevant context type is “activity”) and the context 

value “Los Angeles” share the same entity “Tourist Attraction”. Context values, “Los 

Angeles” and “NBA”, contain a common entity “Los Angeles Lakers”. When a context value 



 

84 

 

is a part of another context value, such context values are in an intersection relation. In the 

travel example, the ontology “Los Angeles” contains an individual “Hollywood”. Therefore, 

“Hollywood” is a part of “Los Angeles”. The context values “Hollywood” and “Los Angeles” 

have an intersection relation.    

 We use entity names, properties and individuals of ontologies to describe the common 

entities among two ontologies. The children entities (e.g., sub-classes, individuals of sub-

classes) of the common entities are ignored if the children entities are not defined in one of 

the ontologies. This simplifies the description of common classes, since the children entities 

contain too many details which could decrease the importance of the information in the 

common entities.  

2) Complement indicates that all the members of an entity (i.e., classes or individuals) do not 

belong to another entity, and the two entities together define all the members in the given 

domain. The complement relations can be directly derived from the ontology definitions. For 

example, context values “Economy Hotel” and “Luxury Hotel” have a complement relation as 

defined in the ontology of “Travel”.  

3) Equivalence defines that two context values describe the same concept. Equivalence relations 

should be explicitly defined in one of the ontologies. Explicit defined equal entities are 

treated as similar entities when we compare the entities from two different ontologies.     

4) Domain specific relation means that the corresponding ontologies of two context values 

contain entities linked by user-defined relations. As shown in Figure 5-5 (3), the domain 

specific relation is identified by a user-defined relation which links the low income to budget 

items ( i.e., budget hotel in the travel scenario).  

5) Independence means that two context values do not have any connection.  



 

85 

 

5.3.1.4 Inferring Relations among Multiple Context Values 

We use entity-relationship (E-R) diagrams [30] to create a global view of relations among 

multiple context values. E-R diagrams provide a formal description for a set of entities and 

relationships among entities.  

For each relation of two context values, we convert the two context values into two entities in 

the E-R diagram. A relation type (e.g., intersection and complement) is converted into a 

relationship node in the E-R diagram. A relationship node connects the relevant entities. For an 

intersection relation type, the common entities are converted into the attributes of the intersection 

relationship in the E-R diagram. Equivalence relations are used to combine entities in the E-R 

diagram. To simplify an E-R diagram, independence relations are not explicitly described in an E-

R diagram. If two entities are not connected by a relation node in the E-R diagram, it indicates 

that the entities are independent. We integrate the relations of two context values into an 

integrated E-R diagram in the following steps: 

1) Initialize the integrated E-R diagram as an empty model.  

2) For each relation in the relation list, we repeat the following steps: 

a) Convert a relation of two context values into an E-R diagram. 

b) Add the E-R diagram created in step 2.a into the integrated E-R diagram. If there exist 

similarity or equivalence entities, we merge the similarity and equivalence entities by 

keeping the entity with richer information in the E-R diagram. If there exist subclass, 

partOf or complement relations, we add a relationship node in the integrated E-R diagram 

to indicate the corresponding relation. If two relationship nodes contain the same relation 

type and relationship attributes, we merge them into one relationship node.  



 

86 

 

Following the aforementioned steps, all the context values are converted into entities in the 

integrated E-R diagram. The entities associated to relations of context values are transformed into 

properties in the E-R diagram. Figure 5-6 shows an example of an integrated E-R diagram for the 

context values in the travel scenario. In Figure 5-6, context ontologies “Student” and “Travel” 

have an domain specific relation due to an user-defined relation which links “Income: Low” to 

“Budget Hotel”. The NBA team “Los Angeles Lakers” is shared by three context values “Los 

Angeles”, “Kobe Bryant” and “NBA”.  Context ontology “Travel” shares the same class “Tourist 

Attractions” with ontology “Los Angeles”. Class “Tourist Attractions” contains a set of 

individuals such as “Hollywood Walk of Fame” and “Los Angeles County Museum of Art”. We 

use the individuals to get specific tourist attractions (i.e., services) in Los Angeles.  

 

 

 

Figure 5-6 An example of integrated E-R diagram 

 



 

87 

 

5.4 Generating Service Searching Criteria 

To recommend services, we identify end-user’s requirements, and generate searching criteria 

to search for services. An end-user’s requirements describe the potential tasks to perform in a 

given context scenario. We define generic rules to infer end-user’s requirements from the E-R 

diagram. We extract service searching criteria from the description of end-user’s requirements to 

search for services.  

5.4.1 Identifying End-user’s Requirements in Given Context Scenarios 

In our approach, an end-user’s requirements in his/her current context scenario are identified 

based on the relations among different context values. However, some relations among context 

values exist in all the scenarios of an end-user due to the long-term existence of certain context 

values. For the example of the travel scenario, Tom’s preferences involve “NBA” and “Kobe 

Bryant”. These preferences can be explicitly specified by Tom and generally exist for a long 

term. Our approach would always identify the common entity “Los Angeles Lakers” since the 

ontology “NBA” and the ontology “Kobe Bryant” share the same entity “Los Angeles Lakers”. 

As another example, the current “city” (e.g., Toronto) always has a relationship with the current 

“country” (e.g., Canada). To avoid recommending the redundant information, we ignore the 

relations among context values when the relations are derived from the context values that exist 

for a long term or inherently exist in the associated context types.  

We design 3 generic rules to derive end-user’s requirements from the integrated E-R diagram 

as shown in Table 5-1. Suppose Ec1, Ec2, …, Ecn  are entities in the integrated E-R diagram. 

Potential Task Set represents a set of an end-user’s requirements. 



 

88 

 

Rule 1 collects the common entities and properties from the E-R diagram. The common 

entities in the Potential Task Set are contained in two or more ontologies corresponding to the 

context values. Each entity in the Potential Task Set indicates a part of an end-user’s requirements. 

For example, the context value “Los Angeles” and context value “NBA” have a common entity 

“Los Angeles Lakers”. The common entity “Los Angeles Lakers ” is a NBA team in Los Angeles, 

and there is a high chance that the end-user would be interested in the services related to this team.   

 

Table 5-1 Generic rules to derive end-user’s requirements  

Rule 
No. 

Relations Potential Task 
Set 

Description 

1 Intersection relations: E ∩ E ∩ ⋯ ∩ E ={e , e , … , e } ≠ ∅  

{e1, e2, …, ek} Ec1, Ec2, …, Ecn  are entities in the 

integrated E-R diagram. e1, e2, …, ek 

are entities or relationship attributes 

in the integrated E-R diagram. 

2 Domain specific relations: E  is linked to E by  user-de ined relations  {(e →  e ), … , (e → e )}  

{(e→ e ), …,  (e → e )}  

Ec1, Ec2, …, Ecn  are entities in the 

integrated E-R diagram, and (e1i→ 

e2i) are a pair of linked entities 

between entity Ec1 and entity Ec2. In 

the E-R diagram, (e1i → e2i)  

represents  a property of the user-

defined relation. 

3 Complement relations: 

 E = E , e ∈ E , e ∈E  and e , e ∈potentialTaskSet 
 

e1 and e2 have 

an OR relation.  

 

Eci and Ecj are entities in the 

integrated E-R diagram. e1 and e2 are 

entities or relationship attributes in 

the integrated E-R diagram; and E 

represents the complement of entity 

E. 

 



 

89 

 

A user-defined relation connects two entities from two different ontologies. The linked entities 

are represented as pairs (e.g., e1i→ e2i) in Table 5-1.  If two entities from different context values 

are linked by a user-defined relation, it means these two entities are different from other entities 

in the ontologies of context values and the information in these two entities might be interested by 

the end-users. Therefore, In Rule 2, we extract the linked entities and add them to the Potential 

Task Set. In the example of planning a trip, “Budget Hotel” has a high chance to be interested by 

Tom since the entity “Budget Hotel” is linked by an attribute of the occupation of the end-user.   

Complement relations show that two entities cannot co-exist in the same time. In Rule 3, we 

use complement relations to split the entities in the Potential Task Set and identify them as an 

“OR” relation. For example, if the Potential Task Set contains both the entities “Budget Hotel” 

and “Luxury Hotel”, we can use the complement relations to identify them as a “OR” relations. 

Therefore, when an end-user choose one recommendation (e.g., Budget Hotel), we stop to 

recommend the complement recommendation (e.g., Luxury Hotel) since the user has made a 

decision between these two types of hotels.  

Once the rules are applied on the E-R diagram, we obtain a Potential Task Set which contains 

a set of entities and properties of the entities in the E-R diagram. Some entities in the Potential 

Task Set may describe the same concept at different levels of details. For example, one entity is 

the subclass of another entity. To reduce the redundancy of service recommendation, we merge 

the similar end-user’s requirements by classifying the entities in the Potential Task Set into 

different groups. Each group maps to a specific service searching criteria. 

5.4.2 Generating Service Searching Criteria 

The entities and properties of an end-user’s requirements (e.g., Potential Task Set) are 

described using structured data defined in ontologies. We define mapping rules specified in Table 



 

90 

 

5-2 to convert the structured data to service searching criteria. The class name in Table 5-2 refers 

to the name of classes defined in ontologies.  and  represent the name 

of input parameter and the name of output parameters. Furthermore, the generated searching 

criteria are submitted to existing search engines, such as Google [59].  

In Table 5-2, the first column lists the entities contained in the end-user’s requirements (i.e., a 

Potential Task Set). The second column shows the associated query to find matching Web 

services described in WSDL. The third column presents the generated query submitted to a Web 

search engine. The WSDL query is used to search for available Web services described using 

WSDL from service repositories (e.g., IBM WebSphere Service Registry and Repository 

(WSRR) [75]). However, not all the user’s requirements have matching Web services to fulfill. 

For the example of the travel scenario, we might not be able to find a WSDL Web service to 

provide the tourism attractions in Los Angeles. As an option, we search for the desired 

information from existing Web Pages using Web search engines since there are a large number of 

WebPages with rich information on the Internet.  

As shown in Table 5-2, a class contains class name and properties. In a WSDL query, a class 

name is used to match a service name or an operation name in a WSDL document since the class 

name is the major object name used in a Web service. In most cases, a service name or an 

operation name in WSDL are not identical to the class name defined in ontologies. For example, 

an operation used to search for budget hotels can be named as “Get Budget Hotel” or “Book 

Budget Hotel”. The operation names contain the class name “Budget Hotel” with additional verbs 

(i.e., “Get” or “Book”). Therefore, we check the generated WSDL query if a class name is a 

substring of the service name or operation name instead of exacting matching the service name or 



 

91 

 

the operation name with the class name. We apply the same requirements to other ontology 

entities in the conversion process.  

 

Table 5-2 Mapping ontology entities in potential task set to WSDL query and webpage query  

Entities in the PotentialTaskSet 
WSDL Query 

General Query for  
WebPages 

Type Involved data 

Class 

Class name: 
 

( ⊆ ( ∪ )) &&( _ ⊆ ( ∪ )) 
where _ ∈(⋃ ) 

  

   (   ⋯  ) 
 

Property names 
of the class: ⋃  

Individual 

Individual name: 
 

( ⊆ ( ∪ )) &&( _ ⊆ ( ∪ )) 
where _ ∈(⋃ ) 

 

   (   ⋯  )  

 
Property names 

of the individual:  
  ⋃  

User-defined 
relation 
(e1→e2) 

Name of the class 
that entity e2 
belongs to: 

 

( ⊆ ( ∪ )) &&( _ ⊆ ( ∪ )) 
 

   (   ⋯  )   
Properties of 

entity e2: ⋃  

 
 

Properties of a class specify the detailed attributes of the class. There is a high chance that the 

properties of classes are the input or the output to perform an operation in WSDL services. For 

example, in our travel scenario, the property “Price” in the class “Budget Hotel” becomes a 

parameter of the operation “Book Budget Hotel”. As listed in Table 5-2, the names of the 

properties are used to match parameters of operations in a WSDL service. However, a service 

may not need to use all the properties defined in a class. Therefore, we use an OR relation to 



 

92 

 

connect all the properties. The searching criteria for Web search engines are focused on using 

keywords. In the column 3 of Table 5-2, we convert the class name into a keyword and the 

properties of classes to the optional (i.e., OR relations) keywords in the query since the properties 

of classes can add constraints to the query but too many constraints may limited the results of 

queries. For the individuals in the Potential Task Set, we use the same way as classes of 

ontologies to convert them to quires since the data in individuals are similar to classes.  

In the user-defined relation e1 e2 as shown in the fourth row of Table 5-2, entity e1 is the 

source entity that is used to search for entity e2, and entity e2 is the target entity that we want to 

recommend to the end-user.  For example, when we link the entity “low income” to all the budget 

(or economic, cheap) items, the budget items, such as budget hotel in the travel scenario, are the 

information that we want to recommend to end-users.  Therefore, we convert the target entity 

instead of the source entity to a search query as shown in the fourth row of Table 5-2.   

5.5 Summary 

In this chapter, we present an approach that dynamically derives context relations from 

ontologies and automatically recommends services based on specific context values. By 

identifying the semantic relations among context values, we can infer end-user’s tasks hidden 

behind the context values and generate searching criteria for service discovery and 

recommendation.  

  



 

93 

 

Chapter 6 

Ontology Driven Service Composition 

In this chapter, we propose an approach that hides the complexity of Web services standards 

and tools to help non-IT professional end-users compose services for their daily activities. Our 

approach can identify services and generate ad-hoc processes to reflect the situational needs of 

end-users. More specifically, to ease the end-users’s difficulty in understanding the functional and 

non-functional properties of a service, we propose a service description schema that describes 

service using descriptive tags (i.e., keywords). The end-users can provide feedback on their 

experience of using the services. Instead of requiring end-users to specify the concrete tasks, the 

end-users only need to describe the goal that they want to achieve by invoking services using 

keywords. To have a better understanding of the specified goal (i.e., keywords), we search for 

existing ontologies that can expand the meaning of a specified goal. Furthermore, we provide a 

technique that analyzes the identified ontology to automatically discover services and compose an 

ad-hoc process to achieve the specified goal.   

This chapter is organized as follows. Section 6.1 gives an overview of the approach for 

composing ad-hoc processes.  Section 6.2 describes our proposed tag-based service description. 

Section 6.3 and Section 6.4 present our approaches to search for matching ontologies and services 

respectively. Section 6.5 discusses an algorithm to generate ad-hoc processes. Section 6.6 

introduces our prototype which implements a framework for supporting ontology driven service 

composition. Finally, Section 6.7 concludes the chapter. 

