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Abstract

Software quality is vital to the success of a software project. Fixing defects is the
major activity to continuously improve software quality. Given that a real develop-
ment team usually exhibits limited resources and tight schedules, it is important to

prioritize testing activities and optimize development resources. Predicting defective enti-
ties (e.g., files or classes) ahead helps achieve such a goal. Defect prediction has attracted
considerable attention from both academia and industry in the last decade.

A typical defect prediction model is built upon software metrics and labelled defect
data that are collected from the historical data of a software project. A defect prediction
model can be applied within the same project (within-project defect prediction) or on other
projects (cross-project defect prediction). However, due to the diversity in development
processes, a defect prediction model is often not transferable and requires to be rebuilt
when the target project changes. As it consumes additional effort to build and maintain
a defect prediction model for a particular project, it is of significant interest to generalize
a defect prediction model. A generalized defect prediction model relieves the need to
rebuild a defect prediction model for each target project. Moreover, it helps reveal a general
relationship between software metrics and defect data.

In this thesis, we analyze the feasibility of generalizing defect prediction models. First,
we analyze how the distribution of the values of software metrics varies across projects of
different context factors (e.g., programming language and system size). We observe that
such distributions do vary across projects, but can also be similar across projects of dif-
ferent context factors. Second, we investigate the impact that the pre-processing steps (in
particular, transformation and aggregation of software metrics) have on the performance of
defect prediction models. We find that the pre-processing steps impact the performance of
defect prediction models, and therefore need to be considered towards generalizing defect
prediction models. Finally, we propose two approaches for generalizing defect prediction
models with supervised (requiring the training data) and unsupervised (without the training
data) methods, respectively. Our results show that both approaches are feasible to general-
ize defect prediction models.
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1

“The journey of a thousand miles begins with one step.”

— Lao Tzu (604 BC - 531 BC)

C
h
a
pt
er 1 Introduction

Releasing a software system with high quality is vital to the success of a software project.

However, software systems generally contain defects [45, 71, 112, 128, 129, 139]. A de-

fect is an error in software behaviour that causes undesired results. It was estimated that

software defects cost U.S. economy $59.5 billion annually [184]. Usually, 50% to 75% of

the total software development budget is spent in fixing defects [70]. The cost of fixing

defects can be reduced significantly if defects are fixed as early as possible [6, 32, 53, 128,

129, 148, 177].

In an ideal case, developers inspect each file carefully to find out every possible defect

and fix them before each release. However, it is impractical to inspect all files of a non-

trivial system, because most software organizations experience limited resources and tight

release schedules. To this end, it is important to determine what files should be inspected

immediately and what files could be examined at a later time. Therefore, defect prediction

models are proposed to prioritize quality improvement and defect avoidance efforts.

Numerous approaches have been proposed to build defect prediction models (e.g., [8,

45, 71, 112, 156]), but the industry does not widely adopt defect prediction [143, 159,

187]. The benefit of defect prediction models comes at a cost – additional efforts are



2

required to build an appropriate defect prediction model. Specifically, it requires collecting

sufficient training data and selecting proper technologies for model building. Sometimes,

manual analysis is required, such as verifying the correctness of the collected defect data

and removing noise from the training data. As a software system evolves, the development

environment may change. Thus the model needs to be updated as well, which introduces

extra cost. As a summary, possible barriers to adopt defect prediction models include:

1) the cost to collect up-to-date training data (e.g., defect data) [143, 159, 187, 188]; 2) the

low generalizability of prediction models [159]; and 3) the lack of automated tooling for

the prediction process [31, 159, 187]. In fact, Ostrand and Weyuker [143] report that many

companies lack the needed resources and technical expertise to prepare data for building

defect prediction models.

Furthermore, there are often insufficient training data to build a model for new or small

software systems. To predict defects for such systems, defect prediction models need to

be built using the training data from other projects (cross-project defect prediction). We

distinguish within-project and cross-project defect prediction as follows:

• Within-project defect prediction: models are built and applied on the same project.

• Cross-project defect prediction: models are built on some projects and applied on

some other projects.

Comparing to within-project defect prediction, cross-project prediction is more likely to

experience a significantly different distribution of metric values between the training and

target data. This is because the development environment varies across projects. Given

the difficulty to transfer existing within-project and cross-project models, it is desirable to

generalize a defect prediction model.
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In this thesis, we define a generalized defect prediction model by:

A generalized defect prediction model is a single model that is applicable upon a large
set of projects.

A generalized defect prediction model would relieve the need for refitting project-

specific or release-specific models for an individual project. Therefore, a generalized defect

prediction model has the potential to boost the adoption of defect prediction models in prac-

tice. For instance, a generalized model can be integrated into an Integrated Development

Environment (IDE) for instant evaluation of software quality, thus helping software orga-

nizations to deliver high-quality software in a timely manner. Furthermore, a generalized

model would also help interpret basic relationships between software metrics and defects,

potentially mitigating the challenge of lacking theoretical basis for the defect prediction

problem. Therefore, it is of significant interest to generalize a defect prediction model.

1.1 Thesis Statement

As presented in Figure 1.1, the typical process to build defect prediction models has four

major steps: 1) compute software metrics (e.g., product and process metrics) from code

repository; 2) pre-process software metrics before fitting them to a model; 3) collect defect

information with code repositories and issue tracking systems; and 4) apply appropriate

modelling techniques (e.g., such as random forest) to build a defect prediction model.

It is tedious and time-consuming to maintain a defect prediction model for each individ-

ual project. Therefore, defect prediction models are rarely applied in practice. To resolve

such problem, we aim to work on generalizing defect prediction models. Our thesis state-

ment is listed as follows.
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Figure 1.1: An overview of the typical process of building defect prediction models.

Thesis statement: A key step to generalize defect prediction is to achieve successful pre-
diction across projects, which is greatly challenged by the heterogeneity between the train-
ing and target projects. It is essential to understand how the heterogeneity varies across
projects. Then we can select appropriate data pre-processing and modelling techniques to
mitigate the heterogeneity, in order to build a generalized defect prediction model.

Predicting defects across projects is a great challenge (e.g., [71, 188, 210]), due to the

heterogeneity of both dependant variables (e.g., software metrics) and the independent vari-

able (i.e., defect data) across projects [26, 43, 135]. The heterogeneity is likely to be caused

by diverse development environments (e.g., varying user requirements and developer expe-

rience) [26, 113].

In this thesis, we first 1) investigate how the distribution of metric values of software

entities (e.g., files or classes) varies across projects with varied contexts (e.g., programming
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Figure 1.2: An overview of the contents of this thesis.

language and system size). Then 2) we study if the pre-processing steps (i.e., transforma-

tion and aggregation of software metrics) impact the predictive power of defect prediction

models. Finally, 3) we propose two approaches (i.e., supervised and unsupervised) to-

wards generalizing defect prediction models, and evaluate the feasibility of our proposed

approaches. The supervised approach requires the training data, while the unsupervised

approach does not require any training data.

1.2 Thesis Overview

We present the overview of this thesis in Figure 1.2. In this thesis, there are four major

parts. They are described as follows.

Part I. Literature review

Chapter 2: Related work. In this chapter, we review possible challenges to-

wards generalizing defect prediction models and present a survey of research on

within-project and cross-project defect prediction models.
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Part II. Prerequisite Analysis

Chapter 3: Distribution of software metrics. Software metrics are commonly

used as predictors in defect prediction models. We investigate if the distributions

of commonly used metrics do, in fact, vary with six context factors: application

domain, programming language, age, lifespan, the number of changes, and the

number of downloads. We also briefly discuss how each context factor may

affect the distribution of metric values.

Part III. Data Pre-processing

Chapter 4: Transformation of software metrics. Transformation is often ap-

plied to pre-process software metrics, therefore can impact the performance of

defect prediction models. We conduct an exploratory study to investigate the

impact of two commonly used transformation methods (i.e., log and rank trans-

formations), as well as the Box-Cox transformation.

Chapter 5: Aggregation of software metrics. Historical defect data is often

mined at the file-level, while software metrics are usually calculated at the class-

or method-level. To address the disagreement in granularity, the class- and

method-level software metrics are aggregated to file-level, often using summa-

tion. In this chapter, we investigate how different aggregation schemes impact

defect prediction models.

Part IV. Generalizing Defect Prediction Models

Chapter 6: A supervised approach towards generalizing defect prediction mod-

els. A formidable obstacle to generalize a defect prediction model is the vari-

ations in the distribution of predictors among projects of diverse contexts (e.g.,
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size and programming language). Hence, we propose to cluster projects based

on the similarity of the distribution of predictors, and derive the rank transfor-

mations using quantiles of predictors for a cluster.

Chapter 7: An unsupervised approach towards generalizing defect prediction

models. The heterogeneity between the training and target data is the main

challenge in cross-project defect prediction. An unsupervised classifier does

not require any training data, therefore the heterogeneity problem is no longer

an issue. In this chapter, we propose a new unsupervised connectivity-based

classifier that is based on spectral clustering.

1.3 Thesis Contributions

The major contributions of this thesis are summarized as follows.

• Although all studied six context factors impact the distribution of the values of 51%

of metrics, the values of software metrics can also experience similar distributions

across projects of different context factors (Chapter 3).

• Cross-project prediction models built with the studied three transformations (i.e., log,

Box-Cox, and rank transformations) have similar overall performances, but do not

always experience wrong predictions at the same time. Hence, we further propose to

combine these models and achieve statistically significant improvement in predictive

power (Chapter 4).

• Aggregation can significantly impact both the correlation among software metrics

and the correlation between software metrics and defect count. For instance, sum-

mation significantly inflates the correlation between Sloc and other metrics (not just
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Cc). Moreover, using only the summation (i.e., the most commonly applied scheme)

often hinders the predictive power of defect prediction models (Chapter 5).

• We propose an approach of context-aware rank transformation to mitigate the large

variations in the distribution of software metrics across projects of diverse contexts.

The defect prediction model built using the transformed software metrics is general-

izable (Chapter 6).

• We propose a connectivity-based unsupervised classifier for defect prediction which

can achieve good performance in a cross-project setting. Furthermore, we observe

that there exist two (defective and clean) separated communities of software entities

based on the connectivity between the metrics of the entities in each community

(Chapter 7).

1.4 Thesis Organization

In the next chapter, the background and related work are discussed. The investigation on the

distribution of software metrics across projects with varied contexts is presented in Chap-

ter 3. In Chapter 4 and Chapter 5, the impact of two pre-processing methods (i.e., data

transformation and data aggregation) are examined, respectively. Based on the findings, an

approach towards building a generalized defect prediction model is proposed and described

in Chapter 6. Such approach is supervised that requires training data, therefore may cause

the heterogeneity between the training and target data. Therefore, an unsupervised ap-

proach is further introduced and examined in Chapter 7. Finally, Chapter 8 concludes the

work and discusses future directions.
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Part I

Literature Review
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“If I have seen further, it is by standing on the shoulders of giants.”

— Isaac Newton (1642 - 1727)

C
h
a
pt
er 2 Related work

Despite the significant achievement in cross-project defect prediction, most existing ap-

proaches (e.g., [33, 76, 118, 135, 188]) are hardly to provide a generalized defect pre-

diction model. For instance, the transfer learning based approach [135] always requires to

re-process software metrics in both training and target projects once any peer (i.e., the train-

ing or the target project) changes. In the following sections, we present details regarding

possible challenges towards generalizing defect prediction models.

2.1 Software Metrics Collection

Software metrics are commonly used as predictors in defect prediction models. An intuitive

threat to generalize defect prediction models is whether metrics are collected in a consistent

manner. Three challenges are described as follows.

1) Definition and computation. Metrics computed from the same input are assumed to

be consistent despite which tool is used. In fact, this assumption is invalid. Lincke et al.

[114] investigate values of nine OO metrics that are computed through ten metric com-

putation tools (including both commercial and free tools), and observe large variations
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in complex metrics (e.g., Coupling Between Object classes (CBO), and Lack of Cohe-

sion of Methods (LCOM)). The differences even exist after abstraction (e.g., ranking

metric values) [114]. Hence, Lincke et al. [114] suggest to clearly describe the scope

and mapping definitions of programming languages.

2) Metric granularity. Metrics are collected at different granularity, such as method level,

class level, file level, or project level. The information provided by metrics of various

levels is different. Catal and Diri [29] report that the best algorithm to model defect

proneness is different for method-level metrics and class-level metrics.

3) Variation with contexts. The diversity of developers leads to the variation in software

metrics across projects. Systa and Muller [183] explicitly state that their best model

should not be considered as a universal model for Java projects due to the variance in

functionality or development team.

2.2 Software Metrics Pre-processing

Data pre-processing has been proved to improve the performance of defect prediction mod-

els by Menzies et al. [123]. The non-normality of software metrics can negatively impact

the performance of linear models [37]. It is common to apply data transformation, such as

log transformation [93, 123] and rank transformation [93, 202]. In addition, the variation

in scales of metrics pose a challenge to generalize defect prediction models. To deal with

the varied granularities (e.g., file, class, or method) of software metrics, aggregation (e.g.,

summation) is usually conducted. Therefore, pre-processing software metrics may be a

mandatory step needed to build a successful cross-project defect prediction model.
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1) Software transformation. Many software metrics (e.g., the number of tokens) follow

power law distributions [41, 205]. To build a defect prediction model, researchers of-

ten apply the natural log transformation (e.g., [93, 123, 180]) and rank transformation

(e.g., [93, 202]) on software metrics. However, Jiang et al. [93] compare log and rank

transformations, and find that different classifiers prefer different transformations. Cruz

and Ochimizu [43] observe that log transformations can improve the performance of

cross-project predictions, only if the data of the target project is not as skewed as the

data of the training project.

The state-of-the-art approaches to improve the performance of cross-project defect pre-

diction mainly use two data pre-processing techniques: 1) use data from projects with

a similar distribution to the target project (e.g., [124, 188]); or 2) transform predictors

in both training and target projects to make them more similar in their distribution (e.g.,

[118, 135]). For instance, Turhan et al. [188] propose to use the nearest neighbour filter

and Nam et al. [135] propose to transform both training and target projects to the same

latent feature space, and build models on the latent feature space. However, the afore-

mentioned approaches use only partial dataset and end up with multiple models (i.e.,

one model per target project).

2) Software metrics aggregation. While the most commonly used granularity of defect

prediction is the file-level [75, 135, 202, 210], many software metrics are calculated

at the method- or class-levels. The difference in granularity creates the need for ag-

gregation of the finer method- and class-level metrics to file-level. Simple aggregation

schemes, such as summation and mean, have been explored in the defect prediction

literature [82, 106, 111, 112, 128, 135, 138, 154, 202, 208, 209]. However, Landman

et al. [109] show that prior findings (e.g., [54, 67]) about the high correlation between
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summed Cc and summed lines of code (i.e., Sloc) may have been overstated for Java

projects, since the correlation is significantly weaker at the method-level.

Apart from summation and mean, more advanced metric aggregation schemes have

been also explored [60, 63, 76, 167, 190, 191], including the Gini index [62], the

Atkinson index [9], the Hoover index [83], and the Kolm index [105]. For example,

D’Ambros et al. [44] compute the entropy of both code and process metrics. Hassan

[75] applies Shannon’s entropy [169] to aggregate process metrics as a measure of the

complexity of the change process. Vasilescu et al. [192] find that the correlation be-

tween metrics and defect count is impacted by the aggregation scheme that is used.

He et al. [76] apply multiple aggregation schemes to construct various metrics about a

project in order to find appropriate training projects for cross-project defect prediction.

Giger et al. [60] use the Gini index to measure the inequality in the ownership of files

and obtain acceptable performance for defect proneness models. However, it is still

unclear on how data aggregation impacts the performance of defect prediction models.

2.3 Software Metrics Thresholds

Deriving appropriate thresholds and ranges of metrics is important to interpret software

metrics [110]. For instance, McCabe [119] proposes a widely used complexity metric to

measure software maintainability and testability, and further interprets the value of his met-

ric in such a way: sub-functions with the metric value between 3 and 7 are well structured;

sub-functions with the metric value beyond 10 are unmaintainable and untestable [119].

Lorenz and Kidd [115] propose thresholds and ranges for many object-oriented metrics,

which are interpretable in their context. However, direct application of these thresholds

and ranges without taking into account the contexts of systems might be problematic. Erni
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and Lewerentz [52] propose to consider mean and standard deviations based on the as-

sumption that the metrics follow normal distributions. Yet many metrics follow power-law

or log-normal distributions [80, 116]. Thus many researchers propose to derive thresholds

and ranges based on statistical properties of metrics. For example, Benlarbi et al. [14] ap-

ply a linear regression analysis. Shatnawi [170] use a logistic regression analysis. Yoon

et al. [200] use a k-means cluster algorithm. Herbold et al. [79] use machine learning

techniques. Sánchez-González et al. [161] compare two techniques: ROC curves and the

Bender method. In addition, Bouktif et al. [21] propose to update thresholds based on the

feedback from developers.

A recent attempt to build benchmarks is by Alves et al. [4]. They propose a framework

to derive metric thresholds by considering metric distributions and source code scales,

and select a set of software systems from a variety of contexts as measurement data.

Baggen et al. [11] present several applications of Alves et al. [4]’s framework. Bakota

et al. [12] propose a different approach using probabilities other than thresholds or ranges,

and focus on aggregating low-level metrics to the maintainability that is described in the

ISO/IEC 9126 standard [87].

The aforementioned studies do not consider the potential impact of the contexts of soft-

ware systems. The contexts can affect the effective values of various metrics [50]. Contexts

of software systems are considered in Ferreira et al. [56]’s work. They propose to identify

thresholds of six object-oriented software metrics using three context factors: application

domain, software types (i.e., tool, framework and library) and system size (in terms of the

number of classes). However, they directly split all software systems using the context

factors without examining whether the context factors affect the distribution of metric val-

ues or not, thus result in a high ratio of duplicated thresholds. To reduce duplications and
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maximize the samples of measurement software systems, a split is necessary only when a

context factor impacts the distribution of metric values.

2.4 Defect Data Collection

The major challenges come from possible noise and varied ratio of defects across projects.

If no issue tracking system is present, defect data is mined solely from commit logs with

heuristics (e.g., [126, 179]), and noise can be introduced. If an issue tracking system is

used, the wrong or missing links between issue reports and commit logs can also intro-

duce noise [10, 196]. The ratio of defects in a project relates to the choice of best cut-off

values to determine the defect proneness of an entity. The varied ratios of defects among

diverse projects increase the difficulty to generalize defect prediction model, and further

investigation is needed.

1) Defect distribution. Many studies (e.g., [5, 40, 54, 72, 142]) state that the Pareto

principle applies to defects [86]. The Pareto principle is often referred as the 20-80 rule,

which means that most defects (80%) exist in few modules (20%). Besides the Pareto

distribution, or instance, Janes et al. [89] find that defects follow a negative binomial

distribution in their subject projects that are telecommunication software systems.

2) Imbalanced defect data. As following the Pareto principle, defect data is usually im-

balanced. The imbalance problem can result in a low accuracy in predicting the mi-

nority class (i.e., defect proneness) [149]. Two common methods are to under-sample

the majority class or to oversample the minority class. Pelayo and Dick [149] observe

that uniform under-sampling and the combination of under-sampling and oversampling
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have the potential to improve the accuracy of defect prediction models. In addition to re-

sampling techniques, Wang and Yao [193] investigate threshold moving and Boosting-

based ensembles and find that AdaBoost.NC achieves the best performance.

3) Defect data quality. The high quality of defect data is vital to the success of a defect

prediction model. However, even the widely used NASA data sets contain noise. In

particular, Gray et al. [68] find duplicated data points in NASA data sets that may result

in excessive estimate of performance. Kim et al. [102] investigate the impact of noise

on defect prediction models, and find that 20% to 35% of both false positive and false

negative noise significantly decrease the predictive power. Rahman et al. [158] report

that simply enlarging samples can mitigate the impact by bias in defect data.

4) Lack of defect data. Most defect prediction models are built using supervised classi-

fiers that rely on labelled training projects to infer a function between the independent

variables and the dependant variable. However, in a distributed development environ-

ment, defect data may be collected at particular locations [166]. With limited defect

data, a supervised learning technique may not yield good performance [166]. To this

end, Seliya and Khoshgoftaar [166] propose semi-supervised defect prediction based on

the Expectation Maximization (EM) algorithm; Li et al. [113] propose a sampling-based

approach to build defect prediction models. For unsupervised learning, experts are often

involved to manually determine the defect proneness of each cluster [166, 206].

2.5 Predictive Techniques

The statistical model outperforms the expert model for defect prediction [186]. Tomaszewski

et al. [186] conjecture that human encounters seriously limited ability to estimate the com-

plexity of large systems, while the statistical model is not affected by the size of subject
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systems. The statistical model can also be used without involving experts who may be

unavailable (e.g., when a project is previously developed by another organization).

Supervised modelling techniques can be used, if there exist sufficient defect data to

build a prediction model. Otherwise, a semi-supervised modelling technique is necessary.

For projects without defect data, either an unsupervised technique or a cross-project pre-

diction model is needed.

2.5.1 Supervised techniques

A technique that works well for one project does not necessary to be good for another

project. For instance, Lessmann et al. [112] find that the best prediction technique varies

with projects. In this subsection, studies regarding supervised techniques are discussed.

1) Significant difference in predictive power across modelling techniques. Janes et al.

[89] build models for predicting defect count, and find that three techniques (i.e., poison

regression, negative binomial regression, and zero-inflated negative binomial regres-

sion) are suitable to deal with overdispersion and heterogeneity of predictors. Gondra

[64] compares two modelling techniques (i.e., support vector machine (SVM) and ar-

tificial neural network(ANN)) and find that SVM significantly outperforms ANN for

predicting defect proneness. Hall et al. [71] report that Naive Bayes and logistic regres-

sion perform well in defect prediction, while SVM performs less well. Weyuker et al.

[195] perform a comparison using 28 to 35 releases of three large industrial projects

and find that random forests and the negative binomial regression perform significantly

better using two other techniques (i.e., Bayesian additive regression trees, and recursive

partitioning). Jia et al. [92] compare 10 modelling techniques using three releases of

industrial projects, and find that random forest and Bayesian belief network outperform

other techniques in terms of predictive accuracy. Moreover, Jia et al. [92] conclude that
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random forest is more cost-effective, and Bayesian Belief Network has the highest recall

of defective modules.

2) Non-significant difference in predictive power across modelling techniques. As op-

posite to the aforementioned studies, some researchers perform more extensive compar-

isons and do not observe significant difference across different prediction techniques.

Arisholm et al. [7] perform a case study using Java projects to compare the perfor-

mance across several modelling techniques (e.g., decision tree, PART, SVM, logistic

regression, neural networks). They observe there is no significant difference among

their studied modelling technique when predicting defect proneness. However, they

find significant differences in cost-effectiveness analysis. In particular, relatively sim-

ple techniques (e.g., decision tree) perform as well as more complex techniques (i.e.,

neural networks). Arisholm et al. [7] even deploy prediction models built with decision

trees to developers, and receive very positive feedback from developers who manage to

identify defects that are not found during unit testing. The success of simple prediction

techniques increases the chance to generalize defect prediction models with acceptable

performance.

Lessmann et al. [112] compare the performance across 22 modelling techniques in

predicting defect proneness for 10 projects. Although the best technique varies with

projects, they do not observe significant difference in predictive power (i.e., in terms

of AUC value) among the 17 top-ranked techniques. Similar as [7], Lessmann et al.

[112] also find that simple techniques (e.g., logistic regression) can achieve comparable

performance as more complex techniques. Lessmann et al. [112] further suggest that

different techniques should not be compared only based on predictive power but also

additional criteria such as computational efficiency.
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Arisholm et al. [8] conduct a systematic and comprehensive investigation of techniques

to build and evaluate models for predicting defect proneness. Arisholm et al. [8] con-

clude that the choice of prediction techniques has limited impact on the performance

in terms of both AUC and cost-effectiveness. Arisholm et al. [8] further note that the

choice of the best model strongly depends on the criteria used for model evaluation.

3) Other factors to consider. The configuration parameter is rarely considered in afore-

mentioned studies. For a particular technique, using its default configurations may not

achieve the best performance. For instance, Sarro et al. [162] find that the performance

in predicting defect proneness using SVM can be improved by tuning the parameters

with a genetic algorithm. When several techniques have comparable predictive power,

Jiang et al. [94] suggest to select the technique that experiences the least variance in

performance, since a technique with smaller variance is more stable. The selection of

metric sets can also impact the predictive power [45, 107]. For instance, D’Ambros

et al. [45] find that given a list of candidate metrics, different techniques for metric

selection produces very different sets of metrics.

2.5.2 Unsupervised techniques.

Unsupervised defect prediction is to predict defect proneness without requiring access to

training projects. As illustrated in Figure 2.1, a typical process to predict defects using an

unsupervised classifier has two steps: 1) clustering software entities into k clusters (usually

two clusters); and 2) labelling each cluster as a defective or clean cluster. However, there

exist a limited number of studies in the literature on unsupervised defect prediction. One

reason is that unsupervised classifiers usually underperform supervised ones (e.g., random

forest and logistic regression) in terms of the predictive power.
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Figure 2.1: A typical process to do defect prediction using an unsupervised classifier.