 



 

94 

 

6.1 An Overview of an Approach for Composing Ad-Hoc Processes 

 

 

Figure 6-1 Steps for composing ad-hoc processes 

 

Figure 6-1 gives an overview of our approach for supporting end-users to compose ad-hoc 

processes. To compose an ad-hoc process, an end-user simply describes a desired goal using 

keywords. Our composition system uses the goal description (i.e., keywords) to find a matching 

ontology from the ontology database. In an ontology, the semantics of a high-level goal is 

expanded into more concrete information, such as the attributes of the goal, the objects and 

actions of the goal. We parse the matching ontology and extract keywords from the matching 

ontology to search for services in service repositories. The service repository allows service 

providers to advertise their services and provide interfaces for automatic service discovery. The 

services in service repositories are described using our tag-based service description schema 

which uses descriptive tags (i.e., keywords) to simplify the existing service descriptions, such as 

WSDL. The service description schema can help end-users and composition tools understand the 

properties of services. End-users can also edit the tags to refine the service description. To help 

end-users fulfill their goals regardless the types of services, the services in the ad-hoc processes 



 

95 

 

could be any Web resources, such as WSDL services, Websites and RSS feeds. And end-users 

can use the service description schema to tags those different types of services.  

To facilitate the selection and execution of services, our approach aggregates the discovered 

services into tasks. We use the relations defined in the ontology to identify the control flow 

among tasks. The identified tasks and control flows are represented as an ad-hoc process. The ad-

hoc processes are stored in the ad-hoc process database and shared among multiple end-users.      

6.2 Tag-based Service Description 

 

Figure 6-2 Schema for tag-based service description 

 

To generate a meaningful ad-hoc process, it is critical to describe services in an efficient way 

that allows end-users and composition tools to understand the properties of Web services. In Web 

2.0, tags are a popular feature to describe Web resources. For example, Facebook [48] uses tags 

to describe images and Seekda [125] takes tags to describe Web services. However, those tags are 

designed for the purpose of classification and searching. The tags are not organized in a 

structured way to help the end-user to understand the detailed properties of services (e.g., the 



 

96 

 

operations of a service). Moreover, the tags can be redundant or irrelevant to a service. In our 

work, we propose a schema for associating Web services with structured descriptive tags which 

capture various properties of a service provided by both end-users and service providers to reflect 

the different perceptions of a service. To ensure tags to reflect the functionality of the services, 

the tags are initially extracted from WSDL. End-users can add new tags.  

6.2.1 Schema of the Tag-based Service Description  

Figure 6-2 illustrates the schema for our tag-based service description. In the schema, service 

providers describe the technical specification of services. End-users can provide their feedback on 

the quality of services and the delivered functionality. In general, we classify the tags into three 

categories:  

   General description specifies the basic characteristics of a service, such as version number, the 

last modified time, and the URL address (i.e., link) for accessing the service. The general 

description is provided by a service provider. 

    Functional description is provided by both service providers and end-users to describe the 

functionality of a service. The functional description is composed by a set of operations. Each 

operation contains several detailed descriptions, such as input, output, constraints, end-user 

reviews and provider’s description on the functionality of an operation. A service provider 

publishes the name of a service, the operations and parameters as keywords. For example, an 

operation name, “getWeather”, can be represented by a keyword, “weather”. Such functional 

description tags are automatically extracted from WSDL. The constraints of each operation are 

expressed as a set of tags and value pairs (i.e., weather forecast period = 7 days). An end-user can 

add their own descriptions about each operation using a set of keywords. Many end-users may 



 

97 

 

submit similar reviews. Similar to the indexing techniques used in existing search engines [21], 

we extract the meaningful keywords from the reviews and store them as tags.  

Quality of services (QoS) specifies the quality attributes either perceived by end-users or 

measured by service providers. The availability of a service, response time and the processing 

time are major concerns when invoking a discovered service. The values for these quality 

attributes are monitored and provided by service providers. Furthermore, the end-users can 

submit their rating about a service. A set of tag and value pairs (i.e., availability = 99%, and end-

user rating = excellent) are used to describe the quality attributes. More quality attributes can be 

added to extend the tag-based service description. The values for the quality attributes are used to 

select services when multiple services of equivalent functionality are returned. 

The tag-based description for a service is represented in XML and stored in a service 

repository which links the existing description documents of a service (e.g., WSDL) with the tag-

based description.  

6.2.2 Management of Tags 

 
Figure 6-3 An example of the service description in WSDL 

 



 

98 

 

The WSDL description for a service is provided by the service provider. We analyze the 

WSDL description of a service to extract the tags required from service providers. For example, 

we extract the service name, operation names, input parameters, output parameters and service 

access location (i.e., the URL to access the service) from WSDL documents.  

Figure 6-3 shows an example WSDL description, which contains two operations, namely, 

“GetWeatherByZipCode” and “GetWeatherByPlaceName”. The name of the service is 

“WeatherForcast”. To extract meaningful tags from the end-user’s input and WSDL files, we 

filter out stop words, such as “the”, “to”, and “by” from the input phrases. When a stop word is 

placed in the middle of a phrase, we use the stop words to separate the phrase into two tags. For 

example, the operation name “GetWeatherByZipCode”, is converted to <Get Weather> and <Zip 

Code >. 

Instead of treating derived words (e.g., traveling, and traveled) as different tags, we detect the 

derived words from the end-user’s input and WSDL documents, and store only the corresponding 

root form in the description. For example, the derived words, such as “Travelling”, “Traveled”, 

and “Travels” are stored using the root word “Travel” in the service description. Not all the tags 

in our schema can be extracted from WSDL documents since WSDL is designed to provide the 

programming interfaces and does not have the semantic descriptions of functionalities and QoS. 

We allow end-users and service providers to add more tags by providing either phrases or 

sentences to describe their reviews of a service. Over time, tags associated with a service would 

grow considerably large since any end-users can freely add new tags to the service description. 

Extraneous tags would negatively affect the effectiveness of service discovery. To reduce the 

redundant tags, we use WordNet [116] to detect the synonyms of a new tag to be added in the 



 

99 

 

existing tag-based description. We filter out semantically equivalent tags before adding them to 

the tag-based description document.   

6.3 Searching for Ontology from Ontology Database 

Figure 6-4 shows our algorithm that uses keywords to search for ontologies. An end-user 

describes a process as a goal using a collection of keywords (i.e., keyword (G)={k1, k2, …, kn}, ki 

refers to a keyword in the goal description). For example, a travel planning goal can be 

represented as a set of keywords, i.e., keyword(plan trip)={ travel, trip}. Instead of predicting the 

possible end-users’ goals and predefining the corresponding ontology, we search for relevant 

ontologies from the Internet. Meanwhile, we also use the ontologies extracted from the Web 

described in Chapter 4. The availability of ontologies enables an end-user to specify any goals for 

the ad-hoc processes. To improve the chances of finding a matching ontology, we enhance the 

keywords provided by end-user with the synonyms of each keyword. The keywords and the 

associated synonyms are collected as a keyword set for a goal (i.e., keyword (G)). As an optional 

choice, we allow end-users to specify the tasks that they want to perform using keywords. For 

example, a “Planning Travel” goal contains tasks, such as “CarRental”, “HotelReservation”, and 

“Transportation”. Similarly, we collect the synonyms for the task descriptions. We denote the 

task descriptions as keyword (T) = {tk1, tk2, …, tkm} where tki refers to a keyword for describing a 

task.  

An ontology of the specified goal is identified when the root entity of an ontology matches 

one of the keywords in keyword (G) (i.e., the set of keywords for goal description). A root entity 

is the entity in the ontology graph which does not have a parent node (e.g., node “Travel” in 

Figure 2-1). For the example shown in Figure 2-1, when the root class, “Travel”, is matched with 

a “Plan a Trip” goal description, the ontology is returned. If a goal description is matched with an 



 

100 

 

entity defined within an ontology instead of the root entity, we retrieve the matched entity and its 

children nodes. For the example ontology shown in Figure 2-1, if the goal is “Accommodation”, 

we take the node “Accommodation” and all the related children nodes, such as “BudgetHotel” 

and “LuxuryHotel”. In some cases, more than one ontology can be matched with the goal 

description. To select an appropriate one, we count the frequency of the keywords of different 

meanings from both the task description (i.e., keyword (T)) and the goal description (i.e., keyword 

(G)) appearing in each ontology. We select the ontology with the highest frequency of the 

provided keywords.  

 

Input:  Goal description; task description (option) 
Output: A matching ontology 
Procedure searchOnto ( ) { 
1. Var ontoSet = null; 
2. goal description = goal description ∪ { the synonyms of the goal description }; 
3. For each keyword ki in goal description { 
4.     Search for ontologies matching with ki; 
5.     If( find matching ontologies)  
6.        { Add the matching ontologies to ontoSet;} 
7. }  //end for 
8. If (ontoSet is empty)  // Cannot find matching ontoloigies. 
9.     { Return null;  } 
10. If (the size of ontoSet == 1) 
11.      { Return the ontology in ontoSet;  } 
12. else{   //ontoSet contains more than one matching ontology; 
13.   Sort the selected ontologies from high to low using the frequency of keywords in goal description  

  and task description;  
14.   Return the first ontology in the sorted ontology list; 
15.  }//end else 
16. } 

Figure 6-4 Algorithm for searching for ontologies 

 

If the keywords in a goal description (i.e., keyword(G)) are phrases with  more than one word, 

we search for matching ontologies using the entire phrase. However, we may not be able to locate 



 

101 

 

any ontologies using the phrases in keyword (G). In our experience, adjectives and adverbs are 

constraints for describing nouns. The essential information is expressed as nouns in the goal 

description. Therefore, we identify adjectives and adverbs by querying a dictionary and remove 

the adjectives and adverbs from the phrases. We use the rest of nouns as keywords to search for 

ontologies. The removed adjectives and adverbs are used to refine the searching results by 

selecting the ontology which contains the adjectives and adverbs if there are more than one 

matching ontologies. 

To improve the chances for identifying ontologies, WordNet is used to identify the synonyms 

of the keywords in keyword (G). We combine all the keywords in the goal description and the 

task description to search for ontologies based on the frequency of provided keywords. Then we 

ask end-users to inspect the returned ontologies and select one. To help end-users understand the 

ontology description, ontology visualization tools such as protégé  [117] are used by an end-user 

to visualize ontologies. 

6.4  Searching for Services 

The identified ontology provides more detailed description about an end-user’s goal. 

Essentially, the classes and individuals defined in ontologies capture the characteristics of the 

functional requirements for desired services that help achieve an end-user’s goal. We use classes 

and individuals (i.e., entities) as criteria to search for the matching services. However, simply 

using a single entity in the search criteria may prevent us from discovering services since a single 

keyword provides limited knowledge. Similar to the search engines, which use the expanded 

query to search for the relevant documents [4][49], we group the name of the entity, its attributes, 

and the relevant entities which have direct relations (e.g., Subclass, Partof, Equivalent, and 

InstanceOf) with the entity as a set of keywords.  I.e.,  



 

102 

 

             entity(e0) = {e0}∪{e1, e2, e3, …, em}∪ attr(e0) 

            attr(eo)={aeo1, aeo2, … aeop}                                                                                              (6-1) 

where eo is the name of the entity;  ei , where i = 1, 2, 3, …, m, refers to an entity which has direct 

relation with e0 (i.e., ei directly inherits from e0, is a part of e0, is equivalent with e0, or is an 

Instance of e0) ; and aeoj is the j-th attribute of entity  eo, where j = 1, 2, …, p.      

 

   In Equation 6-1, entities e1, e2, e3, …, em, which are the Subclass, PartOf, equivalence, or 

InstanceOf  of entity e0, extend the meaning of entity e0. Therefore, we use these entities e1, e2, e3, 

…, and em to enhance the meaning of entity e0. To avoid obscuring the meaning of entity e0 with 

too many details, we take the entities which have a direct relation with entity e0. For example, the 

class “Travel” is expanded with a set of its components described as partOf relation in Figure 2-1, 

i.e., entity (travel) = {travel}∪{transportation, accommodation, tourist attraction, car rental}. 

However, we do not use entities “Budget Hotel” and “Hilton Hotel” to extend the meaning of 

“Travel” since the two entities have no direct relations with “Travel”.   

Each entity ei has its own set of synonyms, i.e., synonym (ei)={si1, si2, …, sin}. For example, the 

concept, “Travel”, has a set of synonyms, such as trip and journey (i.e., synonym (travel)={trip, 

journey}). To retrieve the relevant Web services from a service repository, we combine the entity 

set and synonym set into a keyword set (i.e.,  _ ( ) = ( ) ∪(⋃ ( ) ) to search for the matching services in a service repository. 

 = #    | |                                                             (6-2) 

n is the total number of tags in general description and functional description for a service 

   



 

103 

 

 As discussed in Section 6.2, each service, sj, in a repository is described by a set of tags that 

specify the general information and the functionality. Therefore, we have a set of keywords to 

describe a service using tags, i.e., ws-keywords (sj) = {t1, t2, …, tz} where sj is a service, and ti is a 

tag of the service. To discover a service, we count the number of matched keywords between the 

entity description keywords (i.e., entity-keywords (e0)) in the searching criteria and the service 

description tags (i.e., ws-keywords(sj)) in the service repository. The similarity degree of the 

entities and services are defined in equation (6-2). The similarity degree ranges from 0 to 1. A 

higher value means that more tags in a service description are matched with the supplied 

concepts. Therefore, a high value indicates a high degree of similarity between the entity and the 

service. In equation (6-2), the typical value of n is between 10 and 15 since we filter out 

semantically equivalent tags using WordNet when end-users add new tags to describe services as 

mentioned in section 6.2.2.  

 

Input:  ontology, entity e0 

Output: relevant service list 

Procedure searchServices ( ) { 

1. Using Equation (6-1) to get the keyword set entity(e0) of e0; 

2. _ ( ) = ( ) ∪ (⋃ ( )); 

3. Search service repository by matching entity_keywords(e0) with the tag-based service descriptions; 

4. Using Equation (6-2) to calculate the similarity degree between the query and service descriptions; 

5. Sort the relevant services based on the similarity degree; 

6. If (two relevant services have the same similarity degree)  

7.    { Sort these services based on the QoS description provided by the tag-based service description;} 

8. Return sorted relevant service list; 

9. } 

Figure 6-5 Algorithm for searching for services 

 



 

104 

 

As a result of service discovery, we locate the services with the required functionality. When 

many services are matched, we sort services according to the similarity degree from high to low. 

When two services have the same similarity degree, they are sorted using the values of QoS 

description provided in the tag-value pairs specified in the service description. For example, the 

discovered services are sorted using the values of the processing time given that the discovered 

services have the same similarity degree. An end-user needs to interpret if the high value of a 

quality attribute is more desirable for the returned services.  Figure 6-5 summarizes the algorithm 

that searches for services.  

6.5 Generating Ad-Hoc Processes 

The set of classes, individuals and attributes in the ontology could be used as searching criteria 

to search for possible services. However, a large number of services could be returned without 

any logical relations. Returned services may be redundant. It is a tedious job for end-users to 

manually select desired services. We develop an algorithm to organize the returned services in a 

logical structure (i.e., ad-hoc process) in the following steps:  

1) Identify a list of tasks which are associated with one or more functionally similar services; 

2)  Identify the relations among the tasks; and 

3)  Refine the generated ad-hoc process by merging similar tasks which have the same set of 

associated services and relations.  

6.5.1 Identifying Tasks 

To group the services with similar functionalities, we design an algorithm to identify tasks for 

the ad-hoc process. The details of the algorithm are described in Figure 6-6. In this algorithm, we 

take an ontology which matches with the goal description as the input. More specifically, the 



 

105 

 

ontology is represented as an ontology graph as shown in Figure 2-1. Classes and individuals 

defined in ontologies are represented as nodes in the ontology graph. The path length of two 

nodes is the shortest distance (i.e., the number of edges) along the path from one node to another 

in the ontology graph. For the example shown in Figure 2-1, the path length of entities “Travel” 

and “Luxury Hotel” is 2.  

 

Input:  Ontology model for the goal 
Output: A set of tasks associated with services 
Initiate: var E = the entity which matches the goal description (i.e., keywords); 
Procedure identifyTask ( ) { 
1. Queue q = new Queue(); 
2. q.posh(E); 
3. while(q is not empty){ 
4.        Entity currentE = q.pop(); 
5.        If currentE does not have attributes, subclasses, sub-components (described by PartOf   

       relation), equivalent entities, or instances { 
6.                continue;      //ignore it since it contains too little information to find appropriate services 
7.         } 
8.         Use Equation (6-1)and (6-2) described in Section 6.4 to search for services for currentE from    

         service repository*; 
9.        If(the number of matching services > 0){ 
10.              Associate the matching services to currentE, and convert currentE as a task in the ad-hoc  

              process; 
11.              Output the task of currentE;   
12.         } 
13.        Posh all the entities which have a direct relation with currentE but not marked as visited to the  

       queue q; 
14.         Mark all the entities added to queue q as visited;  
15.     }  //end while loop 
16.  }    
* Entity E has matching services if and only if there exist returned services whose similarity degree is 

greater than a predefined value.  

Figure 6-6 Algorithm of identifying task list 

 

In general, our algorithm uses a stepwise approach to discover and organize the tasks 

according to the level of abstraction. The high level entities in an ontology graph convey more 



 

106 

 

abstract meanings that are suitable for discovering the general purpose tasks. Such tasks allow 

end-users to receive the desired services (e.g, expedia.com [47]) in one server without having to 

go through separate servers for different services. The low level entities in an ontology graph 

provide more specific meanings of the goal and therefore indicate the possibility to find concrete 

tasks which provide more specialized services. For example, expedia.com provides a general 

service for planning a trip by providing information on car rental, flight ticket purchasing and 

hotel reservation.  To check into a flight by Air Canada, an end-user has to visit more specialized 

services by going to Air Canada website to print their boarding passes and check fight status. To 

satisfy an end-user with varying needs in different levels of specialization, we use the breadth-

first search algorithm to scan the ontology graph. We identify general purpose tasks from the top 

of the graph and the specialized tasks from the low level of entities in the graph.  

The algorithm starts from the entity that matches with the high level goal description to find 

general purpose services. Subsequently, we identify more concrete entities by visiting the entities 

with the path length of 1 from the start point. Using the breadth-first search algorithm, we can 

identify a set of entities with different level of specialization by gradually increasing the path 

length from the starting point. The algorithm converts a visited entity into a task if and only if the 

entity has at  least one  attribute, subclass, sub-component (in the PartOf relation),  equivalence 

entity, or instance. The visited entities that cannot meet the condition are ignored since such 

entities contain too little information to find appropriate services. 

For each identified task, our algorithm extracts the searching criteria (i.e., entity-keywords(e)) 

from the corresponding entity and searches for services. We derive the name of a task from the 

name of the corresponding entity. When the similarity degree between the keywords in the 

searching criteria and the tags in a service description is greater than a predefined threshold, the  



 

107 

 

 

Figure 6-7 An example of generating task list 



 

108 

 

task is matched with the service. The task is ignored if no matching services can be found. The 

discovered services for a task are sorted based on the similarity degree. Finally, the algorithm 

outputs a list of identified tasks.     

Figure 6-7 gives an example of generating a task list using our algorithm. The algorithm starts 

from the class “Travel” which is the goal specified by the end-user. The searching criteria for 

services are formed from the name of class “Travel” as well as the names of entities which have 

the direct relations (i.e., PartOf relation in our example) with class “Travel” (i.e., 

“Transportation”, “Accommodation”, “TouristAttraction”, and “CarRental”). Each returned Web   

service is expected to provide a set of comprehensive services (e.g., similar to Expedia.com [47]) 

for end-users to plan the travel. However, the returned Web services for “Travel” may only 

provide limited services, such as booking flight and train tickets and renting car, but without bus 

information. In this case, the end-users may need more specialized services for transportation, 

accommodation, and tourist attractions. To offer end-users with more options, our algorithm 

continues to decompose the abstract goal into a set of more concrete tasks as the algorithm 

traverses deeper in the path.  In the second iteration of our algorithm, our algorithm identifies 

tasks, such as “Transportation”, “Accommodation”, “TouristAttracion” and “CarRental”. In the 

third iteration, our algorithm further refines the “Accommodation” task to more specific tasks, 

such as “BudgetHotel” and “LuxuryHotel”. However, the entities, such as class “Bus” and “Air”, 

do not have sufficient information (e.g., attributes, subclass, sub-component, equivalence entities, 

or instances) to discover new services. Therefore, their parent node “Transportation” is not 

further decomposed to more specialized services. 

6.5.2 Identifying the Relations among Tasks   



 

109 

 

Once we identify a set of initial tasks in an ad-hoc process, we derive relations (i.e., sequence, 

parallel and choice relations) among tasks by analyzing the relations among the corresponding 

entities used for identifying tasks. Table 6-1 shows the mapping from entity relations in an 

ontology to task relations in an ad-hoc process. In Table 6-1, Ei is an entity defined in an 

ontology, and Ti is the corresponding task identified by entity Ei and its related entities in an 

ontology graph. As shown in Table 6-1, we convert the relations from the ontology to the ad-hoc 

process using the following mapping rules:  

1) ParOf: When entities E1, E2, …, En are in PartOf relation with entity E, it indicates that entity 

E is composed by entities E1, E2, …, En. Theoretically, PartOf relation cannot guarantee that 

entity E does not contain the parts other than entities E1, E2, …, En. For example, we define 

that “Bus” and “Air” are a part of “Transportation” in an ontology, but “Transportation” may 

also contain other components, such as train and ferry. In our approach, we ignore those parts 

of entity E since those parts  are  not defined  in  the ontology. Similar to the subclass 

relation, we substitute entity E with entities E1, E2, …, and En . Therefore, we define tasks T1, 

T2, …, Tn are in a choice relation with task T. Moreover, tasks T1, T2, …, Tn need to be 

executed together to fulfill task T, i.e., tasks T1, T2, …, Tn have a parallel or sequence 

relation. We discuss how to distinguish parallel and sequence relation later in this section. 

2) Subclass: If entities E1, E2, …, En are the subclass of entity E, it indicates that entities E1, E2, 

…, En have all the information described in entity E and entities E1, E2, …, En contain more 

detailed information than entity E. Therefore, we can replace entity E with entity E1, E2, …, 

En. The tasks T1, T2, …, Tn corresponding to entities E1 …, En have a choice relation with 

task T corresponding to entity E. In addition, tasks T1, T2, …, Tn are in choice relations since 

they have the similar functionalities conveyed in entity E.  



 

110 

 

Table 6-1 Convert relations from ontology to ad-hoc process 

Relation in ontology 
definition model 

Ontology graph Control Flows in ad-hoc process

partOf 

 
 

OR 

 

Subclass  

 

 

 

 

 

 

InstanceOf 

 

Intersection 

 

Complement 

 

 

 Equivalence 

 
 

 

 



 

111 

 

3) InstanceOf relation is similar to subclass relation in terms of converting relations defined in 

ontologies to relations defined in control flows. According to the definition of instance, an 

instance has the all the information defined in the corresponding class. Meanwhile, the 

instances of the same class have similar information. Therefore, we describe these instances 

and the corresponding class as a choice relation in the control flow since these instances and 

the class have the similar information. 

4) Intersection relation indicates that class Ei (where i=1, 2, …, n) has the information 

defined in class E.  Therefore, we can use Ei to replace E, i.e., we can choose either Ei or E to 

represent the information (i.e., task) that we need. So we convert the intersection relation to a 

choice relation in the control flow.  

5) Complement relation means that two entities cannot co-exist. Therefore, we convert it into 

alternative relation.  

6) Equivalence indicates that two classes have the similar functionality, so we convert the two 

equivalent classes into alternative relation as well.  

7) Domain specific relations vary from domains. The mappings between the domain specific 

relations and the task relations need to be manually specified.  

 

Figure 6-8 shows an example relations identified from the task lists described in Figure 6-7. 

The end-user can either choose a general purpose service “Travel” to fulfill the goal of planning a 

trip or decide to accomplish the goal using more specialized services (i.e., services for 

transportation, accommodation, tourist attraction and car rental).  For the accommodation, the 

end-user can choose a general service related to accommodation, or select a service offering 

specific types of hotels (i.e., budget hotel and luxury hotel). 

 



 

112 

 

 

Figure 6-8 An example of a generated ad-hoc process 

 

Sequence indicates that the tasks are executed in sequence. Parallel means that the tasks can 

be executed in any order. To distinguish between sequence and parallel relations, we compare the 

interfaces of services associated to tasks. Assume that we have tasks T1, T2, …, Tn which could be 

either in sequence or parallel relations, and we need to distinguish the sequence and parallel 

relations. For each task, we collect the input and output parameters from the associated services. 

We use Set(input) to represent the input parameters from the associated services of a task, and use 

Set(output) to represent the output parameters from the associated services of a task. Then we 

match the interfaces of the corresponding services. Enlightened by Paolucci’s work [110], we 

define three levels of matching as follows. Suppose that p1 and p2 are the input or output 

parameters of tasks T1 and T2 respectively. 

⎯ Exact: if Set(p1) = Set(p2)  

⎯ plug in: if Set(p1) is a subset of Set(p2) 

⎯ Subsume: if Set(p1) subsumes Set(p2), in other words, Set(p1) contains all the parameters in 

Set(p2).  



 

113 

 

If two sets of parameters satisfy one of the three conditions, then the two sets of parameters 

match. Tasks T1 and T2 are in a sequence relation, if and only if the interfaces of the 

corresponding services can be matched (i.e., Set(output_T1) matches with Set(input_T2)). We treat 

the tasks which are not identified as a sequence relation as a parallel relation. 

6.5.3 Merging Tasks 

In our algorithm, the generated ad-hoc process may contain tasks with very similar 

functionalities. For example, two tasks which are generated from two equivalence classes 

respectively may have very similar functionalities. Generally, similar tasks are converted into the 

choice control flow to allow end-users to select. However, if two similar tasks are also associated 

with the same set of services, it becomes meaningless to offer the option to end-users. We use the 

following two rules to identify and merge similar tasks. Suppose that we have two tasks T1 and T2. 

WS-Set(T1) is a set of associated services for task T1 and WS-Set(T2) is a set of associated services 

for task T2. 

Rule 1: if tasks T1, T2 are in a choice relation, and the overlap of WS-Set(T1) and WS-Set(T2) is 

greater than a predefined value, we choose the task that has more abstract meaning as defined in 

the ontology to represent the merged task, and associate services from both tasks to the merged 

task.  

   For example, if tasks “Accommodation” and “Hotel” are in a choice relation and associated 

with over 90% common services, and 90% is greater than the predefined value, we use task 

“Accommodation” to replace the two tasks and associate the relevant services of these two tasks 

to the task “Accommodation”.  

Rule 2:  If WS-Set(T1) is a subset of WS-Set(T2) (i.e., WS-Set(T1)∈ WS-Set(T2)), then task T1 is 

covered by task T2. We remove task T1.  



 

114 

 

6.6 Overview of our Prototype 

 

Figure 6-9 Annotated screenshot for our prototype 

 

We design and develop a prototype to help end-users to generate ad-hoc processes based on 

the goals specified by end-users. We use the IBM WSRR to register and manage Web services. 

To display the interfaces of selected services and invoke services, we use the IBM Mashup Center 

[72] as a platform to integrate various Web services.  

Figure 6-9 shows an annotated screenshot of our prototype. An end-user can specify their goal 

(e.g., plan a trip to New York) in the Goal Editor. In the current implementation of the prototype, 

the ontologies are manually searched using Swoogle [132], a search engine for ontologies,  and 



 

115 

 

 

Figure 6-10 Ordered ad-hoc process in the Mashup page 

 

imported into our prototype to ease the analysis. An ad-hoc process is automatically generated to 

capture a set of tasks that meet the specified goal shown in the Process Editor. A task in a 

generated ad-hoc process can be associated with one or more services. As shown in Figure 6-9, 

once an end-user selects the “Car Rental” task in the Process Editor, the associated services are 

displayed in the Service Selection Panel on the right side of the markup page. We allow an end-

user to select the most desirable services. An end-user can refine and customize the ad-hoc 

process in the process editor. An end-user can remove a task if it is not needed by selecting the 

“Remove” check box. An end-user can also add a new task by specifying keywords for searching 

for services. We record the modifications as the end-user’s preferences. When an end-user 

specifies the same goal, our prototype provides the previously refined ad-hoc process. To guide 



 

116 

 

end-users to navigate through the task list to fulfill the goal, we identify the control flow among 

tasks based on the relations defined in the ontology. Figure 6-10 shows a screenshot of the 

suggested execution order of tasks in the ad-hoc process. Since the order ad-hoc process is only a 

suggested execution order, end-users still have the option to execute the tasks in other order. 