An initial attempt to use unsupervised defect classifiers is by Zhong et al. [206] who

apply k-means and neural-gas clustering in defect prediction. Zhong et al. [206] observe

that a neural-gas classifier outperforms k-means in terms of predictive power, but runs

slower. However, their approach requires one to specify the expected number of clusters,

and involves experts to determine which cluster contains defective entities (i.e., label the

cluster). Catal et al. [30] propose to use metric values to determine which cluster has de-

fective entities. Bishnu and Bhattacherjee [18] propose to apply quad trees to initialize the

cluster centres of k-means clustering. In addition to k-means clustering based classifiers,

Abaei et al. [1] propose to use self-organizing maps (SOM) and Yang et al. [198] propose

to apply the affinity propagation clustering algorithm. Recently, Nam and Kim [133] pro-

posed to cluster software entities using thresholds on selected metrics with very promising

performance on seven studied projects.

2.6 Cross-release Defect Prediction

Cross-release defect prediction is a practical case in within-project defect prediction. Cross-

release prediction models are often built using the nearest previous releases or all previous

releases. Different releases of software projects are typically developed following the same

development process (methods, process, and environment) by the developers hired under
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similar criteria and requirements [48]. Kastro and Bener [99] conjecture that the introduc-

ing of new features causes the major difference across releases in terms of product and

process metrics.

1) Positive results in cross-release defect prediction. Denaro and Pezzè [48] build many

models from Apache Web server 1.3, and use the best models to predict defects for

Apache Web server 2.0. Denaro and Pezzè [48] find that high quality multivariate mod-

els can successfully predict defect proneness across releases. As different releases of

projects can be viewed as homogeneous projects, Denaro and Pezzè [48] conclude that it

is feasible to generalize defect prediction models across homogeneous projects. Hence,

it is important to identify homogeneous projects towards generalizing defect prediction

models. Similarly, Bell et al. [13] study 140 releases of seven projects, and build defect

prediction models based on data from all previous releases. Bell et al. [13] observe

that such models achieve very high performance to predict the files likely to have the

most number of defects in the following release. For instance, the 20% of files pre-

dicted as defective contain 75% to 95% of the total defects. One possible reason may be

that defects follow the Pareto distribution across releases. Indeed, Holschuh et al. [82]

find that defects at both package and class levels follow the Pareto distribution across

releases. By studying three releases, Holschuh et al. [82] observe that 20% of all pack-

ages contain 70% of all defects during the eight-month period after the first release, and

20% of all packages contain 80% of all defects during the eight-month period after the

second release. In addition to cross-release prediction, Yadav and Yadav [197] build a

fuzzy logic based model to predict defect density across each phase of the development

process, and report that the predicted defects are very close to the actual defects on their

studied 20 projects.
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2) Negative results in cross-release defect prediction. Moser et al. [128] observe that

models built using data of the previous release cannot provide as accurate predictions

for the following release as for the same release. In some cases, the performance is even

unacceptable, e.g., experiencing a false positive rate of over 30%. Similarly, Shatnawi

and Li [171] report a decrease in the predictive power of cross-release defect prediction.

Tosun et al. [187] show that models trained using the historical data of previous versions

experience high false positives. Tosun et al. [187] further find that the false positive

rate can be reduced if building defect prediction models upon previous releases of all

available projects. Kläs et al. [104] also suggest to use more projects to build a model,

as it can increase the accuracy of defect prediction models.

The aforementioned contradictory findings in cross-release defect prediction raises the

interest to understand the underlying rationale. The possible reason for successful cross-

release defect prediction is that there is no significant changes among releases, therefore

the distribution of both metric values and defect data are similar across releases. On the

other hand, significant changes across releases may reduce the performance of cross-

release defect prediction.

2.7 Cross-project Defect Prediction

Cross-project prediction is necessary if there is only limited data available to build a model

([27, 132]). For instance, Turhan et al. [188] find that few companies have a repository

to store software metrics and defect data of past projects, due to the additional effort for

manual collection of data and the maintenance of data. Tosun et al. [187] fail to build

within-project modelling due to limited resources to collect defect data from an industrial
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project, and eventually seek to build cross-company models. Cross-project prediction mod-

els are more generalizable than within-project models, but are more challenging.

1) Challenges in cross-project defect prediction. Initial attempts on cross-project pre-

diction are not successful (e.g., [71, 188, 210]). For instance, Zimmermann et al. [210]

perform a case study using 28 datasets from 12 projects. Among all the 622 possible

pairs of projects. Zimmermann et al. [210] find that only 21 pairs achieve very good per-

formance in cross-project prediction, i.e., all precision, recall and accuracy are greater

than 0.75. Turhan et al. [188] observe that cross-project prediction can experience high

false positive rates. Premraj and Herzig [154] replicate existing studies and confirm the

challenges in cross-project defect prediction. Nagappan et al. [132] report that predic-

tors learnt from one project can rarely be applied in another project. On the other hand,

Rahman et al. [157] argue that from cost effectiveness perspective, cross-project defect

prediction can achieve similar performance as within-project prediction. Nonetheless,

there still exists the challenge in cross-project prediction.

One possible challenge in cross-project prediction is that metrics in various projects can

experience significantly different distributions [26, 43, 135]. Denaro and Pezzè [48] and

Nagappan et al. [132] report that defect prediction models can achieve good predictive

power only across homogeneous projects. Similarly, Briand et al. [26] perform a study

using different projects developed by the same team but with different design strategies

and coding standards, and find that a model built on one project can be accurately ap-

plied to rank classes for another project based on their probability of defect proneness.

Hall et al. [71] perform a systematic review on 36 studies, and conclude that the perfor-

mance of cross-project prediction can be affected by some context factors (e.g., system

size and application domain). Hence, project contexts are suggested by Zimmermann
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et al. [210] and Menzies et al. [124] in cross-project defect prediction.

2) Solutions to deal with data heterogeneity. To solve the issue of data heterogeneity

across diverse projects, it is necessary to improve the similarity of data between the

training and target projects. There are two major approaches: (a) filtering the training

project; and (b) transforming both training and target projects.

(a) Filtering-based approaches. Turhan et al. [188] observe that cross-company data

cannot be used as is, otherwise the predictive power is low. While the recall can be

increased from 75% to 92%, there is an increase in false positive rate, i.e., from 29% to

64%. However, after applying nearest neighbour (NN) filtering to cross-company data,

Turhan et al. [188] achieve similar but not better performance of cross-company defect

prediction models than within-company models. For example, the false positive rate

is reduced from 64% to 32% after the NN-filtering. Turhan et al. [188] also find that

the dataset to build effective defect prediction models can be small (i.e., 100 examples

are enough), and can be collected within a few months. Hence, Turhan et al. [188]

suggest a two-phase approach to deal with the problem of lacking training data. First,

apply NN-filtered cross-company data to build cross-company models. Second, switch

to within-company models after a few months of data collection. He et al. [76] find that

the performance of cross-project prediction depends on the distributional characteris-

tics (e.g., mean and standard deviation) of datasets. Hence, He et al. [76] propose an

approach to select training set based on the characteristics of datasets. The results show

that their approach can provide comparable performance as within-project prediction.

In 18 out of 34 cases, cross-project prediction meets their criteria for acceptance, i.e.,

at least 70% recall and 50% precision. In the best cases, cross-project models can even

provide better predictions than within-project models. He et al. [77] further perform an
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experiment using 34 releases of 10 open source projects, and 34 releases of seven pro-

prietary projects, and state that the fundamental challenge in cross-project prediction is

to select the most appropriate training data. Hence, He et al. [77] propose an approach

using the similarities in distributions between training and target projects, and demon-

strate that their approach is relatively better than the nearest neighbour based filtering

method ([188]) in terms of computation cost and predictive power.

(b) Transformation-based approaches. To deal with the varied distributions across projects,

Cruz and Ochimizu [43] apply the simple log transformation, and find that the log

transformation is effective if metric values for the target project are not as spread as for

the training project. Ma et al. [118] report that transfer learning is useful for the cases

where the distributions of training and testing sets are different, and explore the transfer

learning method to build faster and highly effective prediction model. Ma et al. [118]

propose an algorithm, namely Transfer Naive Bayes (TNB), to weight the training

project based on the statistical characteristics learnt from the target project. Transfer

component analysis (TCA) [146] aims to minimize the difference in the distribution

of metric values between training and testing data while preserving the original data

properties. Nam et al. [135] investigate the impact that several scenarios in data prepro-

cessing have on the predictive power, and observe that TCA responds better when data

is normalized. Hence, Nam et al. [135] extend TCA by normalizing both training and

target projects prior to applying TCA. Recently, Chen et al. [33] propose to apply dou-

ble transfer boosting (DTB) model to reshape the entire distribution of cross-company

data to fit within-company data. DTB aims to increase the similarity in distributions

between training and target projects. Chen et al. [33] find that their proposed model

outperforms within-company defect prediction model trained with limited data, and
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provides comparable performance as within-company defect prediction model trained

with sufficient data.

Besides the two aforementioned approaches that deal with training and target data, an

alternative is ensemble learning. Khoshgoftaar et al. [101] investigate the value of

using multiple classifiers against using multiple training projects. Their results show

that using a single modelling technique with multiple projects is generally better than

using a single technique with a single training project, as well as using multiple tech-

niques with a single training project. Hence, Khoshgoftaar et al. [101] suggest to

use as many existing similar projects as possible to train a defect prediction model.

Canfora et al. [27] propose a multi-objective approach based on logistic regression

for cross-project defect prediction, and demonstrate that their approach outperforms

within-project models from cost-effectiveness perspective. Panichella et al. [147] find

that different modelling techniques can complement each other, and propose to com-

bine different modelling techniques to improve the cross-project defect prediction.

2.8 Chapter Summary

Cross-project defect prediction may more frequently experience different distributions in

metric values and defect data than cross-release defect prediction. It is worth studying the

distribution of metric values across projects (Chapter 3). Improving the data pre-processing

step (Chapter 4 and Chapter 5) is a promising way to increase the similarity between the

distribution of metric values across projects. Existing studies on cross-project and cross-

release defect prediction suggest that it may be a mandatory step to transform metric values

of both training and target projects (Chapter 6). Moreover, a simpler modelling technique

is preferred if multiple modelling techniques yield similar performance (Chapter 7).
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er 3 Distribution of Software Met-

rics

Key Question

How does the distribution of software
metrics vary across projects with differ-
ent contexts?
?

3.1 Introduction

The history of software metrics predates software engineering. The first reported software

metric is the number of lines of code (LOC) which was used in the mid-1960’s to assess

the productivity of programmers [55]. Since then, a large number of metrics have been

proposed [25, 52, 115, 119], and extensively used in software engineering activities, e.g.,

defect prediction, effort estimation and software benchmarks1.

Since software systems are developed in different environments, for various purposes,

and by teams with diverse organizational cultures, we believe that context factors, such as

1A benchmark is generally defined as “a test or set of tests used to compare the performance of alternative
tools or techniques” [178]. In this study, we refer to “benchmark” as a set of metric-based evaluations of
software maintainability.
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application domain, programming language, and the number of downloads, should be taken

into account, when using metrics in software engineering activities (e.g., [46]). It can be

problematic [50] to apply metric-based benchmarks derived from one context to software

systems in a different context, e.g., applying benchmarks derived from small-size software

systems to assess the maintainability of large-size software systems. COCOMO II2 model

supports a number of attribute settings (e.g., the complexity of product) to fine tune the

estimation of the cost and system size (i.e., source lines of code). However, to the best

of our knowledge, no study provides empirical evidence on how contexts affect the afore-

mentioned metric-based models. The context is overlooked in most existing approaches for

building metric-based benchmarks [4, 12, 14, 56, 79, 170, 200].

This preliminary study aims to understand if the distributions of metrics do, in fact,

vary with contexts. Considering the availability and understandability of context factors

and their potential impact on the distribution of metric values, we decide to study seven

context factors: application domain, programming language, age, lifespan, system size, the

number of changes, and the number of downloads. Since system size strongly correlates to

the number of changes, we only examine the number of changes of the two factors.

In this thesis, we select 320 nontrivial (i.e., both size and lifespan are greater than 25%

of the population) software systems from SourceForge3. These software systems are ran-

domly sampled from nine popular application domains. For each software system, we

calculate 39 metrics commonly used to assess software maintainability. To better under-

stand the impact on different aspects of software maintainability, we further classify the 39

metrics into six categories (i.e., complexity, coupling, cohesion, abstraction, encapsulation

and documentation) based on Zou and Kontogiannis [212]’s work.

2http://sunset.usc.edu/csse/research/COCOMOII
3http://www.sourceforge.net
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We investigate the following two research questions:

(RQ1) What context factors impact the distribution of the values of software maintainabil-

ity metrics?

All six context factors (i.e., application domain, programming language, age, lifes-

pan, the number of changes, and the number of downloads) affect the distribution

of the values of 51% of metrics (i.e., 20 out of 39). The most influential context

factor is the programming language, since it impacts the distribution of the values

of 90% of metrics (i.e., 35 out of 39).

(RQ2) What guidelines can we provide to benchmark software maintainability metrics?

When obtaining thresholds of metric values to create benchmarks, software sys-

tems with similar context factors should be grouped together. We suggest to divide

all software systems into 13 distinct groups, including 1) five groups along appli-

cation domain (i.e., Gbuild , Ggames, G f rame, Gbuild;codegen, and Gcomm;network); 2)

five groups along programming language (i.e., Gc, Gcpp, Gc#, G java, and Gpascal);

and 3) three groups along the number of changes (i.e., GlowNC , GmoderateNC , and

GhighNC).

Chapter organization. Context factors are discussed in Section 3.2. We describe the ex-

perimental setup of our study in Section 3.3 and report our case study results in Section 3.4.

Threats to validity of our work are discussed in Section 3.5. In Section 3.6, we present the

summary of this Chapter.
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3.2 Context Factors

Open source software systems are characterized by Capiluppi et al. [28] using 12 context

factors: age, application domain, programming language, size (in terms of physical occu-

pation), the number of developers, the number of users, modularity level, documentation

level, popularity, status, success of project, and vitality. Considering not all software sys-

tems provide information for these factors, we decide to investigate five commonly avail-

able context factors: application domain, programing language, age, system size (we rede-

fined it as the total lines of code), and the number of downloads (measured using average

monthly downloads). Since software metrics are also affected by software evolution [95],

we study two additional context factors: lifespan and the number of changes. The selected

context factors are described as follows:

1) Application domain (AD) describes the type of software systems (e.g., framework and

game). In general, software systems designed as frameworks may contain more classes

than other types of software systems.

2) Programming language (PL) describes the nature of programming paradigms. Gen-

erally speaking, software systems written in Java may have deeper inheritance tree than

C++, as C++ supports both object oriented programming and structural programming.

3) Age (AG) is the time duration after creating a software system. As software develop-

ment techniques evolve fast, older software systems might be more difficult to maintain

than newly created software systems.

4) Lifespan (LS) describes the time duration of development activities in the life of a

software system. Software systems developed over a long period of time might be

harder to maintain than software systems developed over a shorter time period, due to
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accumulated features.

5) System size (SS) is the total lines of code of a software system. Small software systems

might be easier to maintain than large ones.

6) Number of changes (NC) describes the total number of commits made to a software

system. It might be more difficult to maintain heavily-modified software systems than

lightly-modified ones.

7) Number of downloads (ND) describes the external quality of a software system. It is of

interest to find if popular software systems have better maintainability than less popular

ones. In this study, the number of downloads is measured using the average monthly

downloads which were collected directly from SourceForge.

3.3 Case Study Setup

This section presents the design of our case study.

3.3.1 Data Collection

Corpus. We use the SourceForge data initially collected by Mockus [125]. There are

some updates after that work, and the new data collection was finished on February 05,

2010. The dataset contains 154,762 software systems. However, we find 97,931 incom-

plete software systems which contain fewer than 41 files, and an empty CVS repository has

40 files. There are 56,833 nontrivial software systems in total from SourceForge. FLOSS-

Mole [85] is another data source, from where we download descriptions (i.e., application

domain) of SourceForge software systems. Furthermore, we download latest application
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domain information4 and monthly download data5 of studied software systems directly

from SourceForge.

Sampling. Investigating all the 56,833 software systems requires a large amount of compu-

tation resources. For example, the snapshots of our selected 320 software systems occupy

about 8 GB hard drive, and the computed metrics take more than 15 GB hard drive. The

average time for computing metrics of one software system is 6 minutes. The bottleneck

is the slow disk I/O, since we intensively access disks (e.g., to dump snapshots of source

code, and to store metric values). Applying SSD or RAID storage or using RAM drive

might eliminate this bottleneck. Yet our resource is limited to apply such solution at this

moment. For a preliminary study, we perform stratified sampling of software systems by

application domains to explore how context factors affect the distribution of metric values.

Stratified sampling is to divide all software systems into subgroups before sampling. The

limitation of stratified sampling is discussed in Section 3.5. Moreover, we plan to strat-

ify by the remaining six factors in future. In this exploratory study, we pick nine popular

application domains containing over 1,000 software systems. We conduct simple random

sampling to select 100 software systems from each application domain and obtain 900 soft-

ware systems in total. Yet there are only 824 different software systems, since a software

system may be categorized into several application domains.

3.3.2 Factor Extraction

In this subsection, we describe our approach to extract each of the seven factors.

4http://sourceforge.net/projects/ProjectName (NOTE: the ProjectName needs to be substituted by the real
project name, e.g., a2ixlibrary)

5http://sourceforge.net/projects/ProjectName/files/stats/json?start_date=
1990-01-01&end_date=2012-12-31 (NOTE: the ProjectName needs to be substituted by the real
project name, e.g., gusi)

 http://sourceforge.net/projects/ProjectName/files/stats/json?start_date=1990-01-01&end_date=2012-12-31
 http://sourceforge.net/projects/ProjectName/files/stats/json?start_date=1990-01-01&end_date=2012-12-31
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1) Application domain (AD). We extract the application domain of each software system

using the data collected in June 2008 by FLOSSMole [85]. We rank all application do-

mains using the number of software systems and pick nine popular application domains:

Build Tools, Code Generators, Communications, Frameworks, Games/Entertainment,

Internet, Networking, Software Development (excluding Build Tools, Code Generators,

and Frameworks), and System Administration. We replace sub-domains, if exist, by

their parent application domain.

2) Programming language (PL). In this study, we only investigate software systems that

are mainly written in C, C++, C#, Java, or Pascal. For each software system, we dump

the latest snapshot, and determine the main programing language by counting the total

number of files per file type (i.e., *.c, *.cpp, *.cxx, *.cc, *.cs, *.java, and *.pas).

3) Age (AG). For each software system, we compute the age using the date of the first

CVS commit. In the sampled 824 software systems, the oldest software system6 was

created on November 02, 1996, and the latest software system7 was created on May 28,

2008.

4) Lifespan (LS). For each software system, we compute the lifespan by computing the

intervals between the first and the last CVS commits. The quantiles of lifespan in a unit

of day in the sampled 824 software systems are: 0 (minimum), 51 (25%), 338 (median),

930 (75%), and 4,038 (maximum).

5) System size (SS). For each software system, we count the total lines of code from the

latest snapshot. The quantiles of the total lines of code in the sampled 824 software

systems are: 0 (minimum), 1,124 (25%), 3,955 (median), 14,945 (75%), and 2,792,334

(maximum).

6gusi, http://sourceforge.net/projects/gusi
7pic-gcc-library, http://sourceforge.net/projects/pic-gcc-library
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6) Number of changes (NC). For each software system, we count the total number of

commits from the whole history. The quantiles of the number of changes in the sampled

824 software systems are: 12 (minimum), 123 (25%), 413 (median), 1,142 (75%), and

94,853 (maximum).

7) Number of downloads (ND). For each software system, we first sum up all the monthly

downloads to get the total number of downloads, and search the first and the last month

with at least one download to determine the downloading period. We divide the to-

tal downloads by the total number of months of the downloading period to obtain the

average monthly downloads. The quantiles of the average monthly downloads in the

sampled 824 software systems are: 0 (minimum), 0 (25%), 6 (median), 16 (75%), and

661,247 (maximum).

3.3.3 Data Cleanliness

We observe that some of the 824 software systems are incomplete, hence we perform the

following steps to further clean the data set.

(F1) Lifespan (LS). The 25% quantile of the lifespan of the 824 software systems is 51

days. We suspect that software systems with lifespans less than the 25% quantile are

never finished or are just used as prototypes. After manually checking such software

systems, we find that most of them are incomplete with very few commits. We ex-

clude such software systems from our study. The number of subject systems drops

from 824 to 618.

(F2) System size (SS). We manually check the software systems with lines of code less

than the 25% quantile (i.e., 1,124) of the 824 software systems. We find that most
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of such software systems are incomplete (e.g., vcgenv8), or mainly written in other

languages (e.g., jajax9 is written mainly in JavaScript). We exclude such software

systems from our study. The number of subject systems drops from 618 to 506.

(F3) Programming language (PL). We filter out software systems that are not mainly

written in C, C++, C#, Java, or Pascal. The number of subject systems drops from

506 to 478.

(F4) Number of downloads (ND). Some of the remaining 478 software systems have no

downloads. It might because that such software systems are still incomplete to be

used, or they are absolutely useless software. We exclude software systems without

downloads from our study. The number of subject systems drops from 478 to 390.

(F5) Application domain (AD). A software system might be categorized into several ap-

plication domains. The combinations of multiple application domains are considered

as different application domains from single application domains. The 75% quantile

of the number of software systems of all single and combined application domains is

seven. We exclude combined application domains which have less than seven soft-

ware systems, and yield six combined application domains. The number of subject

systems drops from 390 to 323.

The collection date of the application domain is not the same as the date of collecting

source code. To verify whether the application domains of the 323 software systems

remain the same as time elapses, we checked the latest application domain informa-

tion directly downloaded from SourceForge in April 2013. We find that only three

8http://sourceforge.net/projects/vcgenv
9http://sourceforge.net/projects/jajax
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Table 3.1: The Spearman correlations among four context factors: age, lifespan, system
size, and the number of changes.

Context factor Lifespan System size Number of changes

Age 0.35 0.06 0.14
Lifespan - 0.25 0.46

System Size - - 0.67

software systems (i.e., cdstatus, g3d-cpp, and satyr10) have changed their application

domains, indicating that application domains collected in June 2008 are adequate.

The application domain of g3d-cpp is removed, and the application domains of cd-

status and satyr are changed to Audio/Video. We exclude the three software systems

from our study. The number of subject systems drops from 323 to 320.

The context factors like age, lifespan, system size, and the number of changes seem to

be strongly related. Hence, we compute Spearman correlation among these context factors

of the 320 software systems. As shown in Table 3.1, system size strongly correlates to the

number of changes. Therefore, we choose to examine the number of changes only.

3.3.4 Stratifying Software Systems

When investigating the impact of application domain on the distribution of metric values,

we break down the 320 software systems into 15 groups based on 15 studied application

domains, as shown in Table 3.2. As there are five programming languages under study, we

separate the 320 software systems into five groups. When investigating the impact of the

other four context factors on the distribution of metric values, we divide the 320 software

systems into three groups, respectively, in the following way: 1) low (below or at the 25%

quantile); 2) moderate (above the 25% quantile and below or at the 75% quantile); and 3)

10http://sourceforge.net/projects/ProjectName (NOTE: the ProjectName needs to be substituted by the real
project name, e.g., cdstatus)



3.3. CASE STUDY SETUP 38

Table 3.2: The number of software systems per group divided by each context factor.

Context factor Group (The number of systems)

Application domain (AD)

Gbuild (31), Gcodegen (26), Gcomm (23), G f rame (29),
Ggames (49), Ginternet (19), Gnetwork (16) Gswdev (41),
Gsysadmin (29), Gbuild;codegen (14), Gcomm;internet (13), Gcomm;network (7),
Ggames;internet (7), Ginternet ;swdev (9), Gswdev;sysadmin (7).

Programming language (PL) Gc (57) Gcpp (85) Gc# (18) G java (146)
Gpascal (14)

Age (AG) GlowAG (80) GmoderateAG (160) GhighAG (80)

Lifespan (LS) GlowLS (80) GmoderateLS (160) GhighLS (80)

Number of changes (NC) GlowNC (80) GmoderateNC (160) GhighNC (80)

Number of downloads (ND) GlowND (90) GmoderateND (150) GhighND (80)

high (above the 75% quantile). The 25% quantile of lifespan (respectively the number of

changes and the number of monthly downloads) is: 287 days (respectively 364 and 6). The

75% quantile of lifespan (respectively the number of changes and the number of monthly

downloads) is: 1,324 days (respectively 2,195 and 38). The detailed groups are shown in

Table 3.2.

3.3.5 Metrics Computation

In this study, we select 39 metrics related to the five quality attributes (i.e., modularity,

reusability, analyzability, modifiability, and testability) of software maintainability (as de-

fined in ISO/IEC 25010 [88]). We further group the 39 metrics into six categories (i.e.,

complexity, coupling, cohesion, abstraction, encapsulation, and documentation) based on

Zou and Kontogiannis [212]’s work. These categories can measure different aspects of

software maintainability. For example, low complexity indicates high analyzability and

modifiability; low coupling improves analyzability and reusability; high cohesion increases

modularity and modifiability; high abstraction enhances reusability; high encapsulation im-

plies high modularity; and documentation might contribute to analyzability, modifiability,
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Table 3.3: List of metrics that characterize maintainability.

Category Metric Level

Complexity

Total Lines of Code (Tloc)

Project
Total Number of Files (Tnf)
Total Number of Classes (Tnc)
Total Number of Methods (Tnm)
Total Number of Statements (Tns)
Class Lines of Code (Cloc)

Class
Number of local Methods (Nom) [78]
Number of Instance Methods (Nim) [163]
Number of Instance Variables (Niv) [163]
Weighted Methods per Class (Wmc) [34]
Number of Method Parameters (Nmp)

MethodMcCabe Cyclomatic Complexity (Cc) [119]
Number of Possible Paths (Npath) [163]
Max Nesting Level (Mnl) [163]

Coupling

Coupling Factor (Cf) [74] Project
Coupling Between Objects (Cbo) [34]

ClassInformation Flow Based Coupling (Icp) [25]
Message Passing Coupling (Mpc) [78]
Response For a Class (Rfc) [34]
Number of Method Invocation (Nmi)

MethodNumber of Input Data (Fanin) [163]
Number of Output Data (Fanout) [163]

Cohesion

Lack of Cohesion in Methods (Lcom) [34]

ClassTight Class Cohesion (Tcc) [24]
Loose Class Cohesion (Lcc) [24]
Information Flow Based Cohesion (Ich) [3]

Abstraction

Number of Abstract Classes/Interfaces (Naci) ProjectMethod Inheritance Factor (Mif) [74]
Number of Immediate Base Classes (Ifanin) [163]

ClassNumber of Immediate Subclasses (Noc) [34]
Depth of Inheritance Tree (Dit) [34]

Encapsulation

Ratio of Public Attributes (Rpa)

ClassRatio of Public Methods (Rpm)
Ratio of Static Attributes (Rsa)
Ratio of Static Methods (Rsm)

Documentation

Comment of Lines per Class (Clc) ClassRatio Comments to Codes per Class (Rccc)
Comment of Lines per Method (Clm) MethodRatio Comments to Codes per Method (Rccm)

and reusability [212]. Table 3.3 shows the metrics and their categories. Most metrics can

be computed by a commercial tool, called Understand [164]. For the remaining metrics,

we computed them by ourselves11 using equations from the work of Aggarwal et al. [3].

11http://www.feng-zhang.com/replication/contextstudy
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3.4 Case Study Results

In this section, we report and discuss the results of our study.

RQ1: What context factors impact the distribution of the values of software maintain-

ability metrics?

Motivations. This question is preliminary to the other question. It determines the number

of pairwise tests in the other question. In this question, we determine if each factor impacts

the distribution of each metric values, and should be considered in pairwise comparison.

Approach. To address this research question, we examine each factor individually. For

each factor, we divide all software systems into non-overlapping groups as described in

Section 3.3.3. To examine the overall impact of a factor f on a metric m, we test the

following null hypothesis for the grouping based on factor f .

H01: there is no difference in the distribution of metric values among all groups divided

by factor f .

To compare the distribution of metric m values among all groups, we apply Kruskal-

Wallis test [173] using the 95% confidence level (i.e., p-value< 0.05). The Kruskal-Wallis

test assesses whether two or more samples originate from the same distribution. It does

not assume a normal distribution since it is a non-parametric statistical test. As we study

six context factors and 39 metrics in total, we apply Bonferroni correction which adjusts

the threshold p-value by dividing the number of tests (39 × 6=234 tests). If there is a

statistically significant difference (i.e., p-value< 0.05/234=2.14e-04), we reject the null

hypothesis and report that factor f impacts the distribution of metric m values.

Findings. We present p-value of Kruskal-Wallis test in Table 3.4. For each factor, statisti-

cally significant results indicate the impacting factors. In general, 51% of metrics (i.e., 20
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Table 3.4: The p-values of Kruskal-Wallis test. (Note: “n.s.” denotes non-statistical signif-
icance that means p-value is greater than 2.14e-04, which equals to 0.05/39/6).

Category Metric Application Programming Age (AG) Lifespan Number of Number of
domain (AD) language (PL) (LS) changes (NC) downloads (ND)

Complexity

Tloc n.s. n.s. n.s. 1.94e-05 < 2.2e-16 n.s.
Tnf n.s. 1.11e-05 n.s. 5.97e-06 < 2.2e-16 n.s.
Tnc 3.41e-05 < 2.2e-16 n.s. n.s. 8.05e-12 n.s.
Tnm 1.46e-04 < 2.2e-16 n.s. n.s. 1.03e-11 n.s.
Tns n.s. n.s. n.s. 6.26e-06 < 2.2e-16 n.s.
Cloc < 2.2e-16 < 2.2e-16 < 2.2e-16 1.37e-14 n.s. < 2.2e-16
Nom < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Nim < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Niv < 2.2e-16 < 2.2e-16 < 2.2e-16 5.27e-10 5.76e-08 5.27e-11
Wmc < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Nmp < 2.2e-16 < 2.2e-16 < 2.2e-16 2.93e-07 < 2.2e-16 < 2.2e-16
Cc < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Npath < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Mnl < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 2.22e-12 < 2.2e-16

Coupling

Cf n.s. n.s. n.s. 9.55e-05 < 2.2e-16 n.s.
Cbo < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 n.s. < 2.2e-16
Icp < 2.2e-16 < 2.2e-16 8.34e-11 < 2.2e-16 < 2.2e-16 n.s.
Mpc < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 1.50e-04
Rfc < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Nmi < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Fanin < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Fanout < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Cohesion

Lcom < 2.2e-16 < 2.2e-16 < 2.2e-16 5.36e-10 n.s. 6.34e-15
Tcc < 2.2e-16 < 2.2e-16 1.11e-14 < 2.2e-16 8.87e-14 < 2.2e-16
Lcc < 2.2e-16 < 2.2e-16 8.09e-15 < 2.2e-16 5.68e-14 < 2.2e-16
Ich < 2.2e-16 < 2.2e-16 n.s. < 2.2e-16 5.60e-12 n.s.

Abstraction

Naci 6.30e-05 < 2.2e-16 n.s. n.s. 5.78e-09 n.s.
Mif n.s. < 2.2e-16 n.s. n.s. n.s. n.s.
Ifanin < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 4.75e-05 1.69e-04
Noc < 2.2e-16 < 2.2e-16 3.50e-08 8.20e-05 n.s. 1.95e-06
Dit < 2.2e-16 < 2.2e-16 < 2.2e-16 1.52e-14 n.s. < 2.2e-16

Encapsulation

Rpa < 2.2e-16 n.s. n.s. n.s. n.s. n.s.
Rpm < 2.2e-16 < 2.2e-16 < 2.2e-16 4.13e-06 < 2.2e-16 < 2.2e-16
Rsa 4.45e-16 3.26e-05 n.s. 3.38e-07 < 2.2e-16 4.85e-07
Rsm < 2.2e-16 1.83e-08 1.41e-05 < 2.2e-16 n.s. < 2.2e-16

Documentation

Clc < 2.2e-16 < 2.2e-16 < 2.2e-16 4.80e-15 1.51e-11 < 2.2e-16
Rccc < 2.2e-16 < 2.2e-16 < 2.2e-16 n.s. < 2.2e-16 < 2.2e-16
Clm < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Rccm < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

out of 39) are impacted by all six factors. On the other hand, programming language, ap-

plication domain, and lifespan are three most important factors since they impact over 80%

of metrics (i.e., 35, 34, and 33 out of 39, respectively). Moreover, the number of changes,
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age, and the number of downloads affect more than 70% of metrics (i.e., 31, 28 and 28 out

of 39, respectively). The effect that any of the six factors has on the distribution of metric

values can not be ignored.

Overall, we conclude that all six factors impact the distribution of the maintainability

metric values. The programming language is the most influential factor, since it affects 90%

of metrics (i.e., 35 out of 39). In the next research question, we examine types (of program-

ming language, application domain) and levels (of lifespan, the number of changes, age,

the number of downloads) in more detail to determine what factors should be considered

when benchmarking software maintainability.

The distribution of the values of software metrics does vary across projects with different
context factors. All six context factors impact the distribution of the values of 51% of metrics.

RQ2: What guidelines can we provide to benchmark software maintainability metrics?

Motivations. In RQ1, we found that each of the six factors impact the values of at least

70% of metrics. However, considering all six factors when benchmarking software main-

tainability can result in a number of small groups, and can increase the possibility of dupli-

cated benchmarks.

To effectively build benchmarks, we suggest to follow three steps: a) separate software

systems into distinct groups to ensure each group contains only systems that share a similar

context; b) apply existing approaches (e.g., [11, 56]) to build benchmarks of each group; c)

for a given software system, determine which groups it belongs to and apply correspond-

ing benchmarks to evaluate its maintainability. The results of several benchmarks can be

aggregated when evaluating the maintainability of software.
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In this research question, we aim to find the factors that impact the distribution of

the maintainability metric values. Such factors can affect the derivation of the thresh-

olds/ranges of the corresponding metrics. Moreover, we provide guidelines in splitting

software systems into distinct groups for building benchmarks to measure software main-

tainability.

Approach. To address this research question, we divide all software systems into non-

overlapping groups by each factor, respectively (as described in Section 3.3.3). If examin-

ing all possible interactions of all six context factors, the number of groups will be 6,075

(= 15× 5× 3× 3× 3× 3). However, the number of our subject systems is 320, then a large

number of groups might be empty. Therefore, interactions of all six context factors are not

investigated in this study.

To provide guidelines on how to group software systems for benchmarking maintain-

ability metrics, we break down our analysis method into the following three steps:

(S1) Pairwise comparison of the distribution of metric values. For each impacting

factor, we examine the impact in detail by comparing every pair of groups separated

by the factor. To investigate the effects of factor f on metric m, we test the following

null hypothesis for every pair of groups divided by factor f .

H02: there is no difference in the distributions of metric values between the two

groups of any pairs.

To examine the difference in the distribution of the metric m values between every

two groups, we apply Mann-Whitney U test [173] using the 95% confidence level

(i.e., p-value<0.05). The Mann-Whitney U test assesses whether two independent

distributions have equally large values. As a non-parametric statistical test, it does not
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assume a normal distribution. Because we conduct multiple tests, we apply Bonfer-

roni correction to adjust the threshold p-value based on the findings of RQ1. Table 3.5

presents the corrected threshold p-values. If the difference is statistically significant,

we reject the null hypothesis H02 and claim that factor f is important to metric m.

(S2) Quantifying the importance of the difference. For any comparison exhibiting a

statistically significant difference, we further compute the corresponding effect size

to quantify the importance of the difference. We apply Cliff’s δ as effect size [160]

to quantify the importance of the difference, since Cliff’s δ is reported [160] to be

more robust and reliable than Cohen’s d [38]. As Cliff’s δ estimates non-parametric

effect sizes, it makes no assumptions of a particular distribution. Cliff’s δ represents

the degree of overlap between two sample distributions [160]. It ranges from -1 (if

all selected values in the first group are larger than the second group) to +1 (if all

selected values in the first group are smaller than the second group). It is zero when

two sample distributions are identical [36].

(S3) Interpreting the effect sizes. Effect sizes are used to split software systems. Cliff’s δ

is mapped to Cohen’s standards via the percentage of non-overlap as shown in Ta-

ble 3.6 [160]. Cohen [39] states that a medium effect size represents a difference

likely to be visible to a careful observer, while a large effect is noticeably larger than

medium. In this study, we choose the large effect size as the threshold. If the ef-

fect size is large, we conclude that the corresponding factor f has a large impact on

the distribution of the corresponding metric m. As a result, we suggest that software

systems should be split into different groups based on factor f when benchmarking

metric m. Otherwise, all software systems can be put in the same group along with

factor f .
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Table 3.5: List of the threshold p-values after Bonferroni correction. The number of pair-
wise tests required for each context factor is determined by C(n,2), which de-
notes the number of 2-combinations from a given set S of n elements. The
number of groups by factors AD, PL, AG, LS, NC, and ND are: 15, 5, 3, 3, 3,
and 3, respectively. Hence, the number of pairwise tests are: C(15,2) = 105,
C(5,2) = 10, C(3,2) = 3, C(3,2) = 3, C(3,2) = 3, and C(3,2) = 3, respec-
tively.

Metric The number of pairwise tests by each factor The total number of The corrected threshold
AD PL AG LS NC ND pairwise tests p-value

Tloc 0 0 0 3 3 0 6 8.33e − 03
Tnf 0 10 0 3 3 0 16 3.13e − 03
Tnc 105 10 0 0 3 0 118 4.24e − 04
Tnm 105 10 0 0 3 0 118 4.24e − 04
Tns 0 0 0 3 3 0 6 8.33e − 03
Cloc 105 10 3 3 0 3 124 4.03e − 04
Nom 105 10 3 3 3 3 127 3.94e − 04
Nim 105 10 3 3 3 3 127 3.94e − 04
Niv 105 10 3 3 3 3 127 3.94e − 04
Wmc 105 10 3 3 3 3 127 3.94e − 04
Nmp 105 10 3 3 3 3 127 3.94e − 04
Cc 105 10 3 3 3 3 127 3.94e − 04
Npath 105 10 3 3 3 3 127 3.94e − 04
Mnl 105 10 3 3 3 3 127 3.94e − 04

Cf 0 0 0 3 3 0 6 8.33e − 03
Cbo 105 10 3 3 0 3 124 4.03e − 04
Icp 105 10 3 3 3 0 124 4.03e − 04
Mpc 105 10 3 3 3 3 127 3.94e − 04
Rfc 105 10 3 3 3 3 127 3.94e − 04
Nmi 105 10 3 3 3 3 127 3.94e − 04
Fanin 105 10 3 3 3 3 127 3.94e − 04
Fanout 105 10 3 3 3 3 127 3.94e − 04

Lcom 105 10 3 3 0 3 124 4.03e − 04
Tcc 105 10 3 3 3 3 127 3.94e − 04
Lcc 105 10 3 3 3 3 127 3.94e − 04
Ich 105 10 0 3 3 0 121 4.13e − 04

Naci 105 10 0 0 3 0 118 4.24e − 04
Mif 0 10 0 0 0 0 10 5.00e − 03
Ifanin 105 10 3 3 3 3 127 3.94e − 04
Noc 105 10 3 3 0 3 124 4.03e − 04
Dit 105 10 3 3 0 3 124 4.03e − 04

Rpa 105 0 0 0 0 0 105 4.76e − 04
Rpm 105 10 3 3 3 3 127 3.94e − 04
Rsa 105 10 0 3 3 3 124 4.03e − 04
Rsm 105 10 3 3 0 3 124 4.03e − 04

Clc 105 10 3 3 3 3 127 3.94e − 04
Rccc 105 10 3 0 3 3 124 4.03e − 04
Clm 105 10 3 3 3 3 127 3.94e − 04
Rccm 105 10 3 3 3 3 127 3.94e − 04
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Table 3.6: Mapping Cliff’s δ to Cohen’s standards.

Cliff’s δ % of Non-overlap Cohen’s d Cohen’s Standards

0.147 14.7% 0.20 small
0.330 33.0% 0.50 medium
0.474 47.4% 0.80 large

Table 3.7: Cliff’s δ and p-value of Mann-Whitney U test of every statistically significant
different pairs of groups divided by factors. (investigation of complexity met-
rics).

Metric Factor Group1 Group2 Cliff’s δ

Tloc NC GlowNC GhighNC 0.498

Tnf NC GlowNC
GmoderateNC 0.573
GhighNC 0.639

GmoderateNC GhighNC 0.513

Tnc

AD G f rame
Gnetwork −0.519
Gcomm;network −0.759

PL

Gc
Gc# 0.596
G java 0.667

Gpascal

Gcpp 0.560
Gc# 0.729
G java 0.885

NC GlowNC
GmoderateNC 0.476
GhighNC 0.552

Tnm

AD G f rame Gnetwork −0.599

PL

Gc
Gc# 0.614
G java 0.591

Gpascal

Gcpp 0.683
Gc# 0.758
G java 0.832

NC GlowNC GhighNC 0.560

Tns NC GlowNC GhighNC 0.541

Findings. To better understand the impact of context factors on different aspects of soft-

ware maintainability, we report our findings along each of the six categories of metrics

(i.e., complexity, coupling, cohesion, abstraction, encapsulation and documentation), re-

spectively.

1) Complexity. As shown in Table 3.7, the factor impacting Tloc, Tnf, and Tns is the

number of changes. The factors impacting Tnc and Tnm are application domain, program-

ming language, and the number of changes. Overall, the distributions of metric values in
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Table 3.8: Cliff’s δ and p-value of Mann-Whitney U test of every statistically significant
different pairs of groups divided by factors. (investigation of coupling metrics).

Metric Factor Group1 Group2 Cliff’s δ

Cbo
AD Gcomm;network Gbuild;codegen 0.482

PL Gpascal
Gc# 0.486
G java 0.550

Rfc AD
Gcomm;network

Gnetwork 0.524
Ginternet 0.578
Gsysadmin 0.492
Gcodegen 0.764
G f rame 0.620
Gbuild 0.703
Gswdev 0.847
Ggames;internet 0.643
Ginternet ;swdev 0.647
Gcomm;internet 0.642

Gbuild;codegen
Gcomm;network −0.923
Gswdev;sysadmin −0.531

PL Gc# G java 0.666

Cf NC GlowNC GhighNC −0.554

Nmi PL G java
Gc# −0.516
Gpascal −0.516

the complexity category are strongly impacted by three context factors: application domain,

programming language, and the number of changes.

2) Coupling. As shown in Table 3.8, the factors impacting Cbo and Rfc are application do-

main and programming language. The factor impacting Cf (respectively Nmi) is the number

of changes (respectively programming language). Overall, the distributions of metric val-

ues in the coupling category are strongly impacted by three context factors: application

domain, programming language, and the number of changes.

3) Cohesion. Overall, the distributions of metric values in the cohesion category are

strongly impacted by application domain only. In particular, we only observe large dif-

ference (i.e., Cliff’s δ = 0.552) in the distribution of Lcom between software systems of

groups Gnetwork and Gcomm;network .

4) Abstraction. As shown in Table 3.9, the factor impacting Naci and Mif is programming



3.4. CASE STUDY RESULTS 48

Table 3.9: Cliff’s δ and p-value of Mann-Whitney U test of every statistically significant
different pairs of groups divided by factors. (investigation of abstraction met-
rics).

Metric Factor Group1 Group2 Cliff’s δ

Naci PL G java Gpascal −0.773

Ifanin
AD Gcomm;network

Gnetwork 0.794
Ginternet 0.751
Gsysadmin 0.657
Gcomm 0.776
Gcodegen 0.780
G f rame 0.748
Gbuild 0.738
Gswdev 0.736
Ggames 0.598
Ggames;internet 0.620
Gswdev;sysadmin 0.828
Ginternet ;swdev 0.704
Gcomm;internet 0.745
Gbuild;codegen 0.824

Ggames Gswdev;sysadmin 0.486

PL G java
Gcpp −0.514
Gpascal −0.708

Dit AD

Gcomm;network

Gnetwork 0.820
Ginternet 0.861
Gsysadmin 0.772
Gcomm 0.907
Gcodegen 0.954
G f rame 0.899
Gbuild 0.870
Gswdev 0.962
Ggames 0.839
Ggames;internet 0.746
Gswdev;sysadmin 0.910
Ginternet ;swdev 0.915
Gcomm;internet 0.910

Gbuild;codegen

Gsysadmin −0.549
Gcomm;network −0.983
Ggames;internet −0.517

Mif PL
G java

Gcpp −0.777
Gc# −0.849
Gpascal −0.666

Gcpp Gc# 0.657

language. The factor impacting Dit is application domain. The factors impacting Ifanin are

application domain and programming language. Overall, the distributions of metric values

in the abstraction category are strongly impacted by application domain and programming

language.
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Table 3.10: Cliff’s δ and p-value of Mann-Whitney U test of every statistically significant
different pairs of groups divided by factors. (investigation of encapsulation
metrics).

Metric Factor Group1 Group2 Cliff’s δ

Rpa AD Gbuild

Ginternet 0.483
Gcodegen 0.558
G f rame 0.619
Gswdev 0.576
Ggames 0.682
Gswdev;sysadmin 0.543
Ginternet ;swdev 0.550
Gcomm;internet 0.505
Gbuild;codegen 0.527

Rsm AD Gcomm;network Gcomm;internet 0.710

Table 3.11: Cliff’s δ and p-value of Mann-Whitney U test of every statistically significant
different pairs of groups divided by factors. (investigation of documentation
metrics).

Metric Factor Group1 Group2 Cliff’s δ

Rccc AD Gbuild;codegen Gnetwork −0.513
PL G java Gpascal −0.611

5) Encapsulation. As shown in Table 3.10, the factor impacting Rpa and Rsm is applica-

tion domain. Overall, the distributions of metric values in the encapsulation category are

strongly impacted by application domain only.

6) Documentation. As shown in Table 3.11, the factors impacting Rccc are application

domain and programming language. Overall, the distributions of metric values in the doc-

umentation category are strongly impacted by application domain and programming lan-

guage.

In general, application domain, programming language, and the number of changes
strongly impact the distribution of maintainability metric values.
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Table 3.12: Guidelines to partition software systems for building metric based benchmarks.

Metric Category Factor Group

Complexity
AD G f rame and others
PL Gc , Gpascal and others
NC GlowNC , GmoderateNC , and GhighNC

Coupling
AD Gcomm;network , Gbuild;codegen , and others
PL Gpascal , G java , and others
NC GlowNC , GmoderateNC , and GhighNC

Cohesion AD Gcomm;network , and others

Abstraction AD Gcomm;network , Ggames , Gbuild;codegen , and others
PL G java , Gcpp , and others

Encapsulation AD Gbuild , Gcomm;network , and others

Documentation AD Gbuild;codegen , and others
PL G java , and others

3.4.1 Guidelines for Benchmarking Maintainability Metrics.

Based on our findings, we provide guidelines to create benchmarks of maintainability met-

rics as follows.

(G1) When benchmarking the 39 metrics, we suggest to partition software systems into

13 groups: 1) five groups along application domain (i.e., Gbuild , Ggames, G f rame,

Gbuild;codegen, and Gcomm;network); 2) five groups along programming language (i.e.,

Gc, Gcpp, Gc#, G java, and Gpascal); and 3) three groups along the number of changes

(i.e., GlowNC , GmoderateNC , and GhighNC).

(G2) When benchmarking metrics from a particular category, we provide detailed sugges-

tions in Table 3.12.

Furthermore, our approach can be applied to other software metrics and other software

systems for generating guidelines on building benchmarks of such software metrics.
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3.5 Threats to Validity

We now discuss the threats to validity of our study following common guidelines [199].

Threats to conclusion validity concern the relation between the treatment and the out-

come. Our conclusion validity threats are mainly due to sampling errors. Since stratified

sampling was performed only along application domain, sampled software systems may

not well represent along other five factors. Some differences along these factors, thus, may

not be detected, and the detected differences are likely to be only a subset of differences.

We plan to stratify along other factors.

Threats to internal validity concern our selection of subject systems and analysis meth-

ods. We randomly sample 320 software systems from SourceForge, some of the findings

might be specific to software systems hosted on SourceForge. Future studies should con-

sider using software systems from other hosts, and even commercial software systems.

Threats to external validity concern the possibility to generalize our results. Some of

the findings might not be directly applicable to different software systems. Yet our approach

can be applied to find guidelines for benchmarking maintainability of different open source

and commercial software systems.

Threats to reliability validity concern the possibility of replicating this study. We at-

tempt to provide all the necessary details to replicate our study. SourceForge is publicly

available to obtain the same data. We make our data and R script available12 as well.

3.6 Chapter Summary

In this work, we perform a large scale empirical study to investigate how the six context

factors affect the distribution of maintainability metric values. We apply statistical methods

12http://www.feng-zhang.com/replication/contextstudy
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(i.e., Kruskal-Wallis test, Mann-Whitney U test and Cliff’s δ effect size) to analyze 320

software systems, and provide empirical evidence of the impact of context factors on the

distribution of maintainability metric values.

Our results show that all six context factors impact the distribution of the values of 51%

of metrics. The most influential factors are application domain, programming language,

and the number of changes. Based on our findings, we further provide guidelines on how

to group software systems according the six context factors. We expect our findings to

help software benchmarking and other software engineering methods using the 39 software

maintainability metrics.
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Part III

Data Pre-Processing
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rics

Key Question

Does the transformation of software met-
rics impact the performance of defect pre-
diction models?
?

4.1 Introduction

Earlier studies (e.g., [41, 116, 205]) report that software metrics rarely follow a normal

distribution, but a power-law distribution, which threatens the fitness of prediction models

to provide an accurate prediction [37]. In the literature of defect prediction, researchers

widely apply log and rank transformations to improve the normality of software metrics

(e.g., [43, 93, 123, 180, 202]). Log transformation is basically a mathematical operation

that replaces the original metric values by their logarithm, thus suits log-normal data (i.e.,

normally distributed data after log transformation). Rank transformation substitutes the

original metric values with their ranks.
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Despite the success in improving the normality of software metrics, the aforementioned

transformations fail to consistently improve the performance of defect prediction models

in a within-project setting [93]. However, to the best of our knowledge, the impact that

such transformations have on the performance of defect prediction models has not been

thoroughly investigated in a cross-project setting.

Transformations, if obtained from both the training and target projects, have the po-

tential to mitigate the heterogeneity between the training and target projects. For instance,

our previous work [202] successfully implements the context-aware rank transformation

towards generalizing defect prediction models. In addition, Ma et al. [118] propose to

transform the training project based on the statistical characteristics learnt from the target

project. Nam et al. [135] apply a transfer component analysis (TCA) approach to transform

both the training and target projects. Although both approaches on average significantly

improve the performance of cross-project predictions, it is unclear how to choose an ap-

propriate transformation for a particular pair of training and target projects. Jiang et al.