6.7 Summary 

In this chapter, we provide an approach that hides the complexity of SOA standards and tools 

from end-users and composes services to help end-users fulfill their daily activities. We propose a 

tag-based service description to allow end-users to understand the functionality of a service and 

add their own descriptive tags. Using our approach, an end-user only needs to specify the goal of 

their activities using keywords. Our approach automatically composes services that help an end-

user achieve their desired goals without requiring the end-user to specify the detailed tasks.  

  



 

117 

 

Chapter 7 

Case Studies 

To evaluate the effectiveness of our proposed approaches, we conducted three case studies to 

examine: (1) whether our proposed approach can effectively extract desired process knowledge 

from websites and represent it using ontologies; (2) whether our proposed approach can correctly 

identify end-user’s needs from an end-user’s context and recommend the desired services to the 

end-user; and (3) whether our approach can effectively generate ad-hoc processes using 

ontologies.  

This chapter is organized as follows. Section 7.1 evaluates our approach to extract process 

knowledge from the Web. Section 7.2 presents a case study to evaluate our approach to discover 

and recommend services using contexts. Section 7.3 examines our approach for ontology driven 

service composition. Finally, Section 7.4 gives a summary of the chapter. 

7.1 Evaluation of Extracting Process Knowledge from the Web 

The objectives of this case study are to: (1) evaluate the quality of the process knowledge 

extracted from each website; and (2) evaluate the quality of the integrated process knowledge.  

7.1.1 Experiment Setup 

To extract the desired process knowledge, we need to provide a set of goals. A goal describes 

the major objectives of the process knowledge. If we specify the goals for our case study by 

ourselves, it may impact the impartiality of the result since we design the approach. To avoid bias 

of goal selection for our case study, we gather 10 goals (e.g., plan a trip, buy a car, and find a job) 



 

118 

 

from two websites eHow [46] and WikiHow [141]. eHow and WikiHow use articles and videos 

to provide online how-to instructions for fulfilling various goals.  

The criteria for us to select goals are that (1) the goals should come from different domains, so 

that the case study can represent the general cases instead of just working one domain; (2) the 

goals require more than one online service work together to fulfill. The goals in eHow and 

WikiHow may only require one single service to fulfill. This criterion can help us filter the goals 

that do not need ad-hoc processes. Table 7-1 lists the selected goals used in our case study. The 

goals are distributed across 10 domains.  

Table 7-1 List of goals 

No. Goal Description Domain 

1 Apply university Education 

2 travel Travel 

3 choose a gift Shopping 

4 Buy a cell phone Shopping and Electronics 

5 Buy a car Shopping and Automobile 

6 Buy a house Real estate 

7 Find a job Career 

8 Tax report Tax 

9 Canada health insurance Insurance 

10 Apply credit card Finance 

 

7.1.2 Evaluation Methods 

To measure the extracted process knowledge, we use recall and precision defined as follows. 

= |{  }∩{  }||{  }|                                   (7-1) 

= |{  }∩{  }||{  }|                                          (7-2) 



 

119 

 

As shown in Equation 7-1 and 7-2, precision is the ratio of the number of returned relevant 

items to the total number of returned items. Recall is the ratio of the number of returned relevant 

items to the total number of relevant existing items. In our case study, precision is the ratio of the 

total number of entities correctly extracted by a tool to the total number of entities extracted by 

the tool. And recall is the ratio of the total number of entities correctly extracted by a tool to the 

total number of entities existing in the websites.  

To evaluate the quality of ontologies (i.e., process knowledge) extracted from websites, it 

would be ideal if we could compare our approach with other tools which are specially designed 

for extracting process knowledge from commercial websites. However, according to the best of 

our knowledge, there are no public available tools similar to ours which can extract process 

knowledge from public Web pages without the prior knowledge of the server side source code. 

Text2Onto [35] is a public available tool to extract ontologies from unstructured or semi-

structured textual resources. The extracted ontologies from Text2Onto represent all the 

information conveyed in the textual resources instead of process knowledge. Text2Onto is the 

available tool that is the most similar to ours. In this case study, we compare the ontologies 

extracted using our approach with the ontologies extracted using Text2Onto. 

7.1.3 Experimental Procedure 

 

For each goal in Table 7-1, we use Google [59] as the Web search engine to collect the 

websites related to goals by submitting the goal description as keywords to Google. For each 

query used to search for relevant websites, we collect the first 8 top ranked websites and apply 

our approach to each website. In our case study, we integrated Google AJAX Search API [60] 

into our system to automatically submit the keywords and get the searching results. 8 is the 



 

120 

 

maximum number of searching results supported by Google AJAX Search API. In total, we 

analyze 80 related websites for the 10 goals and generate 80 ontologies. For each goal, we 

produce an integrated ontology to combine the process knowledge extracted from the 8 websites 

returned by Google.  

We apply our approach and Text2Onto tool to extract an ontology from the same website. We 

evaluate the effectiveness of both approaches by measuring the precision and recall. To assess the 

process knowledge extracted from each website, a subject spent 3 days manually examining the 

80 websites to extract process knowledge. The subject is a graduate student with 5 years 

experience working on business process related projects. His knowledge and experience on 

business processes ensure that he can properly identify the process knowledge from these 

websites. To avoid any interference, the results from text2Onto and our prototype were not 

disclosed to the subject before he finished the analysis. We calculate the precision and recall by 

comparing the result from text2Onto and our approach with the result from the subject.  

After we extract the process knowledge from each website, our approach combines the 

process knowledge from the websites relevant to the same goal to generate an integrated 

ontology. We import the same set of websites to Text2Onto and run Text2Onto to extract an 

ontology. To provide the standard integrated ontologies to evaluate the recall and precision of the 

integrated ontologies extracted by our approach and text2Onto, the subject examined all the 

returned websites for each goal and manually extracted the process knowledge from those 

websites. The manually identified process knowledge for the given goal is described as an 

ontology and treated as the standard result for comparisons. 

 



 

121 

 

7.1.4 Result Analysis 

 

Table 7-2 lists the recall and precision of our approach and the Text2Onto tool for the 

ontologies extracted from each website. The results show that our approach can effectively 

extract most of the processes information from each website. It can achieve a recall of 0.80 and a 

precision of 0.82 comparing with Text2Onto which has a recall of 0.35 and a precision of 0.06. 

There are two major reasons that cause Text2Onto to have the low recall and precision. Firstly, 

Text2Onto simply extracts concepts from textual sources and does not have any mechanism to 

filter the concepts irrelevant to the goal. For most of Websites, Text2Onto identifies a large 

number of irrelevant concepts, such as copyright information and advertisements. Secondly, 

Text2Onto splits many phrases into separated words which make important phrases lose their 

meaning. For example, “Used Car Price Quotes” is a useful activity when an end-user wants to 

buy a used car. But Text2Onto may remove the adjectives and only keep the nouns “car” and 

“Quotes”.   

Table 7-2 Recall and precision for ontologies extracted from each website 

 Average Recall Average Precision 

Text2Onto 0.35 0.06 

Our approach 0.80 0.82 

 

We examined the false positives of our approach and found that one of the major problems is 

due to the JavaScript code. Our current approach does not parse and make use of any information 

from JavaScript code. It makes our approach miss some process knowledge in the Web page 

since JavaScript can be used to display any text on Web pages. If our approach takes JavaScript 

into consideration, it might increase the recall and precision.  



 

122 

 

Table 7-3 shows the results for evaluating the integrated ontologies. The results show that our 

approach can achieve a higher average recall and precision comparing with Text2Onto, for the 

purpose of extracting process knowledge. The major reason is that Text2Onto is designed as a 

general tool to extract ontologies from textual resources instead of focusing on extracting process 

knowledge.  

Table 7-3 Recall and precision for integrated ontologies 

 Average Recall Average Precision 

Text2Onto 0.52 0.05 

Our approach 0.87 0.78 

 

In this case study, we use the opinion from a subject to reach the correct answer (i.e., the 

correct ontologies extracted from websites). However, the opinion of subjects may not reflect the 

correct answers since different subjects may have different standards on the information needed 

to be extracted. In the future, we plan to conduct a Turing test [133] to evaluate our approach. 

Specifically, we want to check whether subjects can distinguish the results produced by our 

approach and the results provided by other person. If a system can fool a human being (i.e., make 

human being hard to distinguish the differences between the information provided by the system 

and the information provided by another human being), it indicates that the system has 

intelligence (i.e., has good performance). 

7.2 Evaluation of Context-aware Service Discovery and Recommendation 

The objective of our case study is to evaluate the effectiveness of our approach. In particular, 

we want to examine: 1) whether our approach can effectively recommend useful tasks 



 

123 

 

represented as classes, individuals and properties in the set Potential Task Set; and 2) whether the 

generated searching criteria can find the desired services.  

7.2.1 Experimental Setup 

   Table 7-4 lists the context types used in our case study. By providing different context values 

for each context type, we can create different end-user scenarios. Each scenario is composed of 

the context types listed in Table 7-4 with assigned context values. For each scenario, our 

approach automatically detects various potential tasks for the end-user and recommends different 

services. In our case studies, we provide 5 different context values for each context type. Using 

different combinations of these context values, we generate 600 different context scenarios for 

our case studies. 

Table 7-4 Context types used in our case study 

Context Types 

Previous environment Location (city and county) 

Current environment Location (city and country) 

Activity (described by keywords) 

Future environment Location (City and country) 

Activity (provided by calendar, described using 
keywords) 

User’s preferences and background Favorite sports 

Favorite food 

Favorite celebrities 

Major 

Other preferences 

Income 

 

Due to the limitation of time and resources, we cannot evaluate all the 600 scenarios. In our 

case studies, we randomly select 2% (i.e., 12) context scenarios from the 600 context scenarios to 



 

124 

 

evaluate our approach. To evaluate the identified potential tasks and the service searching criteria 

generated by our approach in different scenarios, we recruited 6 subjects, who are graduate 

students, to participate in our case study. These subjects have many years of experiences using 

online services and possess the basic knowledge on the context values appearing in the context 

scenarios.  

7.2.2 Evaluation Methods 

We use recall and precision [13] to evaluate the effectiveness of our approach. In our case, 

precision is the ratio of the number of correctly recommended tasks (or services) to the total 

number of recommended tasks (or services). Recall is the ratio of the number of correctly 

recommended tasks (or services) to the total number of tasks (services) needed to recommend in 

the given context scenario.  

7.2.3 Experimental Procedure 

To evaluate the potential tasks identified by our approach, we assign 2 context scenarios to 

each subject described in the previous section. For each scenario, a subject manually examines 

the context values and uses the subject’s knowledge to identify the potential tasks that the subject 

would like to perform. Independent from the manual evaluation, we also use our prototype to 

automatically identify the potential tasks by analyzing the context values and the relations among 

context values. We compare the task sets produced by the subjects and the ones generated by our 

prototype tool to calculate the precision and recall of each scenario.  

To evaluate the service searching criteria generated by our approach, we use the approach 

described in chapter 5 to generate the service searching criteria, then we submit the searching 

criteria to search engines Google [59] and Seekda [125] to search for online services. Seekda is a 



 

125 

 

search engine to search for Web services described using WSDL. A subject manually examines 

the available services in Seekda for each scenario. If there are available Web services in Seekda 

for a given topic, we use Seekda. Otherwise, we use Google to search for services.  

We use the keywords in the generated searching criteria to search for services in Seekda. Then 

we use the generated WSDL query to check the top 20 returned services from Seekda to identify 

the matching services. For each query, our prototype chooses the top two returned services to 

recommend to the subject. The 6 subjects manually provide the description of desired services 

based on the given context scenarios. A subject manually compares the services recommended by 

our prototype with the desired services described by the subjects to evaluate if our prototype can 

correctly recommend services to a subject for the given context scenario. 

7.2.4 Result Analysis 

Table 7-5 Recall and precision for detecting potential tasks 

Scenarios 
# of Retrieved 

tasks 
# of Retrieved 
relevant tasks  

# of relevant 
tasks 

Recall Precision 

1 2 2 2 100% 100% 

2 1 1 1 100% 100% 

3 3 2 3 67% 67% 

4 3 3 4 75% 100% 

5 2 2 2 100% 100% 

6 3 1 1 100% 33% 

7 3 3 3 100% 100% 

8 3 2 2 100% 67% 

9 4 4 4 100% 100% 

10 1 1 1 100% 100% 

Average    94% 87% 

 

In the 12 context scenarios, 2 scenarios do not have any tasks recommended according to the 

results from the subjects as well as the results of our prototype. We manually examined both 



 

126 

 

scenarios. We found that the context values in both scenarios do not have any relations. Table 7-5 

shows the results for detecting potential tasks from the remaining 10 scenarios. We notice that 

some tasks for a certain scenario are not included in the result from the subjects due to the 

limitation of the end-user's knowledge. However, such tasks are identified by our prototype. For 

example, in a travel scenario, “Michael Jordan” is a favorite celebrity of a subject, and one of the 

context values is the city “New York”. Our prototype identifies that “New York” is the birth 

place of “Michael Jordan”. As a fan of Michael Jordan, the subject would be interested to know 

this information and purchase the related souvenirs using an on line shopping service. However, 

such information is overlooked by the subject. When calculating recall and precision, we add the 

missed tasks into the relevant items set and treat the missed tasks as desired potential tasks. The 

94% of recall reveals that our approach can identify most of the potential tasks based on the 

semantics of context values. Moreover, our prototype can identify the tasks that are overlooked 

by the subjects.  

In our current approach, we adopt a very simply way to sort the potential tasks, i.e., the 

potential tasks which have relations with more context values have higher weight, and we sort the 

potential tasks according to the weight from high to low. In our case studies, we observed that 

most of the identified potential tasks are inferred from the common entities which are only shared 

by two context values. Therefore, in the most scenarios, the current sort algorithm does not 

impact these scenarios and the potential tasks are sorted randomly since the weights of most 

potential tasks are the same. It is the major reason of the low precision (i.e., 33%) in scenario 6.    

Table 7-6 lists the evaluation results of service recommendation. The results show that our 

approach can recommend most of the needed services desired by subjects. However, as listed in 



 

127 

 

Table 7-6, the recall and precision are not very high in some context scenarios. Here are some 

reasons:  

1) Some ontologies do not describe all the aspects of a context value. The incomplete ontologies 

cause incomplete service recommendations. Meanwhile, we only define one user-defined 

relation which is Figure 5-4 to capture the domain knowledge of “Income: low”. If we add 

more domain knowledge using user-defined relations, it could increase the recall and 

precision. For example, one subject in our case study lists “Tickets for Museums at Miami” 

as a potential task for a context scenario which specifies that the subject majors in “Art” and 

will attend a conference in “Miami”. Due to the lack of domain knowledge of “Art”, it is 

difficult for our prototype to automatically establish the relations between “Art” and 

“Museums”.  