[93] show that the benefit of transformations varies with modelling techniques on the same

dataset.

Nonetheless, different transformations retain the information of the original data from

various perspectives, especially in the cross-project setting. Therefore, in this study, we in-

vestigate if different transformations indeed retain distinct characteristics of software met-

rics that is beneficial to cross-project defect prediction.

We perform experiments using three publicly available data sets, i.e., AEEEM [44],

ReLink [196], and PROMISE [96]. First, we examine if transformations have the same

ability to improve the normality of software metrics. Besides log and rank transformations,
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we study the Box-Cox transformation [22] that represents a family of power transforma-

tions (e.g., log transformation) but has not been investigated in studies on defect prediction.

Second, we study if different transformations cause distinct predictions on the same file in

the cross-project setting.

Furthermore, we propose an approach to integrate predictions by multiple models, with

each model built using a single transformation. In particular, the weight of each model

is determined by its accuracy in predicting defective instances. Finally, we investigate

if applying multiple transformations can improve the performance of cross-project defect

prediction models. We study the following four research questions:

(RQ1) Are log, Box-Cox, and rank transformations equally effective in increasing the nor-

mality of software metrics?

It is not a surprise that all three transformations have similar ability to improve the

normality of software metrics. The transformed metrics approximately follow a

normal distribution.

(RQ2) Do different transformations result in distinct predictions in cross-project defect

prediction models?

In general, there is no difference in the performance (i.e., precision, recall, false

positive rate, balance, F-measure and AUC values) among the three prediction

models built with each of the three transformations. However, the results of Mc-

Nemar’s test indicate that the three prediction models judge differently about the

defect-proneness of each file. In other words, a defective file can be captured by

some models, and overlooked by other models.
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(RQ3) Can our approach improve the performance of cross-project defect prediction mod-

els?

Our approach integrates the judgement received from the three independent predic-

tion models that are built from each transformation, in order to make a final decision

on the defect-proneness of a file. The results show that our approach can provide

statistically significantly better performance. For instance, the average F-measures

for AEEEM, ReLink, and PROMISE datasets are increased by 49%, 47%, and

22%, respectively. The average AUC values are improved by 2.9%, 5.8%, and

3.7%, respectively.

(RQ4) Does our approach work well for other classifiers?

We examine the generalizability of our approach using six other classifiers (e.g.,

Naive Bayes, decision tree, and random forest), since different classifiers are re-

ported to prefer different transformations [93]. We find that our approach can

achieve statistically significant improvement in general.

As a summary, varied transformations retain distinct characteristics of metrics. By

utilizing the three transformation methods, our approach successfully improves the perfor-

mance of cross-project defect prediction models with little overhead that is introduced by

adding merely mathematical operations.

Chapter organization. Section 4.2 presents background on the three studied transforma-

tion methods. The experimental setup is presented in Section 4.3. Our motivation study

is described in Section 4.4. Our approach and evaluation are presented in Section 4.5 and

Section 4.6, respectively. The threats to validity of our work are discussed in Section 4.7.

We summarize the chapter in Section 4.8.
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Figure 4.1: The illustration of skewness and kurtosis in a distribution.

4.2 Background on Transformation Methods

In this section, we describe two common measurements of data normality, and present the

details of the three studied transformation methods.

4.2.1 Normality Measurements

Skewness and kurtosis are two widely applied measurements of data normality. We com-

pute these two measurements to measure the normality of software metrics, using the R

functions skewness and kurtosis in the R1 package e10712. Skewness and kurtosis are de-

scribed as follows.

a) Skewness measures the degree of symmetry in the probability distribution of the values

of a software metric. The value of skewness can be positive that indicates a long tail

to the right, or negative that indicates a long tail to the left. Positively and negatively

skewed distributions are illustrated in Figure 4.1 (a). The ideal value of skewness

ranges from -0.80 to 0.80 [141].

1https://www.r-project.org
2https://cran.r-project.org/web/packages/e1071
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b) Kurtosis measures the “peakness” (e.g., the width of the peak) in the probability dis-

tribution of the values of a software metric. The value of kurtosis can be positive

that indicates a more acute peak, or negative that indicates a lower and wider peak.

Positive and negative kurtosis are illustrated in Figure 4.1 (b). The ideal value of

kurtosis is zero.

4.2.2 Log Transformation

Log transformation is a mathematical operation that computes the logarithm (mostly the

natural logarithm) of software metrics to replace the original values. Log transformation is

widely used in building software defect prediction models (e.g., [123, 180]).

Log transformation can only transform numerical values that are greater than zero,

due to the definition of the function “ln(x)". To deal with zero values, a constant is often

added, such as “ln(x + 1)”. An alternative solution is to replace all values under 0.000001

by 0.000001. In this study, we apply the following commonly used equation: Log(x) =

ln(x + 1), where x is the value of a software metric.

4.2.3 Rank Transformation

Rank transformation replaces the original values by their ranks. Rank transformation is

recommended to deal with heavy-tailed distributions (i.e., have high kurtosis) [17, 100].

In the literature of defect prediction, Jiang et al. [93] observe that rank transformation can

improve the performance of some classifiers (e.g., Naive Bayes). Moreover, rank trans-

formation has been successfully applied to mitigate the heterogeneity of software metrics

across projects in the cross-project setting [202].

In this study, we convert the original values of each metric into ten ranks, using every

10th quantile of the corresponding metric, as defined in Equation (4.1).
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Rank (x) =




1 if x ∈ [0,Q1]

k if x ∈ (Qk−1,Qk], k ∈ {2, . . . ,9}

10 if x ∈ (Q9,+∞)

(4.1)

where Qk is the k*10% quantile of the corresponding metric in the union of the training

and target projects.

4.2.4 Box-Cox Transformation

The Box-Cox transformation represents a family of power transformations, as defined in

Equation (4.2). To the best of our knowledge, the Box-Cox transformation has not been

explored in the defect prediction literature.

BoxCox(x, λ) =




xλ−1
λ if λ , 0

ln(x) if λ = 0
(4.2)

where x is the value of a metric, and λ is the configuration parameter of the Box-Cox

transformation.

The parameter λ determines the concrete format of the Box-Cox transformation. For

example, “λ = 1.0” means no transformation, “λ = 0.5” equals to the square root transfor-

mation, “λ = 0.0” represents the log transformation, and “λ = −1.0” indicates the inverse

transformation. As such, the Box-Cox transformation is often used to transform variables

that follow a power law distribution. The Box-Cox transformation is suggested to improve

the variance homogeneity, increase the precision of estimation, and simplify models [168].

The parameter λ can be estimated from a sample of data points. In the context of cross-

project prediction, λ is estimated from both the training and target projects. The details

to apply the Box-Cox transformation in our study are presented as follows.
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1) Anchoring metric values to 1.0. As suggested by Guo [69], we anchor the minimum

value of a metric in a distribution at exactly 1.0 before applying the Box-Cox transfor-

mation. This treatment can increase the accuracy of the Box-Cox transformation [69].

We use the equation x̃ = x − min(x) + 1, where x is the value of a software metric.

2) Estimating the parameter λ. The parameter λ is estimated for each metric indepen-

dently, since different metrics rarely follow the same distribution. To ensure the same

transformation is applied on both the training and target projects, as aforementioned, we

estimate the parameter λ using the values of the corresponding metric from both sets.

We estimate the parameter λ in an iterative process. First, we select a set of candidate λ

values that range from -1.0 to 1.0. Second, we iterate the λ values from -1.0 towards 1.0

with a step of 0.1. At each iteration, we compute the skewness of transformed values.

We select the λ value that leads to the minimum skewness of transformed values. The

iterative process can be described using the following equation:

λ̂ = arg min
λ∈L
|skewness(BoxCox( x̃, λ)

x̃∈X
) | (4.3)

where L is a set of candidate λ values from -1.0 to 1.0 with a step by 0.1, and X is a

vector of anchored metric values.

3) Normalizing transformed values. Normalization creates equal scales of software met-

rics, and is useful for classification algorithms [73, 135]. In this study, we choose the

min-max method [73], since it can normalize values exactly into the range of [0,1].

Based on the benefit of anchoring the minimum value to 1.0 [69], we slightly modify

this method using the following Equation (4.4).
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Table 4.1: List of selected projects in each dataset.

Data set Projects # of files # of LOC # of buggy files (%)

AEEEM

(A1) Eclipse JDT Core 997 224K 206 (21%)
(A2) Equinox 324 40K 129 (40%)
(A3) Apache Lucene 691 73K 64 (9.3%)
(A4) Mylyn 1862 156K 245 (13%)
(A5) Eclipse PDE UI 1497 147K 209 (14%)

ReLink
(R1) Apache HTTP Server 194 89K 98 (51%)
(R2) OpenIntents Safe 56 8K 22 (39%)
(R3) Zxing 399 27K 118 (30%)

PROMISE

(P1) Camel v1.6 965 113K 188 (19%)
(P2) POI v3 442 129K 281 (64%)
(P3) Velocity v1.6 229 57K 78 (34%)
(P4) Xalan v2.7 909 429K 898 (99%)
(P5) Xerces v1.4 588 141K 437 (74%)

Normalize( x̂) =
x̂ −minx̂∈U ( x̂)

maxx̂∈U ( x̂) −minx̂∈U ( x̂)
+ 1 (4.4)

where x̂ is the transformed value by Equation (4.2) using x̃ and λ̂, and U is a set of x̂

from the union of the training and target projects.

4.3 Experimental Setup

In this section, we first describe our corpus. Then, we present classifiers to build cross-

project defect prediction models, and performance measures used in this study.

4.3.1 Corpus

In this study, we choose three publicly available data sets: AEEEM [44], ReLink [196],

and PROMISE [96]. These three data sets have been widely used for cross-project defect

prediction. Table 4.1 presents the summary of the three data sets, and Table 4.2 shows the

metrics used in our study for each data set. The diversity of the three data sets can help

verify the generalizability of our approach.
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Table 4.2: List of metrics used in this study for each data set. (NOTE: The name of each
metric is presented as it is in each data set.)

Dataset Metrics

AEEEM cbo, fanOut, numberOfAttributes, numberOfLinesOfCode, numberOfAttributesInherited, numberOfPrivateAttributes
numberOfPrivateMethods, rfc, wmc, linesAddedUntil, avgLinesAddedUntil, numberOfBugsFoundUntil

ReLink AvgCyclomatic, AvgLineBlank, CountLineBlank, CountLineCode, CountLineCodeDecl, CountLineComment
CountStmtDecl, MaxCyclomatic, MaxCyclomaticModified, SumCyclomatic, SumCyclomaticStrict, SumEssential

PROMISE wmc, dit, cbo, rfc, lcom, ce, lcom3, loc, moa, mfa, amc, max_cc

The AEEEM data set was made by D’Ambros et al. [44], and has been used in earlier

studies on cross-project defect prediction (e.g., [135]). In the AEEEM data set, there are

two large projects (i.e., Mylyn and PDE) that contain the most number of files among the

three data sets. As shown in Table 4.1, the ratio of defective files in AEEEM data set is

relatively lower than the other two data sets. In particular, three projects (i.e., Lucene,

Mylyn, and PDE) have the lowest ratio of defective files.

The ReLink data set was collected by Wu et al. [196], and the defect information in

this data set was manually verified by Wu et al. [196]. Projects in the ReLink data set are

relatively small. For instance, two projects (i.e., Apache HTTP Server and OpenIntents

Safe) have the least number of files. As presented in Table 4.1, the ReLink data set has

moderate ratio of defective files (i.e., 30% to 51%).

PROMISE data set is another widely used data set. The five selected projects from

PROMISE data set were prepared by Jureczko and Madeyski [96]. Table 4.1 shows that

projects in the PROMISE data set have moderate number of files (i.e., from 229 to 965),

but have the most diverse ratio of defective files (i.e., 19% to 99%).

4.3.2 Classifiers for Defect Prediction

To build defect prediction models, there exist many classifiers. Different classifiers have

their own advantages. For instance, logistic regression is easy to interpret and is widely
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used [135]. Naive Bayes is robust for defect prediction using data with observable noise

[102]. In this study, we choose to apply logistic regression to build cross-project defect

prediction models.

Different transformations have varied impacts on the performance of different classi-

fiers [93, 123, 180]. To examine the generalizability of our approach, we further perform

sensitive analysis using six other classifiers, i.e., Naive Bayes, Bayes Net, IBk, J48, random

forest, and random tree.

4.3.3 Performance Measures

In this study, we compute six commonly used measures (i.e., precision, recall, false positive

rate, balance, F-measure, and AUC value) to evaluate the performance of cross-project

prediction models. The first five measures can be calculated from the confusion matrix

(see Table 4.3) that consists of the following four numbers:

1) True positive (TP) that counts the number of defective instances successfully predicted

as defective instances;

2) True negative (TN) that calculates the number of non-defective instances correctly pre-

dicted as non-defective instances;

3) False positive (FP) that is the number of non-defective instances incorrectly predicted

as defective instances;

4) False negative (FN) that measures the number of defective instances wrongly predicted

as non-defective instances.

The details to compute these measures are described as follows:
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Table 4.3: Confusion matrix in defect prediction studies.

aaaaaaa
Actual

Predicted defective non-defective

defective true positive (TP) false negative (FN)
non-defective false positive (FP) true negative (TN)

Precision (prec) measures the ratio of correctly predicted defective instances. It is defined

as: prec = T P
T P+FP .

Recall (pd) evaluates the proportion of defective instances that are predicted as defective

instances. It is defined as: pd = T P
T P+FN .

False Positive Rate (fpr) captures the proportion of non-defective instances that are pre-

dicted as defective instances. It is defined as: f pr = FP
FP+T N .

Balance is proposed by Menzies et al. [123] to balance recall and false positive rate. It is

defined as: balance = 1 −
√

(0− f pr)2+(1−pd)2
√

2
.

F-measure is the harmonic mean of precision and recall. It is defined as: F-measure =

2×pd×prec
pd+prec .

The five aforementioned measures depend on the cut-off value, which is used to com-

pute the four numbers TP, TN, FP, and FN. On the other hand, Area Under Curve (AUC) is

the area under the receiver operating characteristics (ROC) curve. The ROC curve is cre-

ated as a plot of the true positive rate over the false positive rate by varying the cut-off value,

thus the AUC value is independent of the cut-off value. Rahman et al. [157] recommend to

use AUC value to evaluate cross-project defect prediction models.
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4.4 Motivation Study

In this section, we aim to find if the three transformation methods have different perfor-

mances in the context of defect prediction. The investigation is performed from two per-

spectives:

1) if they can equally improve the normality of software metrics.

2) if cross-project defect prediction models built using each of the transformation methods

have similar performance.

We formulate two research questions based on each perspective, respectively. We now

present the findings of our research questions, along with our motivation and approach.

RQ1. Are log, Box-Cox, and rank transformations equally effective in increasing the

normality of software metrics?

Motivation. Data normality impacts the performance of a prediction model [108]. In

earlier studies, log and rank transformations have been applied in defect prediction [e.g. 93,

123, 202]. However, their capability in improving the normality of software metric values

has not been explicitly explored. In addition, the Box-Cox transformation introduced in

Section 4.2.4 has not been used in the defect prediction studies.

To thoroughly examine the impact that transformations have on defect prediction mod-

els, we are interested to examine if the three transformation methods indeed have different

performance in improving the normality of software metric values.

Approach. To address this question, software metrics need to be transformed using each

of the three transformation methods. As different software metrics exhibit various distribu-

tions, we transform the values of each metric independently.
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In each project, we apply log transformation on software metric values to get log trans-

formed values. When applying the Box-Cox transformation, we first apply the steps de-

scribed in Section 4.2.4 to estimate the parameter λ using values of a single metric from the

same project, and then apply the Box-Cox transformation. To apply rank transformation,

we compute every 10th quantile of the distribution of values of a single metric from the

same project, and obtain rank transformed values using Equation (4.1). On the transformed

metric values, the skewness and kurtosis are computed to evaluate the normality.

To investigate if transformation improves the normality of software metric values, we

test the following null hypothesis for each transformation methods:

H011: there is no difference in the normality of the transformed metric values and the

original metric values.

We conduct paired Wilcoxon rank sum test [173], with the 95% confidence level (i.e.,

p-value<0.05). The Wilcoxon rank sum test is a non-parametric statistical test to assess

whether two independent distributions are equal. Non-parametric statistical methods make

no assumptions about the distribution of assessed variables. If there is a statistical signifi-

cance, we reject the hypothesis and conclude that the examined transformation significantly

changes the normality of software metric values.

Furthermore, we compare the capability of the three transformations in improving the

normality of software metric values. We apply paired Wilcoxon rank sum test to evaluate

the following null hypothesis, with the 95% confidence level (i.e., p-value<0.05).

H012: there is no difference in the normality of metric values that are processed by

transformations A and B.

If there is a statistical significance, we reject the hypothesis and conclude that the cor-

responding two transformations have different capability in improving data normality.



4.4. MOTIVATION STUDY 68

Raw Log BC Rank

0
2

4
6

8
10

12

S
ke

w
ne

ss

Raw Log BC Rank

0
20

40
60

80
10

0
12

0

K
ur

to
si

s

Figure 4.2: Skewness of metric values using different transformations on each subject
project.

Findings. The three transformations have similar power to improve the normality of

software metrics. Figure 4.2 presents the skewness and kurtosis values of the transformed

metric values from all projects. The ideal skewness value is between -0.80 and 0.80, and

the perfect kurtosis value is zero (see Section 4.2.1). However, the median skewness and

kurtosis of the original metric values are 4 and 20, respectively. It indicates that the original

metric values are highly skewed. Using any of the three transformations can make the

skewness and kurtosis values become closer to zero (i.e., nearly normally distributed).

The results of Wilcoxon rank sum tests in the skewness and kurtosis between the trans-

formed values and the original values show statistically significant difference, respectively.

Hence, we reject hypothesis H011 for all three transformations. When comparing the skew-

ness and kurtosis of the transformed values between any two transformations, we do not

find significant difference (i.e., p-values are always greater than 0.05). Therefore, we can-

not reject hypothesis H012, and conclude that the three transformations have no significant

difference in terms of improving the normality of software metric values.

Regarding the Box-Cox transformation, the estimated parameter λ varies across

projects. We present the boxplot of the estimated λ values for each project in Figure 4.3.
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Figure 4.3: Boxplot of estimated λ values for metrics in each project. (The full name of
projects are presented in Table 4.1.)

Different projects have various λ values. Therefore, estimating λ values from both the

training and target projects can maximize the normality of metrics values in both projects.

We observe that few of the estimated λ values are zero (λ=0 indicates a log transformation).

This observation suggests that the Box-Cox transformation is not close to log transforma-

tion when dealing with software metrics. In addition, the median value of the estimated λ

shows that most of the estimated λ values are negative.

Log, Box-Cox, and rank transformations have a similar capability to significantly improve
the normality of software metrics values.

RQ2. Do different transformations result in distinct predictions in cross-project defect

prediction models?

Motivation. In RQ1, we find that the three transformations are equally effective in improv-

ing the normality of software metric values. However, it is unclear if cross-project defect

prediction models are impacted by applying different transformations.



4.4. MOTIVATION STUDY 70

We are interested to find if the same performance of cross-project predictions could be

achieved, when applying each transformation method. In particular, we want to compare

the overall performance (e.g., F-measure and AUC value) of cross-project defect prediction

models built using the three transformations. Moreover, we want to examine if the three

transformations result in distinct predictions in the cross-project setting.

Approach. To address this question, we build cross-project prediction models using all

possible pairs of the training and target projects in each dataset. In AEEEM, ReLink, and

PROMISE datasets, the total number of possible pairs are 20, 6, and 20, respectively.

We built cross-project defect prediction models using metric values transformed by

each of the three methods. To apply the same Box-Cox transformation on the training and

target projects, we estimate λ values for each metric using both projects (see Section 4.2.4).

Similarly, for rank transformation, we calculate every 10th quantiles of the values of each

metric using both projects.

We apply logistic regression to build cross-project prediction models using transformed

values of the training project, and apply the models on the target project. We compute

precision, recall, false positive rate, balance, F-measure, and AUC value to measure the

overall performance of these models.

To compare the overall performance of the models built using the three transformations,

we test the following null hypothesis. We apply paired Wilcoxon rank sum test with the

95% confidence level (i.e., p-value<0.05).

H021: there is no difference between the performance of models built with transforma-

tions A and B.

To evaluate if different transformations result in distinct predictions, we compare the

prediction errors among models built using the three transformations. To this end, we test
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Table 4.4: Contingency matrix to perform McNemar’s test.

aaaaaaa
M1

M2 Correct prediction Wrong prediction

Correct prediction Ncc Ncw

Wrong prediction Nwc Nww

the following null hypothesis using McNemar’s test with the 95% confidence level (i.e.,

p-value<0.05).

H022: there is no difference between the error rate of models built with transformations

A and B.

McNemar’s test is commonly used to compare prediction errors of two prediction mod-

els [90]. As a nonparametric test, and it makes no assumptions on the distribution of a

subject variable. McNemar’s test is applicable only if two models are applied on the same

dataset with separated training and target sets. In this study, our models are built on the

same training project, and applied on the same target project that is different from the train-

ing project. Therefore, McNemar’s test is applicable to our study.

To perform McNemar’s test, we need to compute a contingency matrix (see Table 4.4)

based on the predictions produced by two models (i.e., M1 and M2). In the contingency

matrix, Ncc is the number of instances that both models achieve correct predictions; Ncw

is the number of instances that model M1 makes a correct prediction, but model M2 has a

wrong prediction; Nwc is the number of instances that model M1 makes a wrong prediction,

but model M2 produces a correct prediction; and Nww is the number of instances that both

models result in wrong predictions.

The null hypothesis of McNemar’s test is that both models M1 and M2 have the same

error rates. We apply the R function mcnemar.test from the R package stats to perform

McNemar’s test.
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Table 4.5: Average performance measures of cross-project defect prediction models built
using the three transformations (* denotes statistical significance).

Measures AEEEM ReLink PROMISE
Log BC Rank Log BC Rank Log BC Rank

prec 0.561 0.534 0.410* 0.573 0.550 0.596 0.647 0.653 0.635
pd 0.251 0.243 0.246 0.344 0.386 0.362 0.598 0.614 0.577*
fpr 0.104 0.082 0.111 0.161 0.182 0.173 0.475 0.423 0.462

balance 0.432 0.447 0.433 0.516 0.530 0.507 0.424 0.507* 0.418
F-measure 0.227 0.256 0.209 0.405 0.406 0.406 0.484 0.544 0.461

AUC 0.699 0.720 0.714 0.639 0.640 0.691* 0.671 0.686 0.659

Findings. Applying the three transformation methods yields similar performances of

cross-project prediction models. Table 4.5 presents the average performance measures of

models built using the three transformations for each data set. The results of Wilcoxon rank

sum test show that overall there is no difference among the three transformation methods

(except four cases, as shown in Table 4.5). Hence, we can not reject the null hypothesis

H021 for most cases. We conclude that the performance of cross-project prediction models

built using the three transformations are similar. This finding is consistent to our previous

work [202] that rank and log transformations have similar power for cross-project predic-

tions, as well as the work of Jiang et al. [93].

The predicted defective files are not consistent among the results of multiple de-

fect prediction models built using different transformation methods. Although having

similar overall performances (e.g., F-measure and AUC value), the three models do not nec-

essarily have similar prediction errors. More specifically, some models may make wrong

predictions for a file, but other models make correct predictions on the same file. To the

best of our knowledge, this phenomenon is overlooked in existing studies. Therefore, it

is necessary to apply multiple transformation methods in cross-project defect prediction

models, in order to improve the predictive power.

The detailed results of McNemar’s tests are presented in Table 4.6. We observe that in
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Table 4.6: The p-values of McNemar’s test.

Dataset Tbe training project to the target project Log v.s. BC Log v.s. Rank BC v.s. Rank

AEEEM

Eclipse to Equinox 0.03* 1.00 0.04*
Eclipse to Lucene 1.00 0.29 0.50
Eclipse to Mylyn 0.18 0.54 1.00
Eclipse to PDE 5.96e-03* 7.29e-03* 0.31
Equinox to Eclipse 4.39e-35* 2.06e-11* 1.37e-22*
Equinox to Lucene 4.79e-05* 0.07 2.46e-07*
Equinox to Mylyn 5.42e-17* 1.97e-10* 0.62
Equinox to PDE 2.41e-15* 3.58e-06* 0.03*
Lucene to Eclipse 1.02e-06* 2.81e-03* 6.98e-11*
Lucene to Equinox 0.22 0.45 0.08
Lucene to Mylyn 3.40e-07* 0.13 9.42e-04*
Lucene to PDE 1.00 0.78 0.89
Mylyn to Eclipse 0.42 8.83e-03* 0.02*
Mylyn to Equinox 0.01* 0.10 2.04e-04*
Mylyn to Lucene 1.23e-03* 0.02* 0.16
Mylyn to PDE 0.02* 9.19e-09* 2.64e-05*
PDE to Eclipse 4.55e-02* 2.17e-04* 0.07
PDE to Equinox 0.68 0.02* 0.03*
PDE to Lucene 1.00 0.37 0.62
PDE to Mylyn 0.28 0.82 0.18

# of significance (%) 12 (60%) 10 (50%) 10 (50%)

ReLink

Apache to Safe 0.38 0.18 0.02*
Apache to Zxing 0.19 0.46 0.05
Safe to Apache 0.77 0.18 0.23
Safe to Zxing 0.48 0.09 0.25
Zxing to Apache 0.69 0.01* 8.42e-03*
Zxing to Safe 0.33 0.45 0.14

# of significance (%) 0 (0%) 1 (17%) 2 (33%)

PROMISE

Camel to POI 1.09e-09* 0.24 3.19e-10*
Camel to Velocity 0.71 0.02* 0.56
Camel to Xalan 9.53e-21* 1.94e-14* 0.03*
Camel to Xerces 2.62e-40* 0.11 7.83e-38*
POI to Camel 2.36e-14* 5.81e-04* 2.74e-07*
POI to Velocity 0.23 0.65 0.06
POI to Xalan 8.64e-51* 6.80e-06* 8.52e-61*
POI to PDE 6.22e-11* 0.03* 7.49e-14*
Velocity to Camel 1.02e-16* 0.60 4.05e-14*
Velocity to POI 9.01e-04* 1.00 2.12e-03*
Velocity to Xalan 2.52e-72* 0.17 3.11e-77*
Velocity to Xerces 1.12e-10* 0.08 7.30e-08*
Xalan to Camel 1.19e-06* 0.13 1.81e-08*
Xalan to POI 1.00 1.00 1.00
Xalan to Velocity 1.46e-05* 1.00 1.46e-05*
Xalan to Xerces 1.15e-24* 0.68 4.01e-25*
Xerces to Camel 0.10 0.18 0.77
Xerces to POI 2.57e-03* 0.42 4.55e-02*
Xerces to Velocity 0.48 1.00 0.62
Xerces to Xalan 1.26e-04* 1.77e-07* 0.03*

# of significance (%) 15 (75%) 6 (30%) 15 (75%)
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the AEEEM data set, the prediction error of using log transformation is significantly dif-

ferent from using the Box-Cox and rank transformations in 60% and 50% of cross-project

predictions, respectively. The prediction errors of using the Box-Cox and rank transforma-

tions are significantly different in 50% of cross-project predictions. Similar findings are

observed in PROMISE data set. The exception is the ReLink data set. We conjecture that

the non-significance may be caused by too few data points.

In summary, we can reject the null hypothesis H022. We conclude that the prediction

errors of the models built using the three transformations are statistically significantly dif-

ferent. The three models built using each of the three transformation methods do not con-

sistently make wrong predictions on the same file. Therefore, each transformation method

captures different aspects of the metric values.

Cross-project prediction models built using the three transformations have similar overall
performance, but their prediction errors are statistically significantly different. The defect
prediction models built using each of the three transformation methods do not consistently
make wrong predictions on the same file.

4.5 Our Approach

Transformations may alter the nature of software metrics. Applying various transforma-

tions on software metrics captures different perspectives of software metrics. In this sec-

tion, we describe our approach to integrate a set of predictions made by models built with

multiple transformations. For a pair of training and target projects, we build multiple de-

fect prediction models. Each model is built using one of the three transformation methods.

Figure 4.4 illustrates the overview of our approach. The details are described as follows.
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Figure 4.4: Overview of our approach to integrate models built upon differently trans-
formed data.

Let M={M1, . . . ,Mn} represents a set of prediction models built using n transforma-

tions. A file f in a target project is represented as X , a vector of all software met-

rics. We use PB,i (X ) to denote the predicted probability of defect proneness on file f

by model Mi, and PC,i (X ) to denote the predicted probability of file f as a clean file. Thus,

PB,i (X )+PC,i (X ) = 1. We consider a file is defective, if PB,i (X ) is greater than 0.5 [210].

We use PB (X ) to denote the final probability of defect proneness on file f using all n

models. We determine PB (X ) in the following two ways: 1) weighting the probability

PB,i (X ) produced by models that consider file f as defective; or 2) weighting the proba-

bility PC,i (X ) produced by all models, if no model considers file f as defective. PB (X ) is

defined in Equation (4.5).

PB (X ) =




min(1,
∑

Mi ∈M
wi×si (X )×PB, i (X )

NB (X ) ) if NB (X ) > 0

max(0,1 −
∑

Mi ∈M
wi×PC, i (X )

n ) otherwise

(4.5)

where wi is the weight assigned to model Mi; si (X ) is the selector for model Mi that

determines whether the probability predicted by model Mi is used to compute the final
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probability of defect proneness or not; and NB (X ) is the number of selected models to

normalize the summed probability of defect proneness. The min and max limit PB (X ) in

the range [0,1].

A weight is assigned to each model, since the accuracy (i.e., the proportion of correct

predictions) of different models varies. We consider that models with higher accuracy

should be encouraged, and models with lower accuracy should be penalized. Hence, we

use the accuracy ai of a model to obtain the weight wi for each model Mi. We set wi = 0,

if ai = 0. For a model with non-zero accuracy (i.e., ai > 0), we define its weight wi as

wi =
ai

minAcc , where minAcc is the minimum non-zero accuracy among n models.

A selector si (X ) for each model Mi is defined to capture every possible defective file.

We consider that a file is defective, if it is predicted as defective by one or more mod-

els. As such, the selector si (X ) is defined in Equation (4.6). For each file, as shown in

Equation (4.5), the predicted probability of model Mi is used only if the file is predicted as

defective by model Mi (i.e., PB,i (X ) > 0.5).

si (X ) =




1 if PB,i (X ) > 0.5

0 otherwise
(4.6)

The number of selected models NB (X ) for file f is defined in Equation (4.7). As

applied in Equation (4.5), NB (X ) is used to normalize the predicted probability of a file

that is predicted as defective by at least one model.

NB (X ) =

n∑
i=1

si (X ) (4.7)
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4.6 Evaluation of Our Approach

In this section, we evaluate the effectiveness of using our approach in cross-project predic-

tion.

RQ3. Can our approach improve the performance of cross-project defect prediction

models?

Motivation. When building defect prediction models, usually only one transformation

method is applied. The findings of RQ2 suggest that cross-project defect prediction models

built using the three transformation methods can make different predictions on the same file.

To improve the predictive power of cross-project defect prediction models, we propose an

approach to integrate multiple transformations (see Section 4.5). In this question, we aim

to investigate if our approach can achieve better performance of cross-project predictions,

comparing to models built using only one transformation method.

Approach. As aforementioned, log transformation is the most widely used transformation

in the literature of defect prediction. Hence, we take models built using log transformation

as our baseline models.

Similar to RQ2, we build cross-project defect prediction models using all possible pairs

of the training and target projects in each dataset. We perform the three transformations on

each training project, and build three logistic regression models, respectively. We apply the

three models on the target project to obtain predictions on each file of the target project.

Therefore, we use our approach to integrate the predictions of the three models.

To evaluate the performance of these models, we calculate precision, recall, false posi-

tive rate, balance, F-measure, and AUC value. To investigate if our approach can improve

the performance of cross-project prediction, we test the following null hypothesis:



4.6. EVALUATION OF OUR APPROACH 78

Table 4.7: Average performance measures of cross-project defect prediction models ob-
tained using log transformation and our approach (* denotes statistical signifi-
cance; bold font is used if the corresponding model is better)

Measures AEEEM dataset ReLink dataset PROMISE dataset
Log Ours Log Ours Log Ours

prec 0.561* 0.444 0.573 0.551 0.647 0.641
pd 0.251 0.384* 0.344 0.657* 0.598 0.727*
fpr 0.104* 0.159 0.161* 0.350 0.475* 0.554

balance 0.432 0.516* 0.516 0.645* 0.424 0.478
F-measure 0.227 0.339* 0.405 0.597* 0.484 0.592*

AUC 0.699 0.719* 0.639 0.676* 0.671 0.696*

H031: there is no difference between the performance of models built with log transfor-

mation (baseline) and our approach.

We apply paired Wilcoxon rank sum test with the 95% confidence level (i.e., p-value<0.05).

If there is a statistical significance, we reject the hypothesis and conclude that our approach

has statistically significant improvement in the performance of cross-project predictions.

Findings. Our approach statistically significantly improves the performance of cross-

project defect prediction, in terms of recall, balance, F-measure, and AUC value. Ta-

ble 4.7 presents the average value of the six measures for all possible cross-project pre-

dictions. In particular, the average F-measure of the baseline models (i.e., models built

using log transformation) in AEEEM dataset is 0.227. Our approach achieves the average

F-measure as 0.339 (i.e., 49% improvement). In ReLink and PROMISE datasets, we have

similar observations that the average F-measures are improved from 0.405 to 0.597 (i.e.,

47% improvement), and 0.484 to 0.592 (i.e., 22% improvement), respectively. A recent

work by Nam et al. [135] has a similar concept as our approach, i.e., using transformations

(namely TCA+) to improve the performance of cross-project defect prediction. In partic-

ular, Nam et al. [135] propose a set of rules to automatically select the most appropriate

normalization method (e.g., min-max and z-score) for each pair of projects. The TCA+
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approach successfully improves the average F-measure3 by 28% in AEEEM dataset, and

24% in ReLink dataset. However, the improvement is lower than our approach from the

F-measure perspective. One possible reason is that our approach utilizes multiple models

rather than selecting only one model.

The p-values of Wilcoxon test on F-measures between our approach and the baseline

models in AEEEM, ReLink, and PROMISE datasets are 2.22e-04, 0.03 and 6.93e-03, re-

spectively. Hence, we reject the null hypothesis H031 for each dataset, and conclude that

our approach statistically significantly outperforms the baseline models.

The false positive rate is increased by our approach, but it is controllable. We

observe that our approach increases the false positive rate, if using the default cut-off on

the probability of defective files, i.e., 0.5 [210]. For instance, the false positive rate in

AEEEM dataset is increased from 0.104 to 0.159, but it is still acceptable, i.e., less than

0.3 [128]. For ReLink dataset, the average false positive rate is acceptable (i.e., 0.161)

in the baseline models but is excessive (i.e., 0.350) using our approach. We conjecture

that a particular cut-off may reduce the excessive false positive rate, since the performance

is statistically significantly improved in terms of AUC value (i.e., from 0.639 to 0.676).

Indeed, when choosing 0.56 as the cut-off for ReLink dataset, the false positive rate of

our approach becomes acceptable, and has no statistically significant difference than the

baseline models (i.e., from 0.122 to 0.282, and p-value is 0.07). Moreover, our previous

work [203] describes two concrete and practical solutions to reduce the false positive rate

by automatically determining the cut-off. In PROMISE dataset, the average false positive

rate is excessive in both approaches. One possible reason is that projects in this dataset

have diverse ratios of defective files (i.e., from 19% to 99%). For instance, the model built

from a project with a high ratio of defective files (i.e., the project with the majority of

3As only F-measures are reported in their paper, we present their improvement solely using F-measures.
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its files are actually defective files) tends to predict files as defective. Such a model can

experience high false positive rate, if applied to a project with low ratio of defective files

(i.e., the project with the majority of its files are actually clean files).

In summary, we conclude that our approach is effective for cross-project predictions

based on the improvement in AUC values that are independent of cut-off values. As our

approach only requires to perform three transformations that can be done with very low

cost, it is worth experimenting with our approach in defect prediction studies.

Our approach can signiciantly improve the performance of cross-project predictinos, in
terms of recall, balance, F-measure, and AUC value.

RQ4. Does our approach work well for other classifiers?

Motivation. We have demonstrated the effectiveness of our approach using a single classi-

fier (i.e., logistic regression). However, there are many other classifiers (e.g., Naive Bayes

and random forest) that are also frequently used to build defect prediction models (e.g.,

[93, 102, 123, 180]). To understand the generalizability of our approach, it is necessary to

study if our approach can achieve similar improvement using other classifiers other than

using logistic regression.

Approach. We follow the same approach as in RQ3, but using different classifiers to build

cross-project prediction models. As described in Section 4.3.2, we study six classifiers, i.e.,

Naive Bayes, Bayes Net, IBk (k-nearest neighbours), J48 (decision tree), random forest,

and random tree.

To investigate if our approach can improve the performance of cross-project prediction,

we test the following null hypothesis for each classifier. We apply paired Wilcoxon rank
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Table 4.8: Average F-measures and AUC values of cross-project defect predictions ob-
tained using log transformations and our approach (* denotes statistical signifi-
cance; bold font is used if the corresponding model is better).

(a) F-measure

Classifier AEEEM data set ReLink data set PROMISE data set

Log Ours % Inc. Log Ours % Inc. Log Ours % Inc.

Logistic 0.227 0.339* 49% 0.405 0.597* 47% 0.484 0.592* 22%
NaiveBayes 0.409 0.415 1.5% 0.556 0.604 8.6% 0.570 0.595* 4.4%
BayesNet 0.409 0.419 2.4% 0.537 0.614 14% 0.551 0.578* 4.9%
IBk 0.293 0.334* 14% 0.495 0.566 14% 0.505 0.581* 15%
J48 0.281 0.356* 27% 0.391 0.489* 25% 0.499 0.566* 13%
RandomForest 0.282 0.363* 29% 0.398 0.572* 44% 0.456 0.571* 25%
RandomTree 0.295 0.342* 16% 0.490 0.601* 23% 0.503 0.621* 23%

(b) AUC value

Classifier AEEEM data set ReLink data set PROMISE data set

Log Ours % Inc. Log Ours % Inc. Log Ours % Inc.

Logistic 0.699 0.719* 2.9% 0.639 0.676* 5.8% 0.671 0.696* 3.7%
NaiveBayes 0.710 0.718* 1.1% 0.683 0.698 2.2% 0.685 0.699* 2.0%
BayesNet 0.715 0.723* 1.1% 0.678 0.698 2.9% 0.660 0.678* 2.7%
IBk 0.576 0.593 3.0% 0.606 0.611 0.8% 0.535 0.542 1.3%
J48 0.593 0.645* 8.8% 0.563 0.580 3.0% 0.581 0.571 -1.7%
RandomForest 0.668 0.691* 3.4% 0.677 0.694 2.5% 0.609 0.638* 4.8%
RandomTree 0.579 0.600* 3.6% 0.600 0.627 4.5% 0.535 0.569* 6.4%

sum test with the 95% confidence level (i.e., p-value<0.05).

H041: there is no difference between the performance of our approach and the models

built with log transformation, when using classifier C to build the model.

Findings. In general, our approach can improve the performance of cross-project

defect prediction models. However, the improvement varies with classifiers. Table 4.8

presents the average F-measures and AUC values of models built with log transformation

and our approach using each of the six classifiers.

In terms of F-measure, our approach can achieve statistically significant improvement

for logistic regression (22% to 49%), IBk (14% to 15%), J48 (13% to 27%), random forest

(25% to 44%), and random tree (16% to 23%). However, the improvement is small when

using NaiveBayes (1.5% to 8.6%) and BayesNet (2.4% to 14%).
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Similar findings can also be observed from the AUC value perspective. In particular,

three classifiers can benefit from our approach, i.e., logistic regression (2.9% to 5.8%),

random forest (2.5% to 4.8%), and random tree (3.6% to 6.4%). When using any of the

three classifiers, the improvement in the AUC value is statistically significant in at least two

datasets. There is only one exception (i.e., J48 in PROMISE dataset), where our approach

decreases the AUC value by 0.01.

Moreover, we observe that our approach always achieves statistically significant im-

provement (in terms of both F-measure and the AUC value), when using logistic regres-

sion. This might be because data normality improves the performance of linear models

[108], and logistic regression model is a special case of generalized linear models.

In summary, our approach generally improves the performance of cross-project defect

prediction models, although the improvement varies with classifiers.

Our approach achieves varied improvement for different classifiers, and generally achieves
significant improvement for three classifiers (i.e., logistic regression, random forest, and
random tree).

4.7 Threats to Validity

We now describe the threats to validity of our study under common guidelines [199].

Threats to conclusion validity concern the relation between the treatment and the out-

come. The main threats come from our implementation of the three transformations. For

instance, we normalize metric values transformed by the Box-Cox transformation to [1,2].

We describe our treatment of the three transformations, so that researchers can replicate

our work and yield the same conclusion when applying the same treatments as our study.
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Threats to internal validity concern our selection of subject systems and analysis meth-

ods. We choose subjects from three publicly available data sets that have been used in many

other studies [76, 135, 202]. The selected projects have diversity in size and ratio of defec-

tiveness. The threats to our analysis method come from our choice of logistic regression to

study RQ2 and RQ3. Thus, in RQ4, we examine the effectiveness of our approach using

six other classifiers.

Threats to external validity concern the possibility to generalize our results. Our ap-

proach is based on log, Box-Cox, and rank transformations. All three transformations

are applicable to software metrics, since many metrics follow power law distributions

[41, 116, 205]. The diversity in size and defect-proneness of our subject projects helps

verify the generalizability of our approach. Nevertheless, further validations on other open

source projects and even commercial projects are recommended.

Threats to reliability validity concern the possibility of replicating this study. All three

data sets used in this study are publicly accessible. We also provide details of our experi-

ments on the internet4.

4.8 Chapter Summary

In this chapter, we observe that three simple transformation methods (i.e., log, Box-Cox,

and rank transformations) have similar power to significantly improve the normality of

software metrics. Moreover, cross-project prediction models built with each of the three

transformation methods achieve similar performances (i.e., precision, recall, false positive

rate, balance, F-measure and AUC value). However, we find that these models do not

always make wrong predictions on the same file, since the results of McNemar’s tests

4http://www.feng-zhang.com/replication/transformation
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clearly show that these models experience significantly different error rates.

Therefore, we propose an approach to integrate predictions by the cross-project defect

prediction models built using each of the three transformation methods. We perform an ex-

periment using three public data sets, such as AEEEM [44], ReLink [196], and PROMISE

[96]. The results show that, comparing to the models built with only one transformation

method (i.e., the widely used log transformation), our approach statistically significantly

improves recall, F-measure and AUC value in all three data sets. For instance, the aver-

age F-measures are improved by 49%, 47%, and 22% in AEEEM, ReLink, and PROMISE

datasets, respectively. Furthermore, our approach generally leads to the performance im-

provement in cross-project defect prediction models, regardless of using any of the classi-

fiers under study (e.g., random forest). Especially when using logistic regression, random

forest, or random tree, our approach can achieve significant improvement in the perfor-

mance of cross-project defect prediction models.
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er 5 Aggregation of Software Met-

rics

Key Question

Can the use of summation to aggregate
software metrics hinder the performance
of defect prediction models?
?

5.1 Introduction

To build a defect prediction model, historical defect-fixing activity is mined and software

metrics, which may have a relationship with defect proneness, are computed. The historical

defect-fixing activity is usually mined from a Version Control System (VCS), which records

change activity at the file-level. Although it is possible to collect defect data at the method-

level, it is time consuming and often impractical [187]. On the other hand, software metrics

such as cyclomatic complexity (Cc) [119] are computed at the method- or class-level.

It has been reported that predicting defective files is more effective than predicting

defective packages for Java systems [45, 138, 153]. Typically, in order to train file-level

defect prediction models, the method- or class-level software metrics are aggregated to
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Figure 5.1: A typical process to apply method-level metrics (e.g., Sloc) to build file-level
defect prediciton models.

the file-level. Such a process is illustrated in Figure 5.1. Summation is one of the most

commonly applied aggregation schemes in the literature [82, 106, 111, 112, 128, 135, 138,

154, 202, 208, 209]. However, Landman et al. [109] show that prior findings (e.g., [54,

67]) about the high correlation between summed Cc and summed lines of code (i.e., Sloc)

may have been overstated for Java projects, since the correlation is significantly weaker at

the method-level. We suspect that the high correlation between many metrics at the file-

level may also be caused by the aggregation scheme. Furthermore, the potential loss of

information due to the summation aggregation may negatively affect the performance of

defect prediction models.

Besides summation, there are a number of other aggregation schemes that estimate the

central tendency (e.g., arithmetic mean and median), dispersion (e.g., standard deviation

and coefficient of variation), inequality (e.g., Gini index [62], Atkinson index [9], and

Hoover index [83]), and entropy (e.g., Shannon’s entropy [169], generalized entropy [42],

and Theil index [185]) of a metric. However, the impact that aggregation schemes have on

defect prediction models remains unexplored.
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We, therefore, set out to study the impact that different aggregation schemes have on

defect prediction models. We perform a large-scale experiment using data collected from

255 open source projects. First, we examine the impact that different aggregation schemes

have on: (a) the correlation among software metrics, and (b) the correlation between soft-

ware metrics and defect count. Second, we examine the impact that different aggregation

schemes have on the performance of four main types of defect prediction models, namely:

(a) Defect proneness model that classifies files as defect-prone or not [123, 202, 210];

(b) Defect rank model that ranks files according to their defect proneness [131, 208];

(c) Defect count model that estimates the number of defects in a given file [144, 209];

(d) Effort-aware model that incorporates fixing effort in the ranking of files according to

their defect proneness [98, 121].

To ensure that our conclusions are robust, we conduct a 1,000-repetition bootstrap exper-

iment for each of the studied systems. In total, over 12 million prediction models are

constructed during our experiments.

The main observations of our experiments are as follows:

• Correlation analysis. We observe that aggregation can significantly impact both the

correlation among software metrics and the correlation between software metrics and

defect count. Indeed, summation significantly inflates the correlation between Sloc

and other metrics (not just Cc). Metrics and defect count share a substantial correla-

tion in 15%-22% of the studied systems if metrics are aggregated using summation,

while metrics and defect count only share a substantial correlation in 1%-9% of the

studied systems if metrics are aggregated using other schemes.
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• Defect prediction models. We observe that using only summation (i.e., the most

commonly applied aggregation scheme) often does not achieve the optimal perfor-

mance. For example, when constructing models to predict defect proneness, solely

applying the summation scheme achieves the optimal performance in only 11% of the

studied projects, whereas applying all of the studied aggregation schemes achieves

the optimal performance in 40% of the studied projects. Furthermore, when con-

structing models for effort-aware defect prediction, the mean or median aggregation

schemes yield performance values that are significantly closer to the optimal ones

than any of the other studied aggregation schemes. On the other hand, when con-

structing models to predict defect rank or count, either applying only the summation

or applying all of the studied aggregation schemes achieves similar performance,

with both achieving closer to optimal performance more often than the other studied

aggregation schemes.

Broadly speaking, solely relying on summation tends to underestimate the predictive

power of defect prediction models. Given that the cost of computing the additional aggre-

gation schemes is negligible, we strongly recommend that future defect prediction studies

use the 11 aggregation schemes that we explore in this thesis, and even experiment with

other aggregation schemes.

Chapter Organization. We present the 11 studied aggregation schemes in Section 5.2.

Section 5.3 describes the data that we use in our experiments. The approach and results of

our case study are presented and discussed in Sections 5.4 and 5.5. We discuss the threats to

the validity of our work in Section 5.6. Summary of the chapter is described in Section 5.7.
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Table 5.1: List of the 11 studied aggregation schemes. In the formulas, mi denotes the value
of metric m in the ith method in a file that has N methods. Methods in the same
file are sorted in the ascending order of the values of metric m.

Category Aggregation scheme Formula

Summation Summation Σm =
∑N

i=1 mi (1)

Central Tendency

Arithmetic mean µm = 1
N

∑N
i=1 mi (2)

Median Mm =




m n+1
2

if N is odd
1
2 (m n

2
+ m n+2

2
) otherwise.

(3)

Dispersion
Standard deviation σm =

√
1
N

∑N
i=1 (mi − µm )2 (4)

Coefficient of variation Covm =
σm
µm

(5)

Inequality Index

Gini index [62] Ginim = 2
NΣm

[
∑N

i=1 (mi ∗ i) − (N + 1)Σm ] (6)

Hoover index [83] Hooverm = 1
2
∑N

i=1 |
mi
Σm
− 1

N | (7)

Atkinson index [9] Atkinsonm = 1 − 1
µm

( 1
N

∑N
i=1
√
mi )2 (8)

Entropy

Shannon’s entropy [169] Em = − 1
N

∑N
i=1[ f req (mi )

N ∗ ln
f req (mi )

N ] (9)

Generalized entropy [42] GEm = − 1
Nα (1−α)

∑N
i=1[( mi

µm
)α − 1], α = 0.5 (10)

Theil index [185] Theilm = 1
N

∑N
i=1[ mi

µm
∗ ln( mi

µm
)] (11)

5.2 Aggregation Schemes

In this section, we introduce the 11 aggregation schemes that we studied. We also discuss

why we exclude some other aggregation schemes from our study. Table 5.1 shows the

formulas of the 11 schemes. The details are presented as follows.

1) Summation. An important aspect of a software metric is the accumulative effect, e.g.,

files with more lines of code are more likely to have defects than files with few lines of

code [58]. Similarly, files with many complex methods are more likely to have defects

than files with many simple methods [103]. Summation captures the accumulative effect

of a software metric. Specifically, we study the summation scheme, which is commonly

used in defect prediction studies [82, 106, 111, 112, 128, 135, 138, 154, 202, 208, 209].
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2) Central tendency. In addition to the accumulative effect, the average effect is also

important. For example, it is likely easier to maintain a file with smaller methods than a

file with larger ones, even if the total file size is equal. Computing the average effect can

help to distinguish between files with similar total size, but different method sizes on

average. The average effect of a software metric can be captured using central tendency

metrics, which measure the central value in a distribution. In this thesis, we study the

arithmetic mean and median measures of central tendency.

3) Dispersion. Dispersion measures the spread of values of a particular metric, with re-

spect to some notion of central tendency. For example, dispersion can capture how

much the size of methods in the same file differ from the average size. We study the

standard deviation and the coefficient of variation measures of dispersion.