 

Table 7-6 Evaluation results of service recommendation  

Scenarios 
Total # of 

retrieved services 
Total # of retrieved 

relevant services 
Total # of 

relevant services 
Recall Precision

1 4 4 4 100% 100% 

2 2 2 2 100% 100% 

3 6 4 6 67% 67% 

4 6 6 8 75% 100% 

5 4 3 4 75% 75% 

6 6 2 2 100% 33% 

7 6 5 6 83% 83% 

8 6 4 4 100% 67% 

9 8 8 8 100% 100% 

10 2 2 2 100% 100% 

Avarage    90% 83% 

 

2) Although WordNet can provide stems and synonyms for a single word, it cannot give the 

synonyms of phrases (i.e., two or more words in sequences to represent a specific meaning) 



 

128 

 

which are the most common expressions of entities in ontologies. The lack of phrases in our 

semantic analysis database (i.e., WordNet) makes it challenging for our prototype to identify 

the similarity of phrases defined in ontologies.  

3) When the number of keywords increases, the results returned by Google or Seekda are likely 

to diminish. Especially, we may extract general terms from ontologies, such as “people”, 

“person”, and “location”. Such terms in the searching keywords often result in drastically 

reduction of the quality of searching results.  

There are different types of threats which may affect the validity of the result of our case 

study. The major threats to validity are as follows.  

External validity refers to the generalization of the results. In our case studies, we 

automatically generated 600 different context scenarios and randomly selected 12 scenarios out of 

the 600 context scenarios. We believe that the automated generation and random selection of 

context scenarios can reflect the situation of the practices. However, there are various context 

types and many variations of context values in a context-aware system. Our case studies only 

evaluate a limited number of context types and values. In the future, we plan to expand our 

context scenarios with more context types and values. When the number of context types and 

values increases in our case studies, we expect that the precision and recall is likely to be lower 

than the result of our current experiment.   

Construct validity is the degree to which the independent and dependent variables accurately 

measure the concepts which they are intended to measure. We have carefully chosen the criteria 

to avoid the threats of construct validity. To evaluate the effectiveness of identified context 

relations and recommended services, we use recall and precision which are the well adopted 

evaluation criteria in literature. However, the potential tasks and recommended services for 



 

129 

 

context scenarios contain subjective issues. For example, one subject may satisfy the 

recommended task but another subject may not like the recommended task at all. In our case 

studies, we ask the 6 subjects to provide the potential tasks and evaluate the returned services 

according to the relations of context values and their understanding of the context scenario. The 

identified potential tasks and relevant services recommended by the 6 subjects may not reflect the 

potential tasks of all the end-users in practice. Especially, in our case study, all the 6 subjects are 

graduate students. In the future, we plan to hire more subjects with different backgrounds to 

participate in our case studies.  

Internal validity is a concern with the cause-effect relationship between independent and 

dependent variables. In our case studies, the retrieved tasks are automatically identified by our 

prototype, and the relevant potential tasks are identified by the subjects who did not observe the 

result of our prototype. Therefore, we can rule out the learning effect that the subjects may be 

impacted by the results of our prototype.  

7.3 Evaluation for Ontology Driven Service Composition 

We conduct a case study to evaluate the effectiveness of our approach that can support end-

users without the knowledge of SOA technologies to compose services. Our approach can 

generate ad-hoc processes for end-users and discover the relevant services to fulfill the tasks in 

the ad-hoc processes. The objectives of our case study are to examine 1) if the ad-hoc process 

generated by our approach can reflect an end-user's goals; 2) if the tag-based description and the 

service searching criteria extracted from ontologies can help locate the relevant services with high 

precision and recall; and 3) if end-users is satisfied with the experience of the service 

composition.  



 

130 

 

7.3.1 Experiment Setup 

In our case study, we create an ontology database and use two approaches to obtain 

ontologies. One approach is to retrieve ontologies over the Web. We collect the online ontologies 

from Freebase [54], DBpedia [40], and Swoogle [132]. Freebase and DBpedia are two ontology 

databases which extract structured information from Wikipedia [142]. Swoogle is an online 

ontology search engine. However, for some goals, we are not able to find the matching ontologies 

from the Internet. In this case, we extract ontologies from the Web to overcome the availability of 

ontologies.  

In the case study, an subject specifies 20 goals and each goal requires a certain process to 

achieve. Then we use the 20 goals to find 20 different ontologies from our ontology database. The 

20 goals describe daily activities in different domains, such as shopping, travel, banking, and 

entertainment. For example, in the banking domain, we specified the goal as “Credit Card 

Application”, “Stock Analysis”, and “investment”. The goal of “Credit Card Application” 

includes tasks such as “Credit Card Options”, “Application Requirements”, and “Online 

Applications”. Table 7-7 summarizes the distribution of the goals and the number of tasks 

identified in each domain after we use our approach to generate the ad-hoc processes.  

Table 7-7 Characteristics of generated ad-hoc processes 

Domain # of goals # of tasks 

Shopping 6 79 

Travel 3 23 

Banking 3 17 

Entertainment 3 15 

Others 5 59 

 



 

131 

 

To collect Web services and create a service repository, we manually searched for Web 

services from the Internet using Seekda and Google. We registered 1,000 Web services into our 

service repository. Each service in the repository is described using our proposed tag-based 

service description. The services of different domains are selected to ensure that we can find 

services that match with the end-users' goals specified in the case study. 

To evaluate the generated ad-hoc processes, we recruited 8 end-users to participate in our 

experiment. Nielsen [103] suggests that the best end-user study for gathering qualitative measures 

should involve three to five end-users. We carefully select the 8 subjects to make sure that they 

do not have any background on SOA since they are intended to represent the group of non-

professional end-users. Four of the 8 subjects do not have background on SOA but are very 

familiar with the Internet. The remaining 4 subjects have not knowledge SOA at all and they have 

the basic knowledge about Internet.  

To evaluate the performance of our proposed tag-based service description in the service 

discovery, we use a baseline approach which requires a developer to manually search for relevant 

services using keywords as a comparison. We recruit a novice developer, who knows the general 

concepts of SOA and has limited experience in developing SOA systems, to conduct the manual 

searching. 

7.3.2 Evaluation Methods 

In our case study, the number of returned services can be too large for an end-user to review. 

Instead, an end-user would only go through the first k returned items. Therefore, in addition to 

recall and precision, we also use the top-k precision and r-precision to measure the effectiveness 

of our approach for generating ad-hoc processes and discovering appropriate services. The 

definitions of top-k precision and r-precision are defined as follows. 



 

132 

 

 = |{  }∩{    }|                                                            (7-3) 

= |{  }| = |{  }∩{    }||{  }|        (7-4)  

 

The top-k precision evaluates the precision for the top-k returned items. For example, consider 

the case of getting 9 relevant services when 50 services are returned as a result of a query. Those 

9 relevant services are listed in the top 10 returns, and there are 20 relevant services in total in the 

service repository. The top-10 precision is 9/10=90% whereas the precision would be 9/50=18%. 

The R-precision calculates the precision based on the number of relevant items at the top r 

returned items, and r is the total number of existing relevant items. In the prior example, the r-

precision evaluates the precision of the top 20 returned services since there are 20 relevant 

services in the entire repository. The r-precision in this example would be 9/20=45%.   

To evaluate the end-user satisfaction of using our approach to compose services, we 

conducted a user study. We ask each of the 8 subjects as described in Section 7.3.1 to compose 3 

ad-hoc processes by providing 3 goals using our prototype. After the subjects completed the 

service composition, we asked them to complete a short survey to assess their experience with the 

service composition.  

7.3.3 Experimental Procedure 

7.3.3.1 Evaluating the Generated Ad-hoc Processes  

We conduct a user study to evaluate if the generated ad-hoc process can match well with an 

end-user's expectation to achieve a goal. We asked the 8 aforementioned subjects to manually 

specify 6 ad-hoc processes for 6 given goals based on their experience and domain knowledge. 



 

133 

 

Due to the limitation of time and recourses, we are not able to ask subjects to describe the ad-hoc 

processes for all the 20 goals described in Section 7.3.1. We randomly select 6 goals out of the 20 

goals and provide them to the 8 subjects. Given a goal, the tasks in an as-designed ad-hoc process 

which is provided by the subjects are treated as the relevant tasks (i.e., relevant items in Equation 

7-1 and 7-2), and the tasks generated by our approach are treated as returned tasks (i.e., retrieved 

items in Equation 7-1 in 7-2). We calculate the recall and precision of each ad-hoc process, and 

use the average recall and precision to evaluate the overall performance of our generated ad-hoc 

processes.  

7.3.3.2 Evaluating the Performance of Service Discovery  

We compare the performance of our proposed tag-based service in discovering Web services 

with a baseline approach which requires manually searching for relevant services using 

keywords. Due to a large number of tasks generated in 20 ad-hoc processes, we are not able to 

evaluate all associated services. To compare the recall and precision of our approach with the 

baseline approach, we use 6 ad-hoc processes from the 20 generated ad-hoc processes. To make 

the top-k precision meaningful, each task in the 6 ad-hoc processes has at least 6 relevant services 

in our service repository. The novice developer manually searches for services to match with the 

tasks generated from the 6 ad-hoc processes. 

To compare our approaches with the baseline approach using the same set of tasks, we provide 

the 30 discovered tasks in 6 ad-hoc processes as described in Table 7-8 to the developer, who 

manually specifies keywords from their knowledge of the tasks as search criteria to query the 

service repository. The services are described using WSDL, without the tag-based service 

description as proposed in Chapter 6. 



 

134 

 

To calculate the recall and r-precision, one graduate student spent around 3 weeks manually 

analyzing the 1,000 Web services registered in the service repository and identifying the relevant 

services for each task. 

 

Table 7-8 Characteristics of the six ad-hoc processes 

Process ID Name of ad-hoc processes # of Entities # of Tasks 

1 Planning a Trip 47 6 

2 Watching Movie 28 5 

3 Online Shopping 29 5 

4 Credit Card Application 24 4 

5 Stock Analysis 27 3 

6 job-hunting 18 7 
 

 

 

7.3.3.3 Evaluating User Experience of the Service Composition  

The survey for evaluating user experience of the service composition contains the following 

questions. We indicate the rational of each question in parentheses. 

1) Whether the relations among tasks help you to navigate among different tasks? (Easiness of 

task navigation) 

2) Does the tag description help you understand the functionality of services and select services? 

(Understandability of tag-based service description) 

3) How helpful is the prototype for you to find online services compared with the other service 

mediator websites (e.g., Expedia)? (Helpfulness to end-users) 

4) How much SOA knowledge is required for composing services using this prototype? 

(Requirement of SOA background) 



 

135 

 

The survey provides five choices for each question to measure the degree of the answer, such 

as “almost never”, “a little”, “sometimes”, “often”, and “almost always”. Those answers are 

mapped to the score of 0 to 5. 5 represents the most positive answer and 0 represents the most 

negative answer. 

7.3.4 Results Analysis 

7.3.4.1 Results of Evaluating the Generated Ad-hoc Processes 

The average recall and precision for the tasks in the generated ad-hoc processes are 0.80 and 

0.84 respectively. We find that the as-designed ad-hoc processes vary a lot due to the 

differentiation of the subjects’ preferences. Therefore, the recall and precision of tasks in the 

generated ad-hoc processes are not very high. The result of the case study shows that the 

generated ad-hoc process can provide the major tasks to fulfill an end-user's goal. As a 

complement, in our approach, end-users can edit the generated ad-hoc process to make them 

satisfy their own specific requirements for future reuse.  

7.3.4.2 Results of Evaluating Service Discovery 

Table 7-9 Recall and R-precision comparison 

 Recall R-precision 

Our approach 0.93 0.61 

Baseline 0.67 0.33 

 

Table 7-9 lists the average recall of our approach and the baseline approach.  In the searches 

for 30 tasks, our approaches can find all the relevant services with a recall of 93%. In the baseline 

approach, a few relevant services are not returned using the provided keywords since the 

developer does not use the same words as the WSDL description to search for Web services. In 



 

136 

 

summary, our approach has a higher recall. Table 7-9 lists the average r-precision of each task for 

both approaches. Our approach has higher r-precision than the baseline approach.  

We calculate the averages of the top-k precisions (ranging from top-1 precision to top-6 

precision) for all the tasks. Figure 7-1 shows the results for average top-k precision for all 30 

tasks, when k ranges from 1 to 6. As shown in Figure 7-1, our approach outperforms the baseline 

approach.  The ontology definition used in our approach captures the expert knowledge and 

provides more relevant search keywords for each task; and therefore increases the success of the 

service discovery.  

 

 

Figure 7-1 Top-k precision 

 

We use the precision vs. recall graph to display the performance of both approaches as shown 

in Figure 7-2. The ideal approach should achieve high precision and high recall. A good 

performance is indicated by the trend line of an approach appearing in the upper right portion of 

the graph shown in Figure 7-2. As shown in Figure 7-2, the precision rate of our approach 

decreases slower than the baseline approach as the recall increases.  As a result, our approach 

demonstrates higher precision and recall.  

 



 

137 

 

 

Figure 7-2  Recall vs. precision curves 

 

When searching for services, we observe that the baseline approach is highly dependent on the 

keywords provided by the novice developer and his domain knowledge. When a novice developer 

is not familiar with the application domain, the search with the provided keywords often returns 

no services although several relevant services exist in the service repository. The service retrieval 

in our approach uses the expert knowledge captured in an ontology and the tag-based services 

description. Our approach is independent from an end-user’s familiarity with the domain and their 

knowledge of Web services. Therefore, our approach achieves high precision and recall in the 

service discovery.  

7.3.4.3 Results of Evaluating User Experience 

Table 7-10 lists the average value of each question in our survey. In Table 7-10, the first column 

shows the question number corresponding to the questions in the survey. The last column is the 

average value of the scores provided by the 8 subjects. The results indicate that our tag-based 

service description can help subjects to understand the service descriptions and the generate ad-

hoc process can reduce the workload of composing services. The subjects can get relevant 

services automatically without having to search for the services over the Web. The services are 



 

138 

 

organized in an abstract ad-hoc process which makes it easy for them to navigate through the 

services. Moreover, the subjects found that the tag-based service information intuitive for 

understanding the functionality and usage of the services.  

Table 7-10 Results of satisfaction evaluation 

Question No. Metrics Average Value 

1 Easiness of task navigation 4.6 

2 Understandability of tag-based 
service description 

4.4 

3 Helpfulness to end-users 4.2 

4 Requirement of SOA background 0.3 

 

   There are different types of threats which may affect the validity of the result of our case study. 

The major threats to validity are as follows.  

External validity refers to the generalization of the results. Instead of simulating Web 

services and using self-designed ontologies, our case studies use publically available Web 

services and use the ontologies collected from the Internet or generate the ontologies from on-line 

Web pages. We believe that such Web services and ontologies can better reflect the situation in 

practice. However, there are a large number of Web services available on the Internet in various 

domains. Our case study only considered a limited number of Web services from six domains. In 

the future, we plan to expand our services repository and collect more services from different 

domains. When the number and the domains of Web service increase in our service repository, 

we expect that the precision and recall is likely to be lower than the results of our experiment.  

In the experiment, we note that the generated process depends on the quality of the ontology. 

If an ontology does not define the main concepts of the goal or does not represent concepts in a 

good structure, the generated process may include useless tasks or the generated process might 

miss some important tasks for achieving the goal.  



 

139 

 

In addition, our approach cannot adequately control the granularity of tasks in the ad-hoc 

processes. We find that some generated ad-hoc processes in our experiment contain too many 

detailed tasks. Those tasks are relevant to the goal but useless to help end-users fulfill their needs. 

In the future, we plan to collect and analyze the context information of end-users (e.g., end-user’s 

preferences and historical data). The context information might help us to select high quality 

ontologies and refine the ad-hoc processes.  

Construct Validity is the degree to which the independent and dependent variables accurately 

measure the concepts which they are intended to measure. In our case studies, we have carefully 

chosen the criteria to avoid the threats of construct validity. To evaluate the effectiveness of 

generated ad-hoc processes and the tag-based service description, we use recall and precision 

which are the well adopted evaluation criteria in literature. In the survey of end-user’s 

satisfactions, we use multiple-choice to help participants provide their feedback accurately. 

However, the as-designed ad-hoc processes and end-user’s satisfactions contain subjective issues. 

The results of our evaluations may not exactly represent the feedback of all the end-users in the 

real world. 

Internal validity is a concern with the cause-effect relationship between independent and 

dependent variables. While comparing the baseline approach and our tag-based approach for 

service discovery, the tag-based approach is executed automatically using our prototype and the 

baseline approach is conducted by a developer who did not observe the result of the tag-based 

approach. Therefore, we can rule out the learning effect that the developer may learn from the 

generated ad-hoc processes. To avoid interference, the experiment was run with subjects who had 

never done a similar experiment.  



 

140 

 

Communication between the subjects influences the response of subjects. We ruled out this 

threat by executing the experiment in an observed room where the subjects were not allowed to 

communicate. In addition, subject’s knowledge on the relevant domains can also impact the 

result. In our experiment, all the ad-hoc processes in our case studies are relevant to daily 

activities. Therefore, every subject can use their knowledge to provide rational evaluations on the 

ad-hoc processes. 

7.4 Summary 

This chapter presents the evaluation of our proposed framework. Firstly, we conduct a case 

study to compare our process knowledge extraction approach with a tool that extracts ontologies 

from textual sources. The result of the case study shows that our approach can extract process 

knowledge from online applications with higher precision and recall comparing to the ontology 

learning tool. Secondly, a case study is conducted to evaluate the effectiveness of our approach 

for context-aware service recommendation. The results show that our approach can use contexts 

to find end-users’ requirements and recommend their desired services with high precision and 

recall. Thirdly, we compare the performance of our approach in automatic service composition 

with a baseline approach which consists of the manual process of searching for services using 

keywords. The results show that our approach can achieve higher precision and recall than the 

baseline approach.  



 

141 

 

Chapter 8 

Conclusions and Future Work 

To support non-IT professional end-users to compose services, we present a framework that 

composes services on-the-fly and provides personalized service recommendation for end-users. 

The framework hides the complexity of SOA standards from end-users and helps end-users fulfill 

their daily activities. Instead of requiring end-users to specify detailed steps during service 

composition, our framework only requires the end-users to specify the goals of their desired 

activities using a few keywords to generate an ad-hoc process. The process knowledge from the 

existing ontologies and websites are used to guide the generation of ad-hoc processes. By 

discovering the semantic relations among context values using ontologies, our approach can 

identify an end-user’s needs hidden in the context values and recommend the desired services.  

8.1 Thesis Contributions 

The major contributions of this thesis are summarized as follows: 

• Derive automatic techniques to extract ontologies with process knowledge from the Web. 

Ontologies are used as a form of knowledge representation and sharing to compose services. 

Most existing ontologies provided by ontology search engines and online knowledge bases are 

designed for classifying and representing general knowledge without capturing the process 

knowledge on how an end-user activity can be accomplished. We observe that many websites 

provide specific services to fulfill different goals. For example, expedia.com helps end-users 

plan a trip. The process knowledge is embedded in such websites. To obtain the process 

knowledge for service composition, we provide an approach which extracts ontologies with 

the process knowledge from various websites. Our approach uses existing Web search engines 



 

142 

 

to find websites with embedded process knowledge. By analyzing the content and the 

structure of the relevant websites, we identify the tasks needed for completing an embedded 

process. To provide comprehensive process knowledge for achieving a goal, our approach 

merges the process knowledge extracted from multiple websites that serve for the same goal 

(e.g., travel planning) to generate an integrated ontology with rich process knowledge.  

• Propose an approach to personalize service recommendation using contexts. Effective 

service recommendation requires the ability to detect an end-user’s context at the run-time 

environment to dynamically recommend services. We design and develop techniques that 

automatically analyze an end-user’s context which denotes changes in an end-user’s 

environment (i.e., operational and physical environments), and use the context to recommend 

services. Our approach reduces the amount of information required from end-users in order to 

specify well-defined criteria for searching Web services. More specifically, we use ontologies 

to enhance the meaning of an end-user’s context values and automatically identify the 

relations among different context values. By discovering the semantic relations among context 

values, we can identify an end-user’s needs hidden in the context values and generate 

searching criteria for service recommendation. 

• Develop strategies to dynamically compose services for end-users on-the-fly. In the 

current state of practice, SOA practitioners manually describe the details of each task and the 

interactions among tasks using BPEL. In an end-user environment, most of the activities or 

goals (e.g., plan a trip) are spontaneously prompted from end-users. End-users may not have a 

clear plan on achieving a goal. To guide end-users to achieve their goal, we devise techniques 

that dynamically search and compose services on-the-fly to assist end-users in fulfilling their 

desired goals (e.g., planning a trip). Our approach uses ontologies to extend the meaning of 



 

143 

 

end-user’s goals and generate ad-hoc processes. Our approach shelters end-users from 

complex programming issues.  

8.2 Future Research Directions 

This section describes our future research directions based on some of the limitations that we 

observed in our current approaches.  

• Automatic Techniques to generate input data for services: Automatic generation of input 

data for services can reduce the workload of end-users and further increase the automation of 

service composition. Currently, automatic generation of input data for executing services is 

still a challenging work. In our framework, end-users need to manually provide the input data 

for services. In the future, we plan to develop techniques to automatically generate service 

input data by analyzing end-user’s context, historical execution data and the output of other 

services.  

• Effective criteria to choose an appropriate ontology with desired process knowledge: we 

found that the quality of generated ad-hoc processes highly depends on the quality of the 

ontology relevant to the goal. There may have several matching ontologies for the same goal. 

However, there are no effective criteria to help us select the appropriate ontologies for the 

generation of an ad-hoc process.  A further study can be conducted to evaluate the 

effectiveness of different criteria for ontology selection and identify the effective criteria for 

our framework. 

• Service composition techniques to use the process knowledge from multiple resources: 

In our framework, the process knowledge can be derived from online knowledge bases. It can 

also be extracted from existing online websites. However, many other resources contain the 

process knowledge, such as online documents, publicly available BPEL processes, business 



 

144 

 

process databases (e.g., The MIT Process Handbook Project [92]). To improve the quality of 

the generated ad-hoc processes, we can develop new service composition approaches to use 

the process knowledge from multiple resources.   

• Approaches to enhancing the tag-based service description schema: Our framework 

provides a tag-based schema to enable end-users to describe WSDL services using tags. We 

believe that enabling end-users to refine the service descriptions can improve the quality of 

semantic service description. However, tags (i.e., keywords) have limited capability to 

describe semantic meanings comparing with natural languages (e.g., English) or formal 

languages (e.g., ontology language). The future work could enhance the expressiveness of the 

tag-based service description schema. The enhancement should ensure that the improved 

schema can be easily processed by computers and also simply enough to make non-IT 

professional end-users to understand and edit.  
 
  



 

145 

 

Bibliography 

[1] W. M. P. van der Aalst, A. J. M. M. Weijters and L. Maruster, “Workflow Mining: Which 

Processes Can Be Rediscovered?” BETA Working Paper Series, WP 74, Eindhoven 

University of Technology, Eindhoven, 2002 

[2] S. Abbar, M. Bouzeghoub, S. Lopez, “Context-aware recommendation systems: a service-

oriented approach,” In Proceedings of the International Conference on Very Large Data 

Bases (VLDB) Proflie Management and Context Awareness (PersDB) Workshop, Lyon, 

France, 2009 

[3] ActiveVOS Designer, available at: http://www.activevos.com/products/activevos/overview, 

last time accessed on September 21, 2011 

[4] D. Aguilar-Lopez, I. Lopez-Arevalo, V. Sosa-Sosa, “Toward the Semantic Search by Using 

Ontologies,” In Proceedings of the International Conference on Electrical Engineering, 

Computing Science and Automatic Control, Mexico City, Mexico, November 2008, pages: 

328 – 333.  

[5] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process Models from Workflow Logs”, 

In Proceedings of the Sixth International Conference on Extending Database Technology, 

1998, pages:. 469-483. 

[6] R. Akkiraju, J. Arrell, J. Miller, etc., “Web Service Semantics-WSDL-S,” W3C member 

submission, 7 November, 2005 

[7] E. Al-Masri, Q. Mahmoud, “Investigating Web Services on the World Wide Web: an 

Empirical Study,” In Proceedings of the 17th ACM International World Wide Web 

Conference, Beijing, China, 2008, pages: 795-804 

[8] Angele J. and Lausen G. “Ontologies in F-logic,” In: S. Staab and R. Studer (editors), 

Handbook on Ontologies in Information Systems, Springer Verlag, Berlin, Germany, 2004, 

pages: 29-50 

[9] A. Ankolekar, M. Burstein, J. R. Hobbs, R. Lassila, et al. “DAML-S: Web Service 

Description for the Semantic Web,” In Proceedings of the First International Semantic Web 

Conference (ISWC), Sardinia, Italy, June 10-12, 2002, pages. 348-363 



 

146 

 

[10] K. Arabshian, C. Dickmann and H. Schulzrinne, “Ontology-Based Service Discovery Front-

End Interface for GloServ,” LNCS in the Semantic Web: Research and Application, 2009, 

pages: 684 - 696  

[11] I. B. Arpinar, B. Aleman-Meza, R. Zhang, and A. Maduko, “Ontology-Driven Web Services 

Composition Platform,” In Proceedings of the IEEE International Conference on E-

Commerce Technology, 2004, pages: 146-152 

[12] D. Bachlechner, K. Siorpaes, “Web Service Discovery - A Reality Check,” In Proceedings of 

the Third European Semantic Web Conference (ESWC 2006), Demos and Posters, Budva, 

Montenegro, June, 11-14, 2006,  

[13] R.Baeza-Yates, B.Ribeiro-Neto, “Modern Information Retrieval,” New York: ACM Press, 

Addison-Wesley, 1999 

[14] M. Baldauf, S. Dustdar and F. Rosenberg, “A Survey on Context-aware Systems,” 

International Journal of Ad Hoc and Ubiquitous Computing, Volume 2, Issue 4, June 2007, 

pages: 263-277 

[15] W. T. Balke, M. Wagner, “Towards Personalized Selection of Web Services,” In 

Proceedings of the International World Wide Web Conference (WWW 03) 2003, Budapest, 

Hungary, 2003, pages: 725-733 

[16] D. Beckett, B. McBride, “RDF/XML Syntax Specification (Revised)”, W3C 

Recommendation (2004), available at http://www.w3.org/TR/rdf-syntax-grammar/, last 

accessed on May 23, 2011 

[17] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, F. Toumani, “On Automating Web Services 

Discovery,” VLDB(Very Large Data Bases) Journal (2005) 15, pages:84-96. 

[18] Bing, http://www.bing.com, last time accessed on May 25, 2011  

[19] M. B. Blake, D. R. Kahan, M. F. Nowlan, “Context-aware Agents for end-user-oriented Web 

Services Discovery and Execution,” Distribute Parallel Databases (2007) 21, pages: 39-58 

[20] P. Brézillon, “Focusing on context in human-centered computing,” IEEE Intelligent Systems 

18, 3, May/June 2003, pages: 62-66 

[21] S. Brin and L. Page, “The Anatomy of a Large-Scale Hyper-textual Web Search Engine,” In 

Proceedings of the 7th international conference on World Wide Web, Brisbane, Australia, 

April 14-18, 1998, pages:107-117 



 

147 

 

[22] T. Broens, S. Pokraev, M. V. Sinderen, J. Koolwaaij, P. D. Costa, “Context-Aware, 

Ontology-Based Service Discovery,” In Proceedings of the European Symposium on 

Ambient Intelligence, Eindhoven, The Netherlands, 2004, LNCS 3295, 2004, pages: 72-83 

[23] Business Process Model and Notation (BPMN), FTF beta for version 2.0, avaialbe at: 

http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf, last accessed on May 25, 2011 

[24] M. P. Carlson, A H. H. Ngu, R. M. Podorozhny, L. Zeng, “Automatic Mash Up of 

Composite Applications,” In Proceedings of the International Conference on Service Oriented 

Computing (ICSOC) 2008, Sydney, Australia, December 1-5, 2008, pages: 317-330 

[25] K. S. M. Chan, J. Bishop and L. Baresi, “Survey and Comparison of Planning Techniques 

for Web Services Composition,” Technical Report, Polelo Research Group Department of 

Computer Science, University of Pretoria Pretoria, South Africa, 2007 

[26] S. Chandrasekaran, J. A. Miller, G. S. Silver, B. Arpinar and A. P. Sheth, “Performance 

Analysis and Simulation of Composite Web Services,” Electronic Markets 2003, Volume 

13(3), pages:120-132 

[27] C. H. Chang, M. Kayed, M. R. Girgis, K. F. Shaalan, “A Survey of Web Information 

Extraction Systems,” IEEE transctions on Knowledge and Data Engineering, Vol. 18, No. 10, 

Octorber 2006, pages: 1411-1428 

[28] G. Chen and Kotz D., “A Survey of Context-Aware Mobile Computing Research,” 

Dartmouth Computer Science Technical Report TR2000-231, 2000 

[29] I. Y. L. Chen, S. J. H. Yang, J. Jiang, “Ubiquitous provision of context aware Web services,” 

In Proceedings of the IEEE International Conference on Services Computing (SCC) 2006, 

Chicago, USA, September 18-22, 2006, pages: 60-68 

[30] P. P. Chen, “The Entity-Relationship Model - Toward a Unified View of Data,” ACM 

Transactions on Database Systems (TODS), volume 1, issue 1, 1976, pages: 9-36 

[31] X. Chen, X. Liu, Z. Huang, H. Sun, “RegionKNN: a Scalable Hybrid Collaborative Filtering 

Algorithm for Personalized Web Service Recommendation,” In Proceedings of the 

International Conference on Web Services, Miami, FL, USA, 2010, pages: 9-16 



 

148 

 

[32] R. Chinnici, J. J. Mreau, A. Ryman, S. Weerawarana (editors), “Web Services Description 

Language (WSDL) Version 2.0,” W3C Recommendation, June 26, 2007, available at: 

http://www.w3.org/TR/wsdl20/, last accessed on September 30, 2011. 