4) Inequality index. An inequality index explains the degree of imbalance in a distribu-

tion. Inequality indices are often used by economists to measure income inequality in a

specific group [191]. In this thesis, we study the Gini [62], Hoover [83], and Atkinson

[9] inequality indices. These three indices have previously been analyzed by Vasilescu

[191] in the broad context of software engineering.

Each index captures one aspect of inequality. The Gini index measures the degree of in-

equality, but cannot identify the unequal part of the distribution. The Atkinson index can

indicate which end of the distribution introduces the inequality. The Hoover index rep-

resents the proportion of all values that, if redistributed, would counteract the inequality.

The three indices range from zero (perfect equality) to one (maximum inequality).

5) Entropy. In information theory, entropy represents the information contained in a set of

variables. Larger entropy values indicate greater amounts of information. In the extreme
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case, files full of duplicated code snippets contain less information than files with only

unique code snippets. In this thesis, we study the Shannon’s entropy [169], generalized

entropy (α = 0.5) [42], and the Theil index [185]. Shannon’s (and generalized) entropy

measure redundancy or diversity in the values of a particular metric. The Theil index,

an enhanced variant of the generalized entropy, measures inequality or lack of diversity.

6) Excluded aggregation schemes. Distribution shape is another widely used family of

aggregation schemes. Skewness and kurtosis are two commonly used measures that

capture the shape of a distribution. In the formulas for computing skewness and kurtosis,

the denominator is the standard deviation. If the standard deviation is zero, the skewness

and kurtosis are both undefined. In our data set, we observe that a large number of

methods have exactly the same value of a particular metric, producing zero variance.

Hence, we exclude skewness and kurtosis from our analysis, since they are undefined

for many files.

Kolm index [105] is another candidate scheme that measures the absolute inequality of

a distribution. However, the computation of Kolm index requires the exponentiation of

metric values. Since many of our metrics have values larger than 1,000, the Kolm index

becomes uncomputable. Therefore, it is not suitable for our study.

5.3 Experimental Data

In this section, we describe our experimental data, including the characteristics of the

dataset, the defect data, and the software metrics that we use.
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5.3.1 Dataset Characteristics

In this study, we begin with the dataset that was initially collected by Mockus [125]. The

dataset contains 235K open source systems hosted on SourgeForge and GoogleCode. How-

ever, there are many systems that have not yet accumulated a sufficient amount historical

data to train defect models. Similar to Chapter 3, we apply a series of filters to exclude

such systems from our analysis. Specifically, we exclude the systems that:

(F1) Are not primarily written in C, C++, C#, Java, or Pascal, since the tool [164] that we

use to compute the software metrics only supports these languages.

(F2) Have a small number of commits (i.e., less than the 25% quantile of the number of

commits across all remaining systems), as systems with too few commits have not

yet accumulated enough historical data to train a defect model.

(F3) Have a lifespan of less than one year, since most defect prediction studies collect

defect data using two consecutive six-month time periods [208].

(F4) Have a limited number of fix-inducing and non-fixing commits (i.e., less than the 75th

percentile of the number of fix-inducing and non-fixing commits across all remaining

systems, respectively). We do so to ensure that we have enough data to train stable

defect models.

(F5) Have less than 100 usable files (i.e., without undefined values of aggregated metrics).

This ensures that we have sufficient instances for bootstrap model validation.

Table 5.2 provides an overview of the 255 systems that survive our filtering process.
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Table 5.2: The descriptive statistics of our dataset.

Programming language Number of systems Number of files Number of methods Defect ratio (mean ± sd)

C 34 8,140 167,146 43% ± 26%
C++ 85 20,649 479,907 40% ± 27%
C# 15 2,951 666,046 38% ± 23%

Java 121 32,531 527,203 37% ± 27%

All 255 64,271 1,840,302 39% ± 27%

5.3.2 Defect Data

In general, defect data is mined from commit messages. Since these commit messages can

be noisy, data mined from commit messages are often corroborated using data mined from

Issue Tracking Systems (ITSs, e.g., Bugzilla1) [208]. However, we find that only 53% of

the studied systems are using ITSs. Hence, to treat every studied system equally, we mine

defect data solely based on commit messages. While this approach may introduce bias into

our dataset [16, 81, 102], prior work has shown that this bias can be offset by increasing

the sample size [158]. There are 255 subject systems in our dataset, which is larger than

most defect prediction studies to date [151].

Similar to Chapter 3, we consider that a commit is related to a defect fix if the commit

message matches the following regular expression:

(bug | f ix |error |issue|crash|problem | f ail |de f ect |patch)

To further reduce the impact that noise in commit messages may introduce, we clean

up noisy words like “debug” and “prefix” by removing all words that end with “bug” or

“fix”. A similar strategy was used by Mockus and Votta [126] and is at the core of the

popular SZZ algorithm [179]. In addition, similar to prior work [208], we use a six-month

time period to collect defect data, i.e., we check for defect-fixing commits that occur in a

six-month time period after a software release has occurred. Unfortunately, many systems

1http://www.bugzilla.org/

http://www.bugzilla.org/
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Table 5.3: List of software metrics at method-level.

Metric Description

Sloc Source lines of code, excluding comments and blank lines.
Cc McCabe’s cyclomatic complexity.
Evg Essential complexity is a modified version of cyclomatic complexity.
Npath The number of possible execution paths in a method.
Fanin The number of inputs, including parameters, global variables, and method calls.
Fanout The number of outputs, such as updating parameters and global variables.

on SourceForge or GoogleCode have not recorded their release dates. Hence, we simply

choose the date that is six months prior to the last recorded commit of each system as the

split date. Defect data is collected from commit messages in the six-month period after the

split date.

5.3.3 Software Metrics

We group software metrics into three categories, i.e., traditional metrics, object-oriented

metrics, and process metrics. In the scope of defect prediction, Radjenović et al. [156]

perform a systematic review and report that traditional metrics are often collected at the

method-level, object-oriented metrics are often collected at the class-level, and process

metrics are often collected at the file-level. In this thesis, we study traditional metrics,

so that we can focus on investigating how the studied aggregation schemes impact defect

prediction models.

In this study, we choose six method-level metrics that are known to perform well in de-

fect prediction models [61]. Table 5.3 provides an overview of the studied metrics. Source

Lines Of Code (Sloc) is a measure of the size of a method. Cyclomatic complexity (Cc)

and essential complexity (Evg) are measures of the complexity of a method. The number of

possible paths (Npath), the number of inputs (Fanin), and the number of outputs (Fanout)

are measures of the control flow of a method.
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To compute these metrics, we use the Understand [164] tool on the release (or split)

code snapshot of each studied system. This code snapshot is the historical version of the

studied system at the date just before the six-month time period used for collecting the

defect data.

5.4 Case Study I – Correlation Analysis

In this section, we study the impact that different aggregations have on the correlation

among software metrics and the correlation between software metrics and defect counts.

When choosing software metrics to build a defect prediction model, it is common prac-

tice to explore the correlations among software metrics, and the correlations between soft-

ware metrics and defects [97, 181]. Strongly correlated software metrics may be redundant,

and may interfere with one another if used together to train a defect prediction model. Fur-

thermore, a substantial correlation between a software metric and defect count may identify

good candidate predictors for defect prediction models.

Aggregation schemes are required to lift software metrics to the file-level. However, ag-

gregation schemes may distort the correlation between Sloc and Cc in Java projects [109].

If two metrics have a much stronger correlation after aggregation, it is unclear if the two

metrics are actually strongly correlated, or if the aggregation has distorted one or both of

the metrics.

Understanding the impact that aggregation schemes have can prevent the removal of

useful metrics. Hence, we want to examine the impact that aggregations have in order to

avoid potential loss of information in the model construction step.



5.4. CASE STUDY I – CORRELATION ANALYSIS 96

5.4.1 Research Questions

To study the impact that aggregations have on the correlation among software metrics and

their correlation with the defect count, we formulate the following two research questions:

RQ1.1 Do aggregation schemes alter the correlation between software metrics?

RQ1.2 Do aggregation schemes alter the correlation between software metrics and defect

count?

5.4.2 Experimental Design

1) Correlation among metrics. In this study, we use Spearman’s ρ [173] to measure cor-

relation. Spearman’s ρ measures the similarity between two ranks, instead of the exact

values of the two assessed variables. Unlike parametric correlation techniques (e.g., Pear-

son correlation [173]), Spearman correlation does not require that the input data follow any

particular distribution. In the presence of ties, Spearman’s ρ is preferred [155] over other

nonparametric correlation techniques, such as Kendall’s τ [173]. Spearman’s ρ ranges

from -1 to +1, where -1 and +1 indicate the strongest negative and positive correlations,

respectively. A value of zero indicates that the two input variables are entirely independent.

Figure 5.2 presents our approach to examine the impact that aggregations have on cor-

relation among software metrics. To understand the correlation among metrics before ag-

gregation, for each system, we calculate ρ between each pair of metrics at the method-level.

Assessing if two metrics are strongly correlated is often applied to determine their redun-

dancy in the scope of defect prediction [57, 165]. Similar to prior work [57, 165, 182],

we consider that a pair of metrics are too highly correlated to include in the same model if

|ρ| ≥ 0.8. We report the percentage of metrics that have |ρ| < 0.8 across all of the systems.
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Figure 5.2: Our approach to analyze the impact of aggregations on the correlations between
software metrics (RQ1.1).

To study the impact that aggregation schemes have on these correlation values, we use

Sloc as our base metric, and for each system, we compute ρ between Sloc and the other

metrics at both method- and file-levels. We denote the correlation between Sloc and metric

m as cor.method(Sloc,m) at the method-level, and as cor. f ile(Sloc, AG(m)) at the file-

level after applying an aggregation scheme AG. We test the null hypothesis below for each

scheme:

H01: There is no difference between the method-level correlation cor.method(Sloc,m)

and the file-level correlation cor. f ile(Sloc, AG(m)).

To test H01, we use two-sided Mann-Whitney U tests [173] with α = 0.05 (i.e., 95%

confidence level). The Mann-Whitney U test checks if the distributions of the two assessed

variables have equal values. As a non-parametric statistical method, the Mann-Whitney U

test makes no assumptions about the distributions that the input samples are drawn from. If

there is a statistically significant difference between the input samples, we can reject H01

and conclude that the corresponding aggregation scheme yields statistically significantly

different correlation values at the method- and file-levels. To control family-wise errors,

we apply Bonferroni correction and adjust α by dividing by the number of tests.

We also calculate Cliff’s δ [36] to quantify the size of the difference in correlation values

at the method- and file-levels. We opt to use Cliff’s δ instead of Cohen’s d [38] because
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Figure 5.3: Our approach to analyze the impact of aggregations on correlations between
software metrics and defect count (RQ1.2).

Cliff’s δ is widely considered to be a more robust and reliable effect size measure than

Cohen’s d [160]. Moreover, Cliff’s δ does not make any assumptions about the distributions

of the input samples.

Cliff’s δ ranges from -1 to +1, where a zero value indicates two identical distributions.

A negative value indicates that values in the first sample tend to be smaller than those in the

second sample, while a positive value indicates the opposite. To ease interpretation of the

effect size results, we use the mapping of Cliff’s δ values to Cohen’s d significance levels

as proposed by prior work [160] (see Table 3.6).

2) Correlation between metrics and defect count. To further understand the impact of

aggregations, we investigate the correlation between defect count and metrics aggregated

by each of the studied schemes. Figure 5.3 provides an overview of our approach. Software

metrics having a substantial correlation with defect count are usually considered to be good

candidate predictors for defect prediction models [208]. Similar to prior work [208], we

consider that a metric shares a promising correlation with the number of defects if the

corresponding |ρ| ≥ 0.4. Hence, we report the percentage of studied systems that have

|ρ| ≥ 0.4 for the defect count and any given metric after applying any of the studied

aggregation scheme.
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Table 5.4: The percentage of the studied systems that do not have strong correlations
among all six metrics at the method-level.

Scheme Cc Npath Fanin Fanout Evg

Sloc 58% 59% 100% 39% 100%
Cc - 0% 100% 96% 99%
Npath - - 100% 96% 99%
Fanin - - - 100% 100%
Fanout - - - - 100%

5.4.3 Case Study Results

Aggregation can significantly alter the correlation among metrics. Table 5.4 shows

that many method-level metrics do not have strong correlation values with one another

(i.e., |ρ| < 0.8). For example, Fanin is not strongly correlated with the other metrics in any

of the studied systems. Moreover, Sloc is not strongly correlated with Cc in 58% of the

studied systems.

On the other hand, some method-level metrics also have consistently strong correlation

values. For example, Cc is strongly correlated with Npath in all of the studied systems.

Since one would like to preserve the information provided by metrics, keeping the

correlation values between metrics low would be ideal. To that end, we find that selecting

some aggregation schemes can help to reduce the strong correlation values that we observe

at the method-level. For example, although Cc and Npath are strongly correlated in all of

the studied systems at the method-level, when they are aggregated by summation to the

file-level, they do not share a strong correlation with one another in 96% of the studied

systems. This weaker correlation would allow one to safely use both metrics in a defect

prediction model.

Different aggregation schemes have various impact on the correlation among met-

rics. To illustrate the effect of the various aggregation schemes, we compute the gain ratios
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Figure 5.4: Boxplots of the gain ratios in correlations between Sloc and other metrics at
file-level. The order of the 11 aggregation schemes are the same as shown in
Table 5.1.

of the correlation values of a metric when aggregated to the file-level. Below, we define the

gain ratio for a metric m when aggregated using a particular scheme AG:

cor.gain.ratio(m, AG) =
cor. f ile(Sloc, AG(m))
cor.method(Sloc,m)

(5.1)

While we find that aggregation schemes do impact correlation values, most aggregation

schemes do not have a consistent impact on all of the studied metrics. On the one hand, the

gain ratios of Figure 5.4 show that summation tends to increases the correlation between

Sloc and all of the other metrics. On the other hand, for the Npath, Fanin, and Fanout

metrics, Figure 5.4 shows that the median gain ratios are often below 1, indicating that

most aggregation schemes decrease the correlation values for these metrics in half of the

studied systems.

Table 5.5 presents the results of the Mann-Whitney U tests and Cliff’s δ. We find that

summation has a consistently large impact (i.e., p-value is below α and the absolute value

of Cliff’s δ is greater than 0.474) on the correlation between Sloc and the other metrics in

software systems developed in C, C++, C#, and Java. This observation is consistent with
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Table 5.5: The Cliff’s δ of the difference in correlation values between Sloc and other met-
rics before and after aggregation. (bold font indicates a large difference, and n.s.
denotes a lack of statistical significance).

Scheme Cc Npath Fanin Fanout Evg

Sum -0.881 -0.655 -0.884 -0.907 -0.969
Mean -0.363 n.s. 0.269 -0.279 -0.386
Median 0.188 0.213 0.206 n.s. 0.239
SD -0.290 -0.128 0.388 n.s. -0.401
COV n.s. 0.345 0.605 0.608 -0.181
Gini 0.022 0.305 0.646 0.609 -0.082
Hoover 0.195 0.505 0.737 0.729 n.s.
Atkinson 0.105 0.388 0.767 0.778 -0.104
Shannon n.s. n.s. -0.584 -0.481 -0.295
Entropy 0.104 0.388 0.767 0.778 -0.104
Theil n.s. 0.370 0.469 0.458 -0.143

Landman et al.’s work [109], which found that summation tends to inflate the correlation

between Sloc and Cc when aggregated from the method- to the file-level in Java projects.

Not all metrics are sensitive to aggregation schemes. Indeed, only the Fanin and Fanout

metrics are significantly sensitive to aggregation schemes. Furthermore, contrary to the Cc

results, these aggregations tend to weaken their correlation with Sloc.

When compared to the other aggregation schemes, summation has the largest im-

pact on the correlation between the studied metrics and defect count. Table 5.6 shows

the percentage of the studied systems that have a substantial correlation (i.e., |ρ| ≥ 0.4)

between defect count and a given metric when aggregated using the studied schemes. File-

level metrics that are aggregated by summation share a substantial correlation with defect

count in 15% to 22% of the studied systems. The other aggregation schemes show poten-

tial to make file-level metrics substantially correlate with defect count, with 1%-9% of the

studied systems yielding substantial correlation values. Indeed, in addition to summation,

applying other aggregation schemes may create useful new metrics for defect prediction

models.
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Table 5.6: The percentage of studied systems where the defect count shares a substantial
correlation (|ρ| ≥ 0.4) with the metrics.

Scheme Loc Cc Npath Fanin Fanout Evg

Sum 20% 22% 15% 16% 20% 16%
Mean 2% 1% 3% 2% 1% 3%
Median 1% 2% 2% 1% 1% 0
SD 4% 2% 5% 4% 1% 4%
COV 3% 3% 7% 1% 1% 4%
Gini 3% 2% 5% 1% 1% 3%
Hoover 1% 2% 5% 1% 1% 3%
Atkinson 1% 2% 6% 1% 1% 4%
Shannon 9% 7% 6% 9% 9% 2%
Entropy 1% 2% 6% 1% 1% 4%
Theil 2% 3% 6% 3% 1% 4%

Aggregation can significantly alter the correlation among metrics and the correlation be-
tweenmetrics and the defect count. Experimenting with aggregation schemesmay produce
useful new metrics for defect prediction models.

5.5 Case Study II – Defect Prediction Models

In this section, we evaluate the impact of aggregations on four types of defect prediction

models, i.e., defect proneness, defect rank, defect count, and effort-aware models. More-

over, we provide comprehensive guidelines regarding the choice of aggregation schemes

for future studies.

Our analysis in the prior section shows that aggregation schemes can significantly alter

the correlation among metrics and the correlation between defect count and metrics. These

results suggest that using additional aggregation schemes may generate new metrics that

capture unique characteristics of the studied data, and that may be useful for defect pre-

diction. In this section, we investigate the impact that aggregation schemes have on four

types of defect prediction models. While we use the same metrics in each type of defect

prediction model, the dependent variable varies as described below:

• Defect proneness: A binary variable indicating if a file is defective or not.



5.5. CASE STUDY II – DEFECT PREDICTION MODELS 103

• Defect rank: A ranked list of files according to the number of defects that they will

contain.

• Defect count: The exact number of defects in a file.

• Effort-aware: A cost-effective list of files ranked in order to locate the most number

of defects while inspecting the least number of lines.

5.5.1 Research Questions

To investigate the impact that aggregation schemes have on our four types of defect predic-

tion models, we formulate the following four research questions:

RQ2.1 Do aggregation schemes impact the performance of defect proneness models?

RQ2.2 Do aggregation schemes impact the performance of defect rank models?

RQ2.3 Do aggregation schemes impact the performance of defect count models?

RQ2.4 Do aggregation schemes impact the performance of effort-aware models?

5.5.2 Experimental Design

We now present the design of our experiments, including the evaluation method, the mod-

elling techniques, the performance measures, the model training approach, and the null

hypotheses. Figure 5.5 gives an overview of our approach to address RQs 2.1-2.4.

1) Evaluation method. In our experiment, we use the out-of-sample bootstrap model val-

idation technique [51]. The out-of-sample bootstrap is a robust model validation technique

that has been shown to provide stable results for unseen data [51]. The process is com-

posed of two steps. First, a bootstrap sample of N rows is selected with replacement from
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Figure 5.5: Our approach to build and evaluate defect prediction models on each of the
studied 255 projects, using file-level metrics aggregated from method-level
metrics (RQs 2.1 to 2.4).

an original dataset with N rows. Theoretically, the bootstrap sample will contain 63.2%

of the unique rows that appear in the original dataset. Second, a model is trained using

the bootstrap sample and tested using the 36.8% of the data from the original dataset that

does not appear in the bootstrap sample. The two-step process is repeated several times,

drawing a new bootstrap sample with replacement for training a model and testing it on

the unselected data. The performance estimate is the average of the performance of each

of these bootstrap-trained models. For each studied system, we perform 1,000 bootstrap

iterations in order to derive a stable performance estimate.

2) Modelling techniques and performance measures

Defect proneness. We apply the random forest algorithm [23] to train our defect proneness

models, since this algorithm tends to achieve better performance than other commonly used

algorithms (e.g., regression model) in prior work [66, 98]. Common performance measures

for defect proneness models include precision, recall, accuracy, and F-measure. These

measures are calculated using a confusion matrix that is obtained using a threshold value.

Since these performance measures are sensitive to the selected threshold, we opt to use the
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Area Under the receiver operating characteristic Curve (AUC) — a threshold-independent

performance measure. AUC is computed as the area under the Receiver Operating Charac-

teristics (ROC) curve, which plots the true positive rate against the false positive rate while

varying the internal model threshold. AUC values range between 0 (worst performance)

and 1 (best performance). A model with an AUC of 0.5 or less performs no better than

random guessing.

Defect rank. We apply linear regression to train our defect rank models. The regression

model is applied to all files in the system and the files are ranked according to their es-

timated defect count. As suggested by prior work [131, 208], we use Spearman’s ρ to

measure the performance of our defect rank models. We compute ρ between the ranked

list produced by the model and the correct ranking that is observed in the historical data.

Larger ρ values indicate a more accurate defect rank model.

Defect count. Similar to our defect rank models, we apply linear regression to train our

defect count models. We use the Mean Squared Error (MSE) to measure the performance

of our linear models, which is defined as follows:

MSE =
1
n

n∑
i=1

(Ŷi − Yi)2 (5.2)

where Yi and Ŷi are the actual and predicted value of the ith file, and n is the total number

of files. The lower the MSE, the better the performance of the defect count model.

Effort-aware. We also apply linear regression to train our effort-aware models. We use

the Popt measure proposed by Mende and Koschke [120] to measure the performance of

our effort-aware models. The Popt measure is calculated by drawing two curves (see Fig-

ure 5.6) that plot the accumulated lines of analyzed code on the x-axis, and the percentage

of addressed bugs on the y-axis. First, the optimal curve is drawn using an ordering of files

based on their actual defect densities. Second, the model performance curve is drawn by
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Table 5.7: The modelling techniques and performance measures used in this study.

Prediction type Modelling technique Performance measure

Defect proneness Random forest AUC
Defect rank Linear regression Spearman’s ρ
Defect count Linear regression MSE
Effort-aware defect count Linear regression Popt

ordering files according to their predicted defect density. The area between the two curves

is represented as ∆opt , and Popt = 1 − ∆opt . The higher the Popt value, the closer the curve

of the predicted model is to the optimal model, i.e., the higher the Popt value, the better.

Table 5.7 summarizes the modelling techniques and performance measures for each

type of defect prediction models.

3) Prediction model training

In each bootstrap iteration, we build 48 models — one model for each combination of the

four types of defect prediction models and 12 configurations of the studied aggregation

schemes. We use one configuration to study each of the 11 aggregation schemes individu-

ally, and a 12th configuration to study the combination of all of the aggregation schemes.

In each configuration, we use the six software metrics aggregated by the corresponding
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scheme as predictors for our defect prediction models. Thus, for 11 configurations that

only involve one aggregation scheme, we use six predictors, and for the configuration that

involves all schemes, we use 66 (i.e., 6 method-level predictors × 11 schemes) predictors.

Since the predictors may be highly correlated with one another, they may introduce

multicollinearity, which can threaten the fitness and stability of the models [189]. To ad-

dress this concern, a common practice is to apply Principal Component Analysis (PCA)

to the input set of predictors [48, 55]. Although principal components are difficult to in-

terpret [175], the analysis of the impact of particular metrics is out of the scope of this

thesis. Hence, we adopt this technique to simplify the process of building defect predic-

tion models in this study. We order the principal components by the amount of explained

variance, and select the first N principle components that can explain at least 95% [48] of

variance for inclusion in our defect prediction models. In total, we train over 12 million

(i.e., 48 configurations × 1000 iterations × 255 systems) models in our defect prediction

experiment.

4) Null hypotheses

As the four types of prediction models are similar, we formulate two general hypotheses to

structure our investigation of the impact that aggregation schemes have on defect prediction

models. To enable the comparison, we create an ideal model that achieves the optimal

performance. The optimal performance is the best performance of models that are obtained

using any of the 12 studied configurations. We test the following two null hypotheses for

each studied system:

H02a: There is no difference in the performance of the optimal model and models that

are trained using metrics that are aggregated by scheme AG.
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H02b: There is no difference in the performance of the optimal model and models that

are trained using metrics that are aggregated using all 11 schemes.

To test our hypotheses, we conduct two-sided and paired Mann-Whitney U tests [173]

with α = 0.05. As we have 255 systems in total, we apply Bonferroni correction to control

family-wise errors, and then adjust α by dividing by the number of tests. We use Cliff’s δ

to quantify the size of the impact.

5.5.3 Case Study Results

In this section, we present our findings from an overall perspective and a programming

language-specific perspective.

1) General findings

The summation scheme (i.e., the most commonly applied aggregation scheme in the

literature) can significantly underestimate the predictive power of defect prediction

models. It is worthwhile to experiment with different aggregation schemes, since they

show potential for improving the performance of defect prediction models. Table 5.8 shows

the percentage of the studied systems where a model that is built using the corresponding

configuration achieves similar predictive power to the optimal model. We consider that a

model achieves the optimal performance if the p-value of Mann-Whitney U test is greater

than α, or Cliff’s |δ | < 0.474 (i.e., does not exhibit large effect).

Table 5.8 shows that solely using summation achieves the optimal performance when

predicting defect proneness in only 11% of projects. When predicting defect rank or per-

forming effort-aware prediction, solely using summation yields the optimal performance in

56% and 31% of projects, respectively. Such findings suggest that the predictive power of
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Table 5.8: The percentage of the studied systems on which the model built with the corre-
sponding configuration of aggregations achieves the optimal performance. (The
bold font highlights the best configuration).

Scheme Defect proneness Defect rank Defect count Effort-aware

All schemes 102 (40%) 153 (60%) 248 (97%) 42 (16%)
Sum 28 (11%) 143 (56%) 253 (99%) 79 (31%)
Mean 19 (7%) 33 (13%) 222 (87%) 176 (69%)
Median 21 (8%) 28 (11%) 210 (82%) 180 (71%)
SD 17 (7%) 37 (15%) 230 (90%) 124 (49%)
COV 24 (9%) 40 (16%) 238 (93%) 58 (23%)
Gini 21 (8%) 31 (12%) 231 (91%) 69 (27%)
Hoover 20 (8%) 28 (11%) 227 (89%) 83 (33%)
Atkinson 21 (8%) 37 (15%) 230 (90%) 106 (42%)
Shannon 36 (14%) 92 (36%) 246 (96%) 51 (20%)
Entropy 25 (10%) 39 (15%) 229 (90%) 103 (40%)
Theil 19 (7%) 42 (16%) 232 (91%) 77 (30%)

defect prediction models can be hindered by solely relying on summation for aggregating

metrics.

On the other hand, using all of the studied aggregation schemes is significantly better

than solely using summation in models that predict defect proneness. Specifically, using

all schemes achieves the optimal performance in 40% of projects. This finding indicates

that exploring various aggregation schemes can yield fruitful results when building models

to predict defect proneness.

In models that predict defect rank and count, the difference between using all schemes

and solely using summation is marginal, and both are closer to the optimal performance

than any other aggregation scheme. In models that predict defect rank, using all schemes

is slightly better than solely using summation (i.e., 60% vs. 56%). When predicting defect

count, solely using summation is slightly better than using all schemes (i.e., 99% vs. 97%).

When fitting effort-aware models, the situation changes, i.e., neither using all schemes

nor solely using summation is advisable. The median scheme provides the optimal perfor-

mance in 71% of projects. Using the mean scheme is a viable alternative, as it achieves the

optimal performance in 69% of projects. Both mean and median aggregation schemes are
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much better than using any other configuration of aggregators.

We suspect that using either the median or the mean scheme yields the top performance

for effort-aware models because these two schemes capture the effort that is required to

inspect a method. For example, considering the following toy model to predict defect

count: Y = c ∗ avg_LOC, where c is a constant in the fitted model. The effort to inspect

a file (i.e., lines of code [98]) is calculated using E = m ∗ avg_LOC, where m is the

number of methods in a file. Then the predicted defect density of a file is computed as:

density = Y
E =

c∗avg_LOC
m∗avg_LOC = c

m . Among the files with the same avg_LOC, files with more

methods have less defect density, and are therefore ranked below files with fewer methods.

This is in agreement with the goal of effort-aware defect prediction, i.e., finding as many

defects as possible, while expending the least amount of effort.

Figure 5.7 provides boxplots of the optimal performance of our various model config-

urations, together with the performance of models built using each configuration relative

to the optimal model. Figure 5.7 shows that when using all schemes together, the per-

formances of defect proneness models are generally greater than using a single scheme.

Furthermore, when predicting defect rank and count, solely using summation or using all

schemes achieve very similar amounts of predictive power, and both configurations are

generally better than using any other aggregation scheme. Hence, applying all schemes

together is beneficial for defect proneness models, while using summation is likely suffi-

cient for models that predict defect rank and count. Moreover, when building effort-aware

models, either using mean or median generally achieves better performance than using

any other configuration. Hence, the median or mean schemes are advisable for building

effort-aware models.
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(d) Effort-aware defect prediction

Figure 5.7: In each sub figure, the left boxplot shows the optimal performance, and the
right boxplots present the performance by models built with each aggregation
scheme relative to the optimal performance. The order of aggregation schemes:
all schemes, summation, mean, median, SD, COV, Gini, Hoover, Atkinson,
Shannon’s entropy, generalized entropy, and Theil.

2) Programming language-specific findings

The distribution of software metrics tends to vary based on the programming language

in which the system is implemented [201]. This varying distribution may interfere with

our analysis of aggregation schemes. To investigate the role that a programming lan-

guage plays, we partition the results of Table 5.8 according to programming languages,

and present the results in Table 5.9.
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Table 5.9: The percentage of the studied systems per programming language, on which the
model built with the corresponding aggregation scheme achieves similar predic-
tive power as the optimal model. (The bold font highlights the best performing
scheme.)

(a) Defect proneness

Scheme Programming language

C C++ C# Java

All schemes 9 (26%) 28 (33%) 3 (20%) 62 (51%)
Sum 2 (6%) 11 (13%) 0 (0%) 15 (12%)
Mean 2 (6%) 5 (6%) 3 (20%) 9 (7%)
Median 3 (9%) 9 (11%) 0 (0%) 9 (7%)
SD 3 (9%) 5 (6%) 2 (13%) 7 (6%)
COV 5 (15%) 5 (6%) 1 (7%) 13 (11%)
Gini 2 (6%) 9 (11%) 2 (13%) 8 (7%)
Hoover 6 (18%) 4 (5%) 1 (7%) 9 (7%)
Atkinson 2 (6%) 7 (8%) 1 (7%) 11 (9%)
Shannon 4 (12%) 15 (18%) 1 (7%) 16 (13%)
Entropy 4 (12%) 10 (12%) 1 (7%) 10 (8%)
Theil 3 (9%) 4 (5%) 2 (13%) 10 (8%)

(b) Defect rank

Scheme Programming language

C C++ C# Java

All schemes 19 (56%) 54 (64%) 6 (40%) 74 (61%)
Sum 16 (47%) 46 (54%) 6 (40%) 75 (62%)
Mean 5 (15%) 10 (12%) 2 (13%) 16 (13%)
Median 9 (26%) 2 (2%) 1 (7%) 16 (13%)
SD 6 (18%) 10 (12%) 4 (27%) 17 (14%)
COV 6 (18%) 15 (18%) 3 (20%) 16 (13%)
Gini 6 (18%) 10 (12%) 1 (7%) 14 (12%)
Hoover 5 (15%) 7 (8%) 2 (13%) 14 (12%)
Atkinson 4 (12%) 15 (18%) 2 (13%) 16 (13%)
Shannon 13 (38%) 36 (42%) 3 (20%) 40 (33%)
Entropy 4 (12%) 17 (20%) 2 (13%) 16 (13%)
Theil 5 (15%) 15 (18%) 2 (13%) 20 (17%)

(c) Defect count

Scheme Programming language

C C++ C# Java

All schemes 34 (100%) 84 (99%) 13 (87%) 117 (97%)
Sum 34 (100%) 84 (99%) 15 (100%) 120 (99%)
Mean 31 (91%) 76 (89%) 14 (93%) 101 (83%)
Median 29 (85%) 71 (84%) 13 (87%) 97 (80%)
SD 32 (94%) 76 (89%) 14 (93%) 108 (89%)
COV 33 (97%) 80 (94%) 14 (93%) 111 (92%)
Gini 32 (94%) 76 (89%) 14 (93%) 109 (90%)
Hoover 32 (94%) 76 (89%) 14 (93%) 105 (87%)
Atkinson 33 (97%) 76 (89%) 14 (93%) 107 (88%)
Shannon 34 (100%) 83 (98%) 14 (93%) 115 (95%)
Entropy 33 (97%) 76 (89%) 14 (93%) 106 (88%)
Theil 33 (97%) 79 (93%) 14 (93%) 106 (88%)

(d) Effort-aware defect count

Scheme Programming language

C C++ C# Java

All schemes 8 (24%) 18 (21%) 1 (7%) 15 (12%)
Sum 12 (35%) 28 (33%) 8 (53%) 31 (26%)
Mean 26 (76%) 62 (73%) 11 (73%) 77 (64%)
Median 27 (79%) 54 (64%) 12 (80%) 87 (72%)
SD 19 (56%) 51 (60%) 6 (40%) 48 (40%)
COV 12 (35%) 20 (24%) 3 (20%) 23 (19%)
Gini 12 (35%) 26 (31%) 6 (40%) 25 (21%)
Hoover 15 (44%) 30 (35%) 5 (33%) 33 (27%)
Atkinson 17 (50%) 35 (41%) 8 (53%) 46 (38%)
Shannon 10 (29%) 16 (19%) 1 (7%) 24 (20%)
Entropy 17 (50%) 32 (38%) 8 (53%) 46 (38%)
Theil 12 (35%) 30 (35%) 4 (27%) 31 (26%)

Irrespective of the programming language, the impact that aggregation schemes

have on defect prediction models remains largely consistent. For instance, using all

schemes is generally beneficial to most of the studied systems when predicting defect

proneness, no matter what programming language the system is written in. When predict-

ing defect rank, using all schemes achieves results that are the closest to the performance of

the optimal model for projects developed in C and C++, while using summation is slightly
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better than using all schemes for only one project developed in Java. For projects developed

in C# or Java, solely using summation in models that predict defect count is slightly bet-

ter than using all schemes with a difference of two and three projects, respectively. When

building effort-aware models, using the median scheme is beneficial to most of the systems

written in C, C#, and Java. For systems written in C++, using the mean scheme achieves

results that are slightly closer to the optimal performance than using median. Hence, we

conclude that the impact of aggregation schemes is largely consistent across systems de-

veloped in any of the four studied programming languages.

Solely using summation rarely leads to the optimal performance in models that predict
defect proneness or effort-aware models, where using all schemes and using mean/median
are recommended, respectively. Moreover, using all schemes is still beneficial to defect
rank models, especially for projects written in C and C++. In models that predict defect
count, solely using summation is sufficient. Indeed, applying all schemes is a low-cost
option that is worth experimenting with.

5.5.4 Guidelines for Future Defect Prediction Studies

In this section, we discuss the broader implications of our results by providing guidelines

for future defect prediction studies:

(G1) Regardless of the programming language, using all studied aggregation schemes

is recommended when building models for predicting defect proneness and rank.

In particular, defect proneness models that use all aggregation schemes achieve the

optimal performance in 40% of the studied systems, while solely using the summa-

tion scheme achieves the optimal performance in only 11% of projects. Furthermore,

for models that rank files according to their defect density, using all schemes is better

than solely using summation for projects developed that are in C and C++.
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(G2) Using summation is recommended for defect count models. Solely using sum-

mation is better than using all schemes for projects that are developed in C# or Java,

and leads to the same predictive power as using all schemes for projects that are

developed in C and C++.

(G3) Either the mean or the median aggregation scheme should be used in effort-

aware defect prediction models. In particular, the median aggregation scheme

should be used for projects developed in C, C#, or Java. The mean aggregation

scheme is suggested when building effort-aware defect prediction models for C++

projects. In general, using median achieves the optimal performance for 71% of the

studied systems.

5.6 Threats to Validity

In this section, we discuss the threats to the validity of our study with respect to Yin’s

guidelines for case study research [199].

Threats to conclusion validity are concerned with the relationship between the treat-

ment and the outcome. The threat to our treatments mainly arises from our choice of met-

rics (i.e., only six method-level metrics, and no class-level metrics). However, the primary

goal of our study is not to train the most effective defect prediction models, but instead to

measure relative improvements by exploring different aggregation schemes.

Threats to internal validity are concerned with our selection of subject systems and

analysis methods. As the majority of systems that are hosted on SourceForge and Google-

Code are immature, we carefully filter out systems that have not accumulated sufficient

history to train defect prediction models. To obtain a stable picture of the performance of
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our defect prediction models, we perform 1,000 iterations of out-of-sample bootstrap val-

idation. In addition, we apply non-parametric statistical methods (i.e., Mann-Whitney U

test and Cliff’s δ) to draw our conclusions.

Threats to external validity are concerned with the generalizability of our results. We

investigate 11 schemes that can capture five aspects (summation, central tendency, disper-

sion, inequality index, and entropy) of the distribution of software metrics. Moreover, we

study 255 open source systems that are drawn from a broad range of domains. Hence, we

believe that our conclusions may apply to other defect prediction contexts. Nonetheless,

replication studies could be advised.

Threats to reliability validity are concerned with the possibility of replicating this study.

Our subject projects are all open source systems, and the tool for computing software met-

rics is publicly accessible. Furthermore, we provide details of our experiments in a repli-

cation package that we have posted online2.

5.7 Chapter Summary

Aggregation is an unavoidable step in training defect prediction models at the file-level.

This is because defect data is often collected at file-level, but many software metrics are

computed at the method- and class-levels. One of the widely used schemes for metric

aggregation is summation [111, 112, 128, 135, 138, 154, 202, 208, 209]). However, recent

work [109] suggests that summation can inflate the correlation between Sloc and Cc in

Java projects. Fortunately, there are many other aggregation schemes that capture other

dimensions of a low-level software metric (e.g., dispersion, central tendency, inequality,

and entropy). Yet, the impact that these additional aggregation schemes have on defect

2http://www.feng-zhang.com/replication/aggregation

http://www.feng-zhang.com/replication/aggregation
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prediction models remains largely unexplored.

To that end, we perform experiments using 255 open source systems to explore how

aggregation schemes impact the performance of defect prediction models. First, we inves-

tigate the impact that aggregation schemes have on the correlation among metrics and the

correlation between metrics and defect count. We find that aggregation can increase or de-

crease both types of correlation. Second, we examine the impact that aggregation schemes

have on defect proneness, defect rank, defect count, and effort-aware defect prediction

models. Broadly speaking, we find that summation tends to underestimate the performance

of defect proneness and effort-aware models. Hence, it is worth applying multiple aggrega-

tion schemes for defect prediction purposes. For instance, applying all 11 schemes achieves

the optimal performance in predicting defect proneness in 40% of the studied projects.

From our results, we provide the following guidelines for future defect prediction stud-

ies. When building models for predicting defect proneness and rank, our recommendation

is to use all of the available aggregation schemes to generate the initial set of predictors

(i.e., aggregated metrics), and then perform PCA or feature selection to remove redun-

dancies. For models that predict defect count, solely using summation is likely sufficient.

To generate the initial set of predictors for effort-aware defect prediction models, the me-

dian scheme is advised for projects developed in C, C#, or Java, and the mean scheme is

suggested for projects written in C++.

Given that the computation cost for these additional aggregation schemes is negligi-

ble, we strongly suggest researchers and practitioners experiment with many aggregation

schemes when building defect prediction models.
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Generalizing Defect Prediction Models



118

C
h
a
pt
er 6 Supervised Approach

Key Question

Is it feasible to generalize a defect pre-
diction model that is built using a super-
vised approach?
?

6.1 Introduction

Most approaches apply a supervised classifier to build defect prediction models [45]. A

supervised classifier requires the training data to build a model and is applied on the target

data. The heterogeneity between the training and target data threatens the performance

of cross-project defect prediction. To overcome such a challenge, there are two major

approaches: 1) use data from projects with a similar distribution of predictors to the target

project as training data (e.g., [124, 188]); or 2) transform predictors in both training and

target projects to make them more similar in their distribution (e.g., [118, 135]).

However, the first approach uses partial dataset and results in multiple models for differ-

ent target projects. The transformation approaches are typically specialized to a particular

pair of training and testing datasets. In Chapter 3, we found the distribution of software

metrics varies with project contexts (e.g., size and programming language). Therefore, we



6.1. INTRODUCTION 119

combine the three insights in an attempt to build a universal defect prediction model for a

large set of projects with diverse contexts.

In Chapter 4, we observed that three transformation methods (i.e., log, rank, and Box-

Cox) result in similar performance in cross-project defect prediction. Among these three

transformations, rank transformation has the advantage that it makes transformed software

metrics have exactly the same scales across projects. Therefore, in this study, we pro-

pose a context-aware rank transformation to address the variations in the distribution of

predictors before fitting them in the universal defect prediction model. We refer to a sin-

gle model that is built from the entire set of projects as a universal model. There are six

context factors investigated in this study, i.e., programming language, issue tracking, the

total lines of code, the total number of files, the total number of commits, and the total

number of developers. The context-aware approach stratifies the entire set of projects by

context factors, and clusters the projects with a similar distribution of predictors. Inspired

by metric-based benchmarks (e.g., [4]), which use quantiles to derive thresholds for rank-

ing software quality, we apply every tenth quantile of predictors on each cluster to specify

ranking functions. We use twenty-one code metrics and five process metrics as predictors.

After rank transformation, the predictors from different projects will have exactly the same

scale. The universal model is then built using the transformed predictors.

We apply our approach on 1,385 open source projects hosted on SourceForge and

GoogleCode. We observe that the F-measures and area under curve (AUC) obtained us-

ing rank-transformed predictors is comparable to that of logarithmically transformed pre-

dictors. The logarithmic transformation uses the logarithmic values of predictors, and is

commonly used to build prediction models. After adding the six context factors as predic-

tors, the performance of the universal model built using only code and process metrics can
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be further improved. The universal model yields higher AUC than within-project models.

Moreover, the universal model achieves up to 48% of the successful predictions of within-

project models using loose criteria (i.e., recall is above 0.70, and precision is greater than

0.50) suggested by He et al. [76] to determine the success of defect prediction models.

We examine the generalizability of the universal model in two ways. First, we build

the universal model using projects hosted on SourceForge and GoogleCode, and apply

the universal model on five external projects that are neither hosted on SourceForge nor

GoogleCode, including Lucene, Eclipse, Equinox, Mylyn, and Eclipse PDE. The results

show that the universal model provides a similar performance (in terms of AUC) as within-

project models for the five projects. Second, we compare the performance of the universal

model on projects of different context factors. The results indicate that the performance

does not change significantly among projects with different context factors. These results

suggest that the universal model is context-insensitive and generalizable.

In summary, the major contributions of our study are:

• Propose an approach of context-aware rank transformation. The rank transfor-

mation method addresses the problem of large variations in the distribution of predic-

tors across projects from diverse contexts. The transformed predictors have exactly

the same scales. This enables us to build a universal model for a large set of projects.

• Improve the performance of the universal model by adding context factors as

predictors. We add the context factors to our universal prediction model, and find

that context factors significantly improve the predictive power of the universal defect

prediction model (e.g., AUC increases from 0.61 to 0.64 comparing to the combina-

tion of code and process metrics).

• Provide a universal defect prediction model: The universal model achieves similar
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performance as within-project models for five external projects, and does not show

significant difference in the performance for projects with different context factors.

The universal model is context-insensitive and generalizable. We also provide the

estimated coefficients of predictors for the universal model.

Chapter organization. Section 6.2 and Section 6.3 describe our approach and experiment

design, respectively. Section 6.4 presents our results and discussions. The threats to validity

of our work are discussed in Section 6.5. We summarize the chapter in Section 6.6.

6.2 Approach

We now present the details of our approach for building a universal defect prediction model.

6.2.1 Overview

The poor performance of cross-project prediction may be caused by the significant differ-

ences in the distribution of metric values among projects [43, 135]. Therefore, to build a

universal model using a large set of projects, it is essential to reduce the difference in distri-

bution of metric values across projects. Our previous work [201] finds that context factors

of projects can significantly affect the distribution of metric values. Therefore, we propose

a context-aware rank transformation approach to pre-process metric values before fitting

them to the universal model. Figure 6.1 shows the following four steps of our approach.

(S1) Partitioning projects. We partition the entire set of projects into non-overlapping

groups based on the six context factors (i.e., programming language, issue tracking,

the total lines of code, the total number of files, the total number of commits, and

the total number of developers). This step aims to reduce the number of pairwise
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Figure 6.1: Our four-step rank transformation approach: 1) stratify the set of projects along
different contexts into non-overlap groups; 2) cluster project groups; 3) derive
ranking function for each cluster; and 4) perform rank transformation.

comparisons. We compare the distribution of metric values across groups of projects

instead of individual projects.

(S2) Clustering projects. We cluster the project groups with similar distributions of pre-

dictor values. This step aims to merge similar groups of projects so that we could

include more projects in each cluster for obtaining ranking functions.

(S3) Obtaining ranking functions. We derive a ranking function for each cluster using

every 10th quantile of predictor values. This transformation removes large variations

in the distribution of predictors transforming them to exactly the same scale.

(S4) Ranking software metrics. We apply the ranking functions to convert the raw values

of predictors to one of the ten levels. This step aims to remove the difference in the

scales of metric values from different projects. The scales of the transformed metric

values are exactly the same for all projects.

After the preprocessing steps, we build the universal model based on the transformed

predictors. The following subsections describe the context factors used in this study, and

the details of each step.
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6.2.2 Context Factors

Software projects have diverse context factors. However, it is still unclear what context

factors best characterize projects. For instance, Nagappan et al. [130] choose seven context

factors based on their availability in Ohloh1, including main programming language, the to-

tal lines of code, the number of contributors, the number of churn, the number of commits,

project age, and project activity. Along the same lines, our previous work [201] selects

seven context factors, i.e., application domain, programming language, age, lifespan, the

total lines of code, the number of changes, and the number of downloads. The shared con-

text factors of the aforementioned two studies are programming language, the total lines of

code, and the number of commits. These factors are common to all projects with version

control systems, and are included in this study. Three factors (i.e., project age, lifespan, and

the number of downloads) do not significantly affect the distribution of metric values [201],

thus are excluded from this study. The information of application domain is unavailable to

our subject projects that are hosted on GoogleCode. Thus we exclude application domain

as well. Moreover, we add the number of developers as Nagappan et al. [130], and the

number of files as size measurement. Finally, we choose the following six context factors.

(C1) Programming language (PL) describes the nature of programming paradigms. There

is a high chance for metric values of different programming languages to experience

significantly different distributions. Moreover, it is interesting to investigate the pos-

sibility of inter language reuse of prediction models. Due to the limitation of our

metric computing tool, we only consider projects mainly written in C, C++, Java,

C#, or Pascal. A project is mainly written in programming language pl if the largest

number of source code files are written in pl.

1https://www.openhub.net (NOTE: ’Ohloh’ was changed to ’Open Hub’ in 2014.)
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(C2) Issue tracking (IT) describes whether a project uses an issue tracking system or

not. The usage of an issue tracking system can reflect the quality of the project

management process. It is likely that the distribution of metric values are different

between projects with or without usage of issue tracking systems. A project uses an

issue tracking system if the issue tracking system is enabled in the website of the

project and there is at least one issue recorded.

(C3) Total lines of code (TLOC) describes the project size in terms of source code. Com-

ment and blank lines are excluded when counting the total lines of code. Moreover,

the lines of code of files that are not written in the main language of the project

are also excluded. Such exclusion simplifies our approach for transforming metric

values, as only one programming language is considered for each project.

(C4) Total number of files (TNF) describes the project size in terms of files. This context

factor measures the project size from a different granularity to the total lines of code.

Similar to the total lines of code measurement, we exclude files that are not written

in the main language of each project.

(C5) Total number of commits (TNC) describes the project size in terms of commits.

Different from the total lines of code and the total number of files, this context factor

captures the project size from the process perspective. The total number of commits

can describe how actively the project was developed.

(C6) Total number of developers (TND) describes the project size in terms of develop-

ers. Teams of different sizes (e.g., small or large) may follow different development

strategies, therefore the team size can impact the distribution of metric values.
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6.2.3 Partitioning Projects

We assume that projects with the same context factors have similar distribution of software

metrics, and projects with different contexts might have different distribution of software

metrics. Hence, we stratify the entire set of projects based on the aforementioned six

context factors.

(C1) PL. We divide the set of projects into 5 groups based on programming languages:

Gc, Gc++, G java, Gc#, and Gpascal .

(C2) IT. The set of projects is separated into 2 groups based on the usage of an issue

tracking system: GuseIT and GnoIT .

(C3) TLOC. We compute the TLOC of each project and the quartiles of TLOC. Based

on the first, second, and third quartiles, we split the set of projects into 4 groups:

GleastT LOC , GlessT LOC , GmoreT LOC , and GmostT LOC .

(C4) TNF. We calculate TNF of each project, and the quartiles of TNF. Based on the first,

second, and third quartiles, we separate the set of projects into 4 groups: GleastT NF ,

GlessT NF , GmoreT NF , and GmostT NF .

(C5) TNC. We compute the TNC of each project, and the quartiles of TNC. Based on the

first, second, and third quartiles, we break the entire set of projects into 4 groups:

GleastT NC , GlessT NC , GmoreT NC , and GmostT NC .

(C6) TND. We calculate the TND of each project, and the quartiles of TND. Based on

the first, second, and third quartiles, we split the whole set of projects into 4 groups:

GleastT N D, GlessT N D, GmoreT N D, and GmostT N D.
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In summary, we get 5, 2, 4, 4, 4, and 4 non-overlapping groups along each of the six

context factors, respectively. In total, we obtain 2560 (i.e., 5 × 2 × 4 × 4 × 4 × 4) non-

overlapping groups for the entire set of projects.

6.2.4 Clustering Similar Projects

In the previous step, we obtain non-overlapping groups of projects. However, the size

of most groups is small. In some cases the non-overlapping groups of projects do not

have significantly different distributions of metrics. In addition, clustering similar projects

together helps obtain more representative quantiles of a particular metric. At this step, we

cluster the projects with a similar distribution of a metric. We consider two distributions

to be similar if neither their difference is statistically significant nor the effect size of their

difference is large, as our previous study [201].