[33] E. Christensen, F. Curbera, G. Meradith, S. Weerawarana (editors), Web Services 
Description Language (WSDL) 1.1,  W3C Note, March 15, 2001, available at 
http://www.w3.org/TR/wsdl, last accessed on May 25, 2011 

[34] U. Chukmol, “A Framework for Web Service Discovery: Service’s reuse, quality, evolution 

and end-user’s data handling,” In Proceedings of the 2nd SIGMOD PhD Workshop on 

Innovative Database Research (IDAR 2008), Vancouver, Canada, June 13, 2008, pages: 13-

18 

[35] P. Cimiano, J. Völker, “Text2Onto - A Framework for Ontology Learning and Data-driven 

Change Discovery,” In Proceedings of the 10th International Conference on Applications of 

Natural Language to Information Systems (NLDB), vol. 3513 of Lecture Notes in Computer 

Science, Springer, Alicante, Spain, June 2005, pages: 227-238 

[36] L. Clement, A. Hately, C. von Riegen, T. Rogers, etc., “UDDI Version 3.0.2,” UDDI Spec 
Technical Committee Draft, October 19, 2004, available at: 
http://www.uddi.org/pubs/uddi_v3.htm, last accessed on May 25, 2011 

[37] D. Connolly, F. V. Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. 

A. Stein, “DAML+OIL Reference Description,” W3C Note, December 2001, available at: 

http://www.w3.org/TR/daml+oil-reference, last time accessed on May 17, 2010.  

[38] A. D’Ambrogio, “A WSDL Extension for Performance-enabled Description of Web 

Services,” LNCS vol. 3733/2005, In Proceedings of the 20th International Symposium on 

Computer and Information Sciences (ISCIS’05), Istanbul, Turkey, October 26-28, 2005, 

pages: 371-381 

[39] AnDrea D’ Ambrogio, Paolo Bocciarelli, “A Model-driven Approach to Describe and 

Predict the performance of Composite Services,” In Proceedings of the Sixth International 

Workshop on Software and Performance (WOSP’07), Buenos Aires, Argentina, February 5-

8, 2007, pages: 78-89 

[40] DBpedia, http://dbpedia.org/About, last accessed on August 16, 2011 



 

149 

 

[41] A. K. Dey, et al. “Toward a Better Understanding of Context and Context-Awareness,” In 

Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 

Karlsruhe, Germany, September 27-29, 1999, pages: 304-307 

[42] A. K. Dey, D. Salber, G. D. Abowd, “A Conceptual Framework and a Toolkit for Supporting 

the Rapid Prototyping of Context-aware Applications,” Human-Computer Interaction (HCI) 

Journal, Vol. 16(2-4), 2001,  pages: 97-166 

[43] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity Search for Web 

Services,” In Proceedings of the 30th International Conference on Very Large Data Bases, 

Toronto, Canada, August 29-September 3, 2004, pages: 372-383 

[44] Dublin Core, available at http://dublincore.org/, last accessed on May 25, 2011 

[45] S. Dustdar and W. Schreiner, “A survey on Web Service Composition,” Intenational Journal 

of  Web and Grid Services, Vol. 1, No. 1/2005, 2005, pages: 1-30 

[46] EHow, http://www.ehow.com/, last accessed on May 25, 2011 

[47] Expedia, http://www.expedia.com/, last accessed on May 25, 2011. 

[48] Facebook, http://www.facebook.com/, last accessed on May 25, 2011 

[49] W. Fang, L. Zhang, Y. Wang, S. Dong, “Toward a Semantic Search Engine Based on 

Ontologies,” In Proceedings of the International Conference on Machine Learning and 

Cybernetics, Guangzhou, China, April, 2005, pages: 1913 - 1918  

[50] J. Farrell, H. Lausen (editors), “Semantic annotation for WSDL and XML schema,” W3C 

Recommendation, 28 August, 2007 

[51] J. Floch, E. Stav, and E. Blakstad, “Compose Your Own City Guide,” VERDIKT 

Conference, Oslo, Norway, November 3-4, 2009, available at: 

http://www.sintef.no/home/Publications/Publication/?page=125679, last accessed on May 25, 

2011 

[52] M. Flügge, D. Tourtchaninova, “Ontology-derived Activity Components for Composing 

Travel Web Services,” In Proceedings of the International Workshop on Semantic Web 

Technologies in Electronic Business (SWEB2004), 2004 

[53] C. D. Francescomarino, A. Marchetto and P. Tonella, “Reverse Engineering Of Business 

Process Exposed As Web Applications”, In Proceedings of the European Conference On 



 

150 

 

Software Maintenance And Reengineering, Kaiserslautern, Mar. 24-27, 2009, pages: 139-

148. 

[54] Freebase, http://www.freebase.com/, last accessed on August 23, 2011. 

[55] A. Gao, D. Yang, S. Tang, M. Zhang, “Web Service Composition Using Markov Decision 

Processes,” In Proceedings of the 6th International Conference on Web-Age Information 

Management (WAIM) 2005, Hangzhou, China, October, 11-13, 2005, pages: 308-319 

[56] J. Garofalakis, Y. Panagis, E. Sakkopoulos, “Web Service Discovery Mechanisms: Looking 

for a Needle in a Haystack,” In Proceedings of the International Workshop on Web 

Engineering 2004, Santa Crus, CA, USA, August 10, 2004 

[57] J. Gekas, “Web Service Ranking in Service Networks,” Demos and Posters of the 3rd 

European Semantic Web Conference (ESWC 2006), Budva, Montenegro, June 11-14, 2006 

[58] J. Gekas and M. Fasli, “Automatic Web Service Composition Using Web Connectivity 

Analysis Techniques,” W3C Workshop on Frameworks for Semantics in Web Services 2005 

Position Paper, Innsbruck, Austria, June 9-10, 2005  

[59] Google, http://www.google.com, last accessed on August 23, 2011 

[60] Google AJAX Search API: Class Reference, 

http://code.google.com/apis/ajaxsearch/documentation/reference.html, last accessed on May 

11, 2011 

[61] T. Gruder, “Ontology,” Encyclopedia of Database Systems, Spring-Verlag, 2009 

[62] S. Gupta, G. Kaiser, D. Neistadt, P. Grimm, “DOM-based Content Extraction of HTML 

Documents,” In Proceedings of the Twelfth International World Wide Web Conference, 

Budapest, Hungary, May 20-24, 2003, pages: 207-214  

[63] M. J. Hadley, “Web Application Description Language (WADL),” Sun Micorsystems Inc., 

February 2, 2009 

[64] Y. Hao, Y. Zhang, and J. Cao, “WSXplorer: Searching for Desired Web Services,” In 

Proceedings of the 19th International Conference on Advanced Information System 

Engineering (CAiSE), LNCS 3395, 2007, pages: 173-187 

[65] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. Miller, M. Wang, “A framework for 

semantic link discovery over relational data,” In Proceedings of the 18th ACM Conference on 

Information and Knowledge Management (CIKM), Hong Kong, China, 2009, pages: 1027-

1036 



 

151 

 

[66] J. He, T. Gao, W. Hao, I.-L. Yen, and F. Bastani, “A flexible content adaptation system 

using a rule-based approach,” IEEE Transactions on Knowledge and Data Engineering, Vol. 

19, No. 1, January, 2007, pages: 127-140 

[67] J. He, I. L. Yen, “Adaptive end-user Interface Generation for Web Services,” In Proceedings 

of the 2007 IEEE International Conference on e-Business Engineering, Hong Kong, October 

24-26, 2007, pages: 536-539 

[68] C. Hesselman, A. Tokmakoff, P. Pawar, S. Iacob,  “Discovery and Composition of Services 

for Context-Aware Systems,” In Proceedings of the 1st European Conference on Smart 

Sensing and Context 2006 (EUROSSC 2006), Enscheda, The Netherlands, 25-27 October, 

2006, pages: 67-81 

[69] J. Hoxha, and S. Agarwal, “Semi-automatic Acquisition of Semantic Descriptions of 

Processes in the Web,” In Proceedings of the 2010 International Conference on Web 

Intelligence and Intelligent Agent Technology, Toronto, Canada, Aug. 31- Sept. 3, 2010, 

pages: 256-263  

[70] M. N. Huhns, M. P. Singh, “Service-Oriented Computing: Concepts, Characteristics and 

Directions,” IEEE Internet Computing, January-February, 2005, pages: 3-12 

[71] S. Hu, V. Muthusamy, G. Li, H. Jacobsen, “Distributed Automatic Service Composition in 

Large-Scale Systems,”, In Proceedings of the Distributed Event-Based Systems Conference 

(DEBS) Rome, Italy, July 1-4, 2008, pages: 233-244 

[72] IBM Mashup Center, http://www-01.ibm.com/software/info/mashup-center/, last accessed 

on May 25, 2011. 

[73] IBM WebSphere Business Modeler, available at: http://www-

01.ibm.com/software/integration/wbimodeler/, last accessed on May 15, 2011 

[74] IBM WebSphere Integration Developer (WID), http://www-

01.ibm.com/software/integration/wid, last access on March 23, 2011 

[75] IBM WebSphere Service Registry and Repository, http://www-

01.ibm.com/software/integration/wsrr/, last accessed on May 25, 2011 

[76] M. Keidl, A. Kemper, “Towards Context-Aware Adaptable Web Services,” In Proceedings 

of the International World Wide Web Conference (WWW) 2004, New York, NY, USA, 

2004, pages: 55-65 



 

152 

 

[77] D. Khshraj, O. Lassila, “Ontological Approach to Generating Personalized end-user 

Interfaces for Web Services,” Lecture Notes in Computer Science, Volume 3729/2005, page 

916-927, 2005, pages: 916-927 

[78] G. Klyne and J. J. Carroll (editors), “Resrouce description framework(RDF): Concepts and 

abstract syntax,” W3C Recommendation, 2004 

[79] M. Krause, C. Linnhoff-Popien, M. Strassberger, “Concurrent Inference of High Level 

Context Using Alternative Context Construction Trees,” In Proceedings of the 3rd 

International Conference on Automatic and Autonomous Systems (ICAS), Athens, Greece, 

2007, page 7-7 

[80] U. Küster, M. Stern, B. König-Ries, “A Classification of Issues and Approaches in Service 

Composition,” International Workshop on Engineering Service Compositions, 2005. 

[81] H. Lausen and T. Haselwanter, “Finding Web Services,” In Proceedings of the 1st European 

Semantic Technology Conference (ESTC), Vienna, Austria, April 18, 2007 

[82] Q. Liang, J. Chung, S. Miller, Y. Ouyang, "Service Pattern Discovery of Web Service 

Mining in Web Service Registry-Repository," In Proceedings of the IEEE International 

Conference on E-Business Engineering, , Shanghai, China, October 24-26, 2006, pages: 286-

293 

[83] G. Li, V. Muthusamy, and H. Jacobsen, “A Distributed Service Oriented Architecture for 

Business Process Execution,”, ACM Transaction on the Web, Vol. 4, No. 1, January 2010, 

Article No. 2  

[84] Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun, “An Exploratory Study of Web Services 

on the Internet,” In Proceedings of the 2007 IEEE International Conference on Web Services, 

Salt Lake City, Utah, USA, 2007, pages:380-387 

[85] X. Liu, G. Huang, H. Mei, “Towards End end-user Service Composition,” In Proceedings of 

the 31st Annual International Computer Software and Applications Conference, Beijing, 

China, 2007, pages: 667-678 

[86] X. Liu, G. Huang, H. Mei, “A User-Oriented Approach to Automated Service Composition,” 

In Proceedings of the 2008 IEEE International Conference on Web Services (ICWS), Short 

paper, Beijing, China, September 23-26, 2008, pages: 773-776 



 

153 

 

[87] X. Liu, Y. Hui, W. Sun and H. Liang, “Towards Service Composition Based on Mashup,” In 

Proceedings of the 2007 IEEE Congress on Services (SERVICES),Salt Lake City, Utah, 

USA, July 9-13, 2007, pages: 332-339 

[88] Y. Liu and A. Agah, “A Prototype Process-Based Search Engine,” In proceeding of the 2009 

IEEE International Conference on Semantic Computing,  2009, pages: 481- 486 

[89] Y. Liu, and A. Agah, “Crawling and Extracting Process Data from the Web,” In Proceedings  

of the International Conference on Advanced Data Mining and Applications (ADMA), 

Beijing, China, August 17-19, 2009, pages: 545-552  

[90] I. W. Ma, “Ontology base Web Services Composition,” Master Thesis, National Central 

University, Taiwan, 2007 

[91] Z. Maamar, D. Benslimane and N. G. Narendra, “What can Context do for Web Services,” 

Communications of ACM, Vol. 49. No. 12, 2006, Pages: 98-103 

[92] T. W. Malone, K. Crowston and G. A. Herman (editors), “Organizing Business Knowledge: 

The MIT Process Handbook,” Cambridge, MA:MIT press, 2003 

[93] F. Manola, E. Miller, B. McBride (editors), “RDF primer,” W3C recommendation, available 

at http://www.w3.org/TR/rdf-primer/, 2004, last accessed on May 25, 2011  

[94] D. Martin, M. Burstein, J. Hobbs, et al (editors)., “OWL-S: Semantic Markup for Web 

Services,” Technical Report, W3C Member Submission, November  22, 2004 

[95] P. Massimo, S. Katia, K. Takahiro, “Delivering Semantic Web Services,” In Proceedings of 

the International World Wide Web Conference (WWW) 2003, Alternate Paper Tracks, 

Budapest, Hungary, May 20-24, 2003 

[96] S. Mcllraith, T. C. Son, “Adapting Golog for Composition of Semantic Web Services,” In 

Proceedings of the 8th International Conference on Knowledge Representation and 

Reasoning, Toulouse, France, April 2002, pages: 482-493 

[97] S. Mcllraith, T. C. Son, “Semantic Web Services,” IEEE Intelligent Systems 16(2), 

March/April 2001,  pages: 46-53 

[98] N. Milanovic, M. Malek, “Current Solutions for Web Service Composition,” IEEE Internet 

Computing Magazine,  Vol. 8, Issue 6, 2004, pages: 51-59 

[99] J. Montgomery, “Microsfot Popfly: Building Games without a CS Degree,” available at: 

http://expression.microsoft.com/en-us/cc963994.aspx, last accessed on August 23, 2011. 



 

154 

 

[100] S. K. Mostefaoui, B. Hirsbrunner, “Context Aware Service Provisioning,” In Proceedings 

of the International Conference on Pervasive Services (ICPS) 2004, Beirut, Lebanon, July 19-

23, 2004, pages: 71-80 

[101] M. Y. Muriankara, “SOA Governance Framework and Solution Architecture,” IBM 

DeveloperWorks, May 15, 2008, available at: 

http://www.ibm.com/developerworks/webservices/library/ws-soa-govframe/index.html?S_ 

TACT=105AGX04&S_CMP=EDU, last accessed on May 25, 2011 

[102] S. Narayanan, S. A. Mcllraith, “Simulation, Verification and Automated Composition of 

Web Service,” In Proceedings of the 11th International World Wide Web Conference, 

Honolulu, Havaii, USA, May 2002, pages: 77-88 

[103] J Nielsen, “Success Rate: The Simplest Usability Metrics,” Jakob Nielsen’s Alertbox, Feb. 

2001 

[104] Z. Obrenovic and D. Gasevic, “End-User Service Composition: Spreadsheets as a Service 

Composition Tool,” IEEE Transactions on Service Computing, vol. 1, No. 4, October-

December, 2008, pages: 229-242 

[105] Oracle BPEL Process Manager, available at: http://www.oracle.com/technetwork/ 

middleware/bpel/overview/index.html, last accessed on September 22, 2011 

[106] Organization for the Advancement of Structured Information Standards (OASIS), 

“Introduction to UDDI: Important Features and Functional Concepts,” Technical White 

Paper, October 2004 

[107] B. Orriüens, J. Yang and M. P. Papazoglou, “A Framework for Business Rule Driven Web 

Service Composition, ER 2003 Workshops, LNCS 2814, Springer-Verlag Berlin Heidelberg, 

52-64, 2003, pages: 52-64 

[108] B. Orriüens, J. Yang, and M. P. Papazoglou, “Model Driven Service Composition,” In 

Proceedings of the International Conference on Service-Oriented Computing (ICSOC) 2003, 

Trento, Italy, December 15-18, 2003, pages: 75-90 

[109] OWL API, http://owlapi.sourceforge.net/, last accessed on May 25, 2011 

[110] M. Paolucci, T. Kawamura, “Semantic Matching of Web Services Capabilities,” In 

proceedings of the International Semantic Web Conference (ISWC) 2002, Sardinia, Italy, 

June 10-12,  2002, pages: 333-347 



 

155 

 

[111] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-Oriented Computing: 

A Research Roadmap,” International Journal Cooperative Information System, 17(2), 2008, 

pages: 223-255  

[112] T. Pedersen, S. Patwardhan, J. Michelizzi, “WordNet::Similarity - Measuring the 

Relatedness of Concepts ,” In Proceedings of the Nineteenth National Conference on 

Artificial Intelligence (AAAI-04), Intelligent Systems Demonstration, San Jose, CA July 25-

29, 2004, pages: 1024-1025. 

[113] R. Perrey, M. Lycett, “Service-Oriented Architecture,” In Proceedings of the 2003 

Symposium on Applications and the Internet Workshops (SAINT), - Orlando, FL, USA, 27-

31 January 2003, pages: 116-119 

[114] M. Pistore, A. Marconi, P. Bertoli and P. Traverso, “Automated Composition of Web 

Services by Planning at the Knowledge Level,” In Proceedings of the International Joint 

Conference on Artificial Intelligence (IJCAI) 2005, Pasadena, California, USA, pages: 1252-

1259 

[115] M. Pistore, P. Traverso, P. Bertoli, A. Marconi, “Automated Synthesis of Composite 

BPEL4WS Web Services,” In Proceedings of the International Conference on Web Services 

(ICWS) 2005, Orlando Florida, USA, July 11-15, 2005, pages: 293-301 

[116] Princeton University, “About WordNet,” 2010, Available at: http://wordnet.princeton.edu, 

last accessed on May 25, 2011 

[117] Protégé, http://protege.stanford.edu/, last time accessed on May 25, 2011.  

[118] Y. Qi, S. Qi, P. Zhu, L. Shen, “Context-Aware Semantic Web Service Discovery,” In 

Proceedings of the 3rd International Conference on Semantics, Knowledge and Grid, Xi’an, 

China, Oct. 29-31, 2007, pages: 499-502 

[119] D. Raggett, A. Hors, L. Jacobs (editors), “HTML 4.01 specification,” W3C 

Recommendation, December 24, 1999 

[120] P. Rajasekaran, J. Miller, K. Verma, A. Sheth, “Enhancing Web Services Description and 

Discovery to Facilitate Composition,” In Proceedings of the International Workshop on 

Semantic Web Services and Web Process Composition (SWSWPC) 2004, San Diego, 

California, USA, July 6-9, 2004, pages: 55-68 

[121] S. Ran, “A Model for Web Service Discovery with QoS,” ACM SIGecom Exchanges, V.4 

n.1, Spring, 2003, page1-10 



 

156 

 

[122] J. Rao and X. Su, “A Survey of Automated Web Service Composition Methods,” In 

Proceedings of the First International Workshop on Semantic Web Services and Web Process 

Composition, San Diego, CA, USA, July 2004, pages: 43-54 

[123] Sap News Desk, “Microsoft, IBM, SAP To Discontinue UDDI Web Services Registry 

Effort,” SOA World Magazine, available at http://soa.sys-con.com/node/164624, last 

accessed on May 25, 2011 

[124] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker, “Modeling and Composing 

service-base and Reference Process-based Multi-enterprise Processes,” In Proceedings of the 

12th International Conference on Advanced Information Systems Engineering (CAiSE), 

Stockholm, Sweden, June 2000, pages: 247-263 

[125] Seekda,  http://webservices.seekda.com/, last accessed on May 25, 2011 

[126] M. Sheshagiri, M. desJardins, T. Finin, “A planner for composing services described in 

DAML-S,” AAMAS Workshop on Web Services and Agent-Based Engineering, Melbourne, 

Australia, July 14, 2003. 

[127] K. Sivashanmugam, J. A. Miller, A. P. Sheth, and K. Verma, “Framework for Semantic 

Web Process Composition,” International Journal of Electronic Commerce (IJEC), Special 

Issue on Semantic Web Services and Their Role in Enterprise Application Integration and E-

Commerce, Winter 04/05 issue, 9 (2), pages: 71-106. 

[128] K. Sivashanmugam, K. Verma, A. P. Sheth, “Discovery of Web Services in a Federated 

Registry Environment,” In Proceedings of the International Conference on Web Services 

2004, San Diego, California, USA, , July 6-9, 2004, pages: 270-278 

[129] M. K. Smith, C. Welty, D. L.McGuinness (editors) , “OWL Web Ontology Language 

Guide,” W3C Recommendation (2004), available at http://www.w3.org/TR/owl-guide/, last 

accessed on May 25, 2011 

[130] D. Sprott and L. Wilkes, “Understanding Service Oriented Architecture,” The Architecture 

Jornal, January 2004 

[131] T. Strang, and C. Linnhoff-Popien, “A context modeling survey,” The First International 

Workshop on Advanced Context Modelling, Reasoning and Management, Nottingham, 

England, September, 2004 

[132] Swoogle, http://swoogle.umbc.edu/, last accessed on May 25, 2011 



 

157 

 

[133] A. M. Turing, “Computing Machinery and Intelligence,” Mind LIX(236) , 1950,  pages: 

443-460 

[134] UbiCompForAll - Ubiquitous Service Composition for All End-Users, 

http://www.sintef.no/Projectweb/UbiCompForAll/Home/, last accessed on August 23, 2011 

[135] UDDI data Model, available at: http://www.tutorialspoint.com/uddi/uddi_data_model.htm, 

last accessed on May 25, 2011 

[136] A. S Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, U. Yalcinalp 

(editors), “Web Service Policy 1.5 - Framework,” W3C Recommendation, 04 September, 

2007 

[137] M. Vukovic and P. Robinson, “Adaptive, Planning-based, Web Service Composition for 

Context Awareness,” In Proceedings of the International Conference on Pervasive 

Computing, Vienna, April 18-23, 2004 

[138] Y. Wang and E. Stroulia, “Semantic Structure Matching for Assessing Web Service 

Similarity,” In Proceedings of the First International Conference on Service Oriented 

Computing (ICSOC03), Springer, Berlin, December 15-18, 2003, pages: 194-207 

[139] Web Services Business Process Execution Language Version 2.0, available at: 

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, last accessed on May 25, 

2011. 

[140] Web Service Modeling Ontology (WSMO), W3C Member Submission June 3, 2005, 

http://www.w3.org/Submission/WSMO/, last accessed on June 19 

[141] WikiHow, http://www.wikihow.com/, last accessed on May 25, 2011 

[142] Wikipedia, http://en.wikipedia.org/wiki/Wikipedia:About, last accessed on May 25, 2011 

[143] Woogle, http://db.cs.washington.edu/webService/, last accessed on March 20, 2011 

[144] D. Wu, B. Parsia, E. Sirin, J. Hendler and D. Nau, “Automating DAML-S Web Services 

Composition Using SHOP2,” In Proceedings of the 2nd International Semantic Web 

Conference (ISWC) 2003, Sardinia, Italy, 9-12 June, 2003, pages: 195-210 

[145] Z. Wu and M. Palmer, “Verb Semantics and Lexical Selection,” In Proceedings of the 32nd 

Annual Meeting of the Association for Computational Linguistics, 1994, pages: 133-138. 

[146] H. Xiao, Y. Zou, J. Ng, L. Nigul, “An Approach for Context-aware Service Discovery and 

Recommendation,” In Proceedings of the 8th International Conference on Web Services 

(ICWS) 2010, Miami, Florida, USA, July 5-10, 2010, pages: 163-170  



 

158 

 

[147] H. Xiao, R. Tang, Y. Zou, J. Ng and L. Nigul, "Context-aware Service Composition", 

Technology showcase, CASCON 09, November, Toronto, 2009  

[148] H. Xiao, Y. Zou, J. Ng and L. Nigul, "Intelligent Service Selection and Composition", 

Technology showcase, CASCON 08, Octover, Toronto, 2008  

[149] H. Xiao, Y. Zou, J. Ng, L. Nigul, "Personalized Service Discovery and Composition" , In 

Proceedings of the Smart Internet Technologies Working Conference (SITCON), Markham, 

Ontario, Canada, November 2, 2009  

[150] H. Xiao, Y. Zou, R. Tang, J. Ng, L. Nigul, “An Automatic Approach for Ontology-Driven 

Service Composition,” In Proceedings of the IEEE International Conference on Service-

Oriented Computing and Applications 2009, Taipei, Taiwan,  December, 2009, pages: 17-24 

[151] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul, “Ontology-Driven Service Composition for 

End-Users”, Service Oriented Computing and Applications, Spring-Verlag, Issn 1863-2386, 

Vol. 5, Num. 3, 2011, pages: 159-181 

[152] H. Xiao, Y. Zou, R. Tang, J. Ng, L. Nigul, “A framework for Automatically Supporting 

End-Users in Service Composition,” In Book “The Smart Internet”, Lecture Notes in 

Computer Science (LNCS), Springer-Verlag, Vol. 6400, 2010, pages: 115-136   

[153] H. Xiao, “A Survey on Service Composition,” Ph.D. Depth paper, School of Computing, 

Queen’s University, ON, Canada, December, 2009 

[154] Yahoo, http://www.yahoo.com, last accessed on March 20, 2011 

[155] Yahoo! Pipes, http://pipes.yahoo.com/pipes/, last accessed on May 25, 2011 

[156] W. Yan, S. Hu, V. Muthusamy, H. Jacobsen, L. Zha, “Efficient Event-based Resource 

Discovery,” In Proceedings of the ACM Distributed Event-based Systems Conference 

(DEBS) 2009, Nashville, TN, USA, July 6-9, 2009 

[157] S. J. H. Yang, J. Zhang, I. Y. L. Chen, “A JESS-enabled context elicitation system for 

providing context-aware Web services,” Export Systems with Applications, Volume 34, Issue 

4 (May 2008), pages: 2254-2266 

[158] M. Yoshida, , K. Torisawa and J. Tsujii, “Extracting Ontologies from World Wide Web via 

HTML tables,” In Proceedings of the Pacific Association for Computational Linguistics 

(PACLING), Kitakyushu, Japan, 2011, pages: 332-341 



 

159 

 

[159] Y. Zou, J. Guo, K. C. Foo, M. Hung, “Recovering Business process from Business 

Applications,” Journal of Software Maintenace and Evolution: Research and Practice, Vol. 

21(5), Sept. 2009, pages: 315-348 

[160] Y. Zou, H. Xiao, and B. Chan, “Weaving Business Requirements into Model 

Transformations,” In Proceedings of the 11th International Workshop on Aspect-Oriented 

Modeling (AOM), co-located with the IEEE/ACM International Conference on Model Driven 

Engineering Languages and Systems (MODELS), Nashville, TN, USA, September 30, 2007 