For different metrics, the corresponding clusters are not necessarily the same. In other

words, we produce a particular set of clusters for each individual metric. We describe a

cluster using a vector. The first element shows for what metric the cluster is created, and

the remaining elements characterize the cluster from the context factor perspective. For

example, the cluster < m, C++, useIT , moreT LOC > is created for metric m, contains

C++ projects that use issue tracking systems, and has the TLOC between the second and

third quartiles (see Section 6.2.2).

For each metric m, the clusters of projects with a similar distribution of metric m are

obtained using Algorithm 6.1. Algorithm 6.1 has two major steps:

1) Comparing the Distribution of Metrics. This step (Line 8 in Algorithm 6.1) merges

the groups of projects that do not have significantly different distribution of metric m.
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Algorithm 6.1: Clustering Similar Projects
Input: m: the metric m

N: the number of groups
Output: clusterOfGroup: the cluster index of projects
/* Initialize the array clusterOfGroup. */

1 int indexOfCluster = 1;
2 for i = 1 to N do
3 clusterOfGroup[i] = indexOfCluster;
4 end
/* Do the clustering. */

5 for i = 1 to N − 1 do
6 int indexNewCluster = indexOfCluster+1;
7 for j = i + 1 to N do

/* Compare the distribution of metric values between two groups i and j. */
8 compareMetricDistribution(m, i, j);
9 if the difference is statistically significant then

/* Quantify the importance of the difference. */
10 computeCliffsDelta(i, j);
11 if Cliff’s δ is large then

/* Put group i and j in different clusters. */
12 if clusterOfGroup[j] equals to clusterOfGroup[i] then

/* Put group j in a new cluster. */
13 clusterOfGroup[j] = indexNewCluster;

/* Update the base counter to compute new clusters. */
14 indexOfCluster = indexNewCluster;
15 end
16 end
17 end
18 end
19 end

We apply Mann-Whitney U test [173] to compare the distribution of metric values be-

tween every two groups of projects, using the 95% confidence level (i.e., p-value<0.05).

The Mann-Whitney U test assesses whether two independent distributions have equally

large values. It is a non-parametric statistical test. Therefore it does not assume a normal

distribution. As we conduct multiple tests to investigate the distribution of each metric,

we apply Bonferroni correction to control family-wise errors. Bonferroni adjusts the

threshold p-value by dividing it by the number of tests.

2) Quantifying the Difference between Distributions. This step (Lines 10 to 16 in Al-

gorithm 6.1) merges the groups of projects that have significantly different distributions
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of metric m, but the difference is not large. We calculate Cliff’s δ (Line 10 in Algo-

rithm 6.1) as the effect size [160] to quantify the importance of the difference between

the distribution of every two groups of projects. Cliff’s δ estimates non-parametric ef-

fect sizes. It makes no assumptions of a particular distribution, and is reported [160]

to be more robust and reliable than Cohen’s d [38]. Cliff’s δ represents the degree of

overlap between two sample distributions [160]. It ranges from -1 (if all selected values

in the first group are larger than the second group) to +1 (if all selected values in the

first group are smaller than the second group). It is zero when two sample distributions

are identical [36]. Cohen’s standards (i.e., small, medium, and large) are commonly

used to interpret effect size. Therefore, we map the Cliff’s δ to Cohen’s standards, using

the percentage of non-overlap [160]. The mapping between the Cliff’s δ and Cohen’s

standards is shown in Table 3.6. Cohen [39] states that a medium effect size represents

a difference likely to be visible to a careful observer, while a large effect is noticeably

greater than medium. In this study, we choose the large effect size as the threshold of

the importance of the differences between the distributions (Line 11 in Algorithm 6.1).

6.2.5 Obtaining Ranking Functions

In Section 6.2.4, we create clusters of projects for each metric, independently. For a par-

ticular metric, projects within the same cluster exhibit similar distribution of values of the

corresponding metric. To remove the variation in the scales of metric values, this step

derives ranking functions for each cluster. The ranking function transforms the raw met-

ric values to predefined values (i.e., ranging from one to ten). Therefore, the transformed

metrics have exactly the same scale among the projects.
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Table 6.1: An example of ranking functions.

Range of Metric Value [0, 11] (11, 22] (22, 33] . . . (99, +∞)

Rank (m1,Cl12, value) 1 2 3 . . . 10

We use the quantiles of metric values to formulate our ranking functions. This is in-

spired by metric-based benchmarks (e.g., [4]), which often use the quantiles to derive

thresholds of metrics. The thresholds of metrics are used to distinguish files of different

quality related to defects.

Let M denote the total number of metrics. For metric mi (where i ∈ {1, . . . ,M }), the

corresponding clusters are represented using Cli1, Cli2, . . ., and CliNi , where Ni is the total

number of clusters obtained for metric mi. We formulate the ranking function for metric mi

in the jth cluster Ci j following Equation (6.1).

Rank (mi,Cli j ,value) =




1 if value ∈ [0,Qi j,1(mi)]

k if value ∈ (Qi j,k−1(mi),Qi j,k (mi)]

10 if value ∈ (Qi j,9(mi),+∞)

(6.1)

where the variable value denotes the value of metric mi to be converted, Qi j,k (mi) is the

k ∗ 10th quantile of metric mi in cluster Cli j , j ∈ {1, . . . ,Ni}, and k ∈ {2, . . . ,9}.

For example, we assume that every 10th quantile for a metric m1 in cluster Cl12 is:

11, 22, 33, 44, 55, 66, 77, 88, and 99, respectively. The ranking function for metric m1

in cluster Cli j is shown in Table 6.1. If metric m1 has a value of 27 in a file of a project

that belongs to cluster Cl12, then the metric value in the file will be converted to 3. This

is because the value 27 is greater than 22 (i.e., the 20% quantile) and less than 33 (i.e., the

30% quantile).
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6.2.6 Building a Universal Defect Prediction Model

1) Choice of Modelling Techniques. Lessmann et al. [112] and Arisholm et al. [8] show

that there is no significant difference among different modelling techniques in the perfor-

mance of defect prediction models. However, Kim et al. [102] find that Bayes learners

(i.e., Bayes Net and Naive Bayes) perform better when defect data contains noise, even

up to 20%-35% of false positive and false negative noise in defect data. Based on their

findings, we apply Naive Bayes as the modelling technique in our experiments to eval-

uate the performance of the universal defect prediction model. When investigating the

importance of different metrics in the universal model, we apply a logistic regression

model as it is common practice to compare the importance of different metrics [211].

2) Steps to Build the Universal Defect Prediction Model. Our universal model is built

upon the entire set of projects using rank transformed metric values. The first step is to

transform metric values using ranking functions that are obtained from our dataset. In

order to locate the ranking function for metric mi in project p j , we need to determine

which cluster project p j belongs to. We identify context factors of project p j , and for-

mulate a vector like < mi, C++, useIT , moreT LOC, lessT NF, lessT NC, lessT N D >

to present a cluster, where the first item specifies the metric, and the remaining items

describe the corresponding context factors that projects in this cluster belong to. The

vector of project p j is then compared to the vectors of all clusters. The exactly matched

cluster is the cluster that project p j belongs to. After the transformation, the values of

metrics will have the same scale ranging from one to ten.

The second and the last step is to build the model. We apply the Naive Bayes algorithm2

2https://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html
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implemented in Weka3 tool to build a universal defect prediction model upon the entire

set of projects.

6.2.7 Measuring the Performance

To evaluate the performance of prediction models, we compute the confusion matrix as

shown in Table 4.3. In the confusion matrix, true positive (TP) is the number of defective

files that are correctly predicted as defective files; false negative (FN) counts the number of

defective files that are incorrectly predicted as clean files; false positive (FP) measures the

number of files that are clean but incorrectly predicted as defective; and true negative (TN)

represents the number of clean files that are correctly predicted as clean files.

We calculate the following six measures (i.e., precision, recall, false positive rate, F-

measure, g-measure, and Matthews correlation coefficient) using the confusion matrix. We

also compute the area under curve (AUC) as an additional measure.

• Precision (prec) measures the proportion of actual defective entities that are pre-

dicted as defective against all predicted defective entities. It is defined as: prec =

T P
T P+FP .

• Recall (pd) evaluates the proportion of actual defective entities that are predicted as

defective against all actual defective entities. It is defined as: pd = T P
T P+FN .

• False positive rate ( f pr) is the proportion of actual non-defective entities that are

predicted as defective against all actual non-defective entities. It is defined as: f pr =

FP
FP+T N .

3http://www.cs.waikato.ac.nz/ml/weka
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• F-measure calculates the harmonic mean of precision and recall. It balances precision

and recall. It is defined as: F-measure =
2×pd×prec

pd+prec .

• g-measure computes the harmonic mean of recall and 1-fpr. The 1-fpr represents

Specificity (not predicting entities without defects as defective). We report g-measure

as Peters et al. [151], since Menzies et al. [122] show that precision can be unstable

when datasets contain a low percentage of defects. It is defined as: g-measure =

2×pd×(1− f pr)
pd+(1− f pr) .

• Matthews correlation coefficient (MCC) is a balanced measure of true and false pos-

itives and negatives. It ranges from -1 to +1, where +1 indicates a perfect predic-

tion, 0 means the prediction is close to random prediction, and -1 represents to-

tal disagreement between predicted and actual values. It is defined as: MCC =

T P×T N−FP×FN√
(T P+FP)×(T P+FN )×(T N+FP)×(T N+FN )

.

• Area under curve (AUC) is the area under the receiver operating characteristics

(ROC) curve. ROC is independent of the cut-off value that is used to compute the

confusion matrix.

Moreover, the confusion matrix can be reconstructed from precision, recall, and d [71],

where d represents the proportion of correct predictions (i.e., d = T P + T N). We can

compute d using precision (prec), recall (pd), and false positive rate ( f pr) as follows:

d =
prec × f pr

pd × (1 − prec) + prec × f pr
(6.2)
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6.3 Experiment Setup

6.3.1 Subject Projects

SourgeForge and GoogleCode are two large and popular repositories for open source projects.

We use the SourceForge and GoogleCode data initially collected by Mockus [125] with his

updates until October 2010. The dataset contains the full history of about 154K projects

that are hosted on SourceForge and 81K projects that are hosted on GoogleCode to the date

they were collected. The file contents of each revision and commit logs are stored sepa-

rately and linked together using a universal unique identifier. The storage of file contents of

SourceForge and GoogleCode projects distributes in 100 database files. Each database file

is about 8 Giga bytes. The storage of commit logs distributes in 13 compressed files that

have a total size of about 10 Giga bytes. Although we have 235K projects in total, there

are too many trivial projects. Many projects do not have enough history and defect data

for evaluation. Hence, we clean the dataset and obtain 1,385 projects for our experiments.

Comparing to the 1,398 projects used in our previous work [202], there are 13 projects re-

moved due to an error in data pre-processing. The error is identified during this extension,

and has been fixed. The cleaning process is detailed in the following subsection.

6.3.2 Cleaning the Dataset

(F1) Filtering out projects by programming languages. We use a commercial tool,

called Understand [164], to compute code metrics. Due to the limitation of the tool,

we only investigate projects that are mainly written in C, C++, C#, Java, or Pascal.

For each project, we determine its main programming languages by counting the total

number of files per file type (i.e., *.c, *.cpp, *.cxx, *.cc, *.cs, *.java, and *.pas).
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(F2) Filtering out the projects with a small number of commits. A small number of

commits can not provide enough information for computing process metrics and min-

ing defect data. We compute the quantiles of the number of commits of all projects

throughout their history. We choose the 25% quantile of the number of commits as

the thresholds to filter out projects. In our dataset, we filter out the projects with less

than 32 (inclusive) commits throughout their histories.

(F3) Filtering out the projects with lifespan less than one year. Most studies in defect

prediction collect defect data from six months’ period [208] after the software release,

and compute process metrics using the six months’ data ahead. However, numerous

projects on SourceForge or GoogleCode do not have clear release periods. Therefore,

we simply determine the split date for each project by looking 6 months (i.e., 182.5

days) back from its last commit. We collect defect data in the six months’ period

after the split date, and compute process metrics using the change history in the six

months’ period before the split date. Thus we filter out the projects with a lifespan

less than one year (i.e., 365 days).

(F4) Filtering out the projects with limited defect data. Defect data needs to be mined

from enough commit messages. We count the number of fix-inducing and non-fixing

commits from a one-year period. We choose the 75% quantile of the number of fix-

inducing (respectively non-fixing) commits as the thresholds to filter out the projects

with less defect data. For projects hosted on SourceForge, the 75% quantile of the

number of fix-inducing and non-fixing commits are: 152 and 1,689, respectively. For

projects hosted on GoogleCode, the 75% quantile of the number of fix-inducing and

non-fixing commits are: 92 and 985, respectively.
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Figure 6.2: Boxplot of four numeric context factors (i.e., TLOC, TNF, TNC, and TND) in
our dataset.

(F5) Filtering out the projects without fix-inducing commits. Subject projects in defect

prediction studies usually contain defects. For example, the 56 projects used by Peters

et al. [151] have at least one defect. We consider the projects that have no fix-inducing

commits during six months as abnormal projects, therefore we filter out such projects.

Moreover, there are 13 projects with few commits during the six-month period of

collecting process metrics. We filter out these 13 projects since process metrics are

not available for them.

Description of the final experiment dataset. In the cleaned dataset, there are 931 Source-

Forge projects, and 454 GoogleCode projects. Among them, 713 projects employ CVS as

their version control system, 610 projects use Subversion, and 62 projects adopt Mercurial.

The number of projects that are mainly written in C, C++, C#, Java, and Pascal are 283,

421, 84, 586, and 11, respectively. There are 810 projects using issue tracking systems, and

575 projects without using any issue tracking system. We show the boxplot of other four

context factors in Figure 6.2.

6.3.3 Software Metrics

Software metrics are used as predictors to build a defect prediction model. In this study,

we choose 21 code metrics, and 5 process metrics that are often used in defect prediction

models. The list of selected metrics is shown in Table 6.2. File and Method level metrics
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Table 6.2: List of software metrics. The last column refers to the aggregation scheme
(“none” means that aggregation is not performed for file level metrics).

Type Metric Level Metric Name Description Aggregation

Code

File

Loc Lines of Code none

Metrics

Cl Comment Lines none
Nstmt Number of Statements none
Nfunc Number of Functions none
Rcc Ratio Comments to Code none
Mnl Max Nesting Level none

Class

Wmc Weighted Methods per Class avg, max, total
Dit Depth of Inheritance Tree avg, max, total
Rfc Response For a Class avg, max, total
Noc Number of Immediate Subclasses avg, max, total
Cbo Coupling Between Objects avg, max, total
Lcom Lack of Cohesion in Methods avg, max, total
Niv Number of instance variables avg, max, total
Nim Number of instance methods avg, max, total
Nom Number of Methods avg, max, total
Npbm Number of Public Methods avg, max, total
Npm Number of Protected Methods avg, max, total
Nprm Number of Private Methods avg, max, total

Methods

Cc McCabe Cyclomatic Complexity avg, max, total
Fanin Number of Input Data avg, max, total
Fanout Number of Output Data avg, max, total

Process File

Nrev Number of revisions none

Metrics

Nfix Number of revisions a file none
was involved in bug-fixing

AddedLoc Lines added avg, max, total
DeletedLoc Lines deleted avg, max, total
ModifiedLoc Lines modified avg, max, total

are available for all the five studied programming languages. Class level metrics are only

available for object-oriented programming languages, and are set to zero in files written

in C. As defect prediction is performed at file level in this study, method level and class

level metrics are aggregated to file level using three schemes, i.e., average (avg), maxi-

mum (max), and summation(total). The code metrics are computed by the Understand

tool [164]. Process metrics include the number of revisions and bug-fixing revisions (see

Section 6.3.4), and lines of added/deleted/modified code. Process metrics are computed

by our scripts. For each file, we extract all revisions that are performed during the period

for collecting process metrics, and obtain the number of revisions and bug-fixing revisions.

The number of added, deleted, and modified lines between each two consecutive revisions
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of each file are computed, and then aggregated to file level using the three aforementioned

schemes. As mentioned in Section 6.3.2, we look 6 months (i.e., 182.5 days) back from

the last commit to obtain the split date. The code metrics are computed using the files from

the snapshot of the split date. The process metrics are computed using the change history

in the six months’ period before the split date.

6.3.4 Defect Data

Defect data are often mined from commit messages, and corrected using defect information

stored in an issue tracking system [208]. In our dataset, 42% of subject projects do not use

issue tracking systems. For such projects, we mine defect data solely by analyzing the

content of commit messages. A similar method for mining defect data is used by Mockus

and Votta [126] and in SZZ algorithm [179]. We first remove all words ending with “bug"

or “fix" from commit messages, since “bug" and “fix" can be affix of other words (e.g.,

“debug" and “prefix"). A commit message is tagged as fixing defect, if it matches the

following regular expression:

(bug | f ix |error |issue|crash|problem | f ail |de f ect |patch)

Using commit messages to mine defect information may be biased [16, 81, 102]. How-

ever, Rahman et al. [158] report that increasing the sample size can mitigate the possible

bias in defect data. Our dataset contains 1,385 subject projects, and is around 140 to 280

times larger than most studies performed in this field [151]. In addition, the modelling

technique (i.e., Naive Bayes) used in this study is shown by Kim et al. [102] to have strong

noise resistance with up to 20%-35% of false positive and false negative noises in defect

data. The defect data is collected in the six months’ period after the split date. We show the

boxplot of the number of defects and the percentage of defects in our dataset in Figure 6.3.
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Figure 6.3: Boxplot of the number of defects and the percentage of defects in our dataset.

6.4 Case Study Results

This section first describes the statistics of our project clusters, and then presents the moti-

vation, approach, and findings of the following five research questions.

(RQ1) Can a context-aware rank transformation provide predictive power comparable to

the power of log transformation?

(RQ2) What is the performance of the universal defect prediction model?

(RQ3) What is the performance of the universal defect prediction model on external projects?

(RQ4) Do context factors affect the performance of the universal defect prediction model?

(RQ5) What predictors should be included in the universal defect prediction model?

6.4.1 Project Clusters

In our dataset, there are 1,385 open source projects. The set of projects is stratified into

non-overlapped groups along the six context factors: programming language, issue track-

ing, total lines of code, total number of files, total number of commits, and total number

of developers, respectively. In total, we obtain 478 non-empty groups. For each metric,

we perform
(

478
2

)
= 478!

2!×476! = 114,003 times of Mann-Whitney U tests to compare the

difference of the distribution between any pair of groups. To control family-wise errors, we
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adjust the threshold p-value using Bonferroni correction to 0.05/114,003 = 4.39e-07. Any

pair of groups without statistically significant difference in their distribution are merged

together. Moreover, the pair of groups without a large difference (measured by Cliff’s δ)

are also merged together. The maximum number of clusters observed for a metric is 32,

which is the number of clusters obtained for the metric total_Cbo (i.e., the sum of values of

coupling between objects per file).

6.4.2 Research Questions

RQ1: Can a context-aware rank transformation provide predictive power comparable to

the power of log transformation?

Motivation. We have proposed a context-aware rank transformation method to eliminate

the impact of varied scales of metrics among different projects. The rank transformation

converts raw values of all metrics to levels of the same scale. Before fitting the rank trans-

formed metric values to a universal defect prediction model, it is necessary to evaluate

the performance of our transformation approach. To achieve this goal, we compare the

performance of defect prediction models built using rank transformations to the models

built using log transformations. The log transformation uses the logarithm of raw met-

ric values, and has been proved to improve the predictive power in defect prediction ap-

proaches [93, 123].

Approach. For each project, we build two within-project defect prediction models using

metrics listed in Table 6.2. One uses log transformed metric values, and the other uses

rank transformed metric values. We call a model a within-project defect prediction model

if both training and testing data are from the same project. To evaluate the performance of

predictions, we perform 10-fold cross validation on each project.

To investigate the performance of our rank transformation, we test the following null
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hypothesis for each performance measure:

H01: there is no difference in the performance of defect prediction models built using

log and rank transformations.

Hypothesis H01 is two-tailed, since it investigates if rank transformation yields better

or worse performance than log transformation. We conduct two-tailed and paired Wilcoxon

rank sum test [173] to compare the seven performance measures, using the 95% confidence

level (i.e., p-value<0.05). The Wilcoxon rank sum test is a non-parametric statistical test

to assess whether two independent distributions have equally large values. Non-parametric

statistical methods make no assumptions about the distribution of assessed variables. If

there is a statistical significance, we reject the hypothesis and conclude that the performance

of the two transformation techniques are different. Moreover, we compare the proportion

of the successful predictions. The success of predictions is determined using two criteria:

1) strict criteria (i.e., precision and recall are greater than 0.75), as used by Zimmermann

et al. [210]; and 2) loose criteria (i.e., precision is greater than 0.5 and recall is greater than

0.7), as applied by He et al. [76].

Findings. There are 99 projects that do not contain enough files to perform 10-fold cross

validation. Hence, we compare the performance of log and rank transformations on the re-

maining 1,286 projects. Table 6.3 presents the mean values of the seven performance mea-

sures of both log and rank transformations, and the corresponding p-values of Wilcoxon

rank sum test. We reject the hypothesis H01 for most measures (except recall), and con-

clude that there is significant difference between rank transformation and log transfor-

mation in within-project defect prediction in precision, false positive rate, F-measure, g-

measure, MCC, and AUC. However, the differences between their average performance

measures are negligible (i.e., the absolute value of Cliff’s δ is less than 0.147), as shown
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Figure 6.4: Boxplots of performance measures of models built using log and rank transfor-
mations.

Table 6.3: The results of Wilcoxon rank sum tests and mean values of the seven perfor-
mance measures of log transformation and our context-aware rank transforma-
tion in the within-project settings. (* denotes statistical significance.)

Measures Log transformation Rank transformation p-value Cliff’s δ

prec 0.519 0.525 2.42e-04* -0.091
pd 0.576 0.580 0.08 -0.047
fpr 0.369 0.359 4.04e-04* 0.113
F-measure 0.527 0.534 8.19e-06* -0.113
g-measure 0.511 0.521 1.37e-09* -0.113
MCC 0.202 0.214 7.44e-06* -0.120
AUC 0.609 0.615 8.90e-05* -0.091

in Table 6.3. To better illustrate the differences, we show the boxplots of performance

measures of models built using log and rank transformation in Figure 6.4.

Furthermore, the proportion of successful predictions for both approaches is identical

where it is 13% and 27% using the strict and loose criteria for successful prediction, respec-

tively. Therefore, we conclude that rank transformation achieves comparable performance

to log transformation. It is reasonable to use the proposed rank transformation method to

build universal defect prediction models.

Rank transformation achieves comparable performance to log transformation. The univer-
sal model can be built using rank transformed predictors.
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RQ2: What is the performance of the universal defect prediction model?

Motivation. The findings of RQ1 support the feasibility of our proposed rank transforma-

tion method for building defect prediction models. However, building an effective universal

model is still a challenge. For instance, Menzies et al. [124] report the poor performance

of a model built on an entire set of diverse projects. This research question aims to in-

vestigate the best achievable predictive power of the universal model. First, we evaluate

if the predictive power of the universal model can be improved by adding context factors

as predictors, together with code metrics and process metrics that are commonly used in

prior studies for defect prediction. Second, we study if the universal model can achieve

comparable performance as within-project defect prediction models. Accordingly, we split

RQ2 to two sub questions:

RQ2.1: Can context factors improve the predictive power?

RQ2.2: Is the performance of the universal model defect prediction comparable to within-

project models?

Approach. We describe our approaches to address each sub question.

To address RQ2.1, we build the universal model using five combinations of metrics: 1)

code metrics; 2) code and process metrics; 3) code metrics and context factors; 4) process

metrics and context factors; and 5) code, process metrics, and context factors. All metrics

are transformed using the context-aware rank transformation. To evaluate the performance

of predictions, we perform 10-fold cross validation on the entire set of projects. To compare

the performance of the universal model among different combination of metrics, we test the

following null hypothesis for each pair of metric combinations:
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H021: there is no difference in the performance of the universal defect prediction mod-

els built using two metric combinations.

To address RQ2.2, we obtain the performance of within-project and universal models

for each project, respectively. The predictive power of within-project models is obtained

using 10-fold cross-validation (same as RQ1). The performance of universal models on a

particular project is evaluated by applying a universal model built upon the remaining set of

projects on the project. We compute and compare the proportion of acceptable predictions

of both the universal model and the within-project models. To compare the performance of

within-project and universal models, we test the following null hypothesis for each perfor-

mance measure:

H022: there is no difference in the performance of within-project and universal defect

prediction models.

Hypotheses H021 and H022 are two-tailed, since they investigates if one prediction

model yields better or worse performance than the other prediction model. We apply two-

tailed and paired Wilcoxon rank sum test (95% confidence level) to examine the hypothesis.

If there is significance, we reject the null hypothesis and compute Cliff’s δ [36] to measure

the difference.

Findings. We report our findings for our two sub questions.

(RQ2.1) Table 6.4 (a) provides the performance measures of the universal model using

each combination of metrics. In general, adding context factors increases five performance

measures (i.e., precision, F-measure, g-measure, MCC, and AUC value). AUC value is the

only measure that is independent of the cut-off value. As the space is limited, Table 6.4 (b)

only presents Cliff’s δ and p-value of Wilcoxon rank sum tests on comparisons of AUC

values. We observe that adding context factors significantly improves performance over
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Table 6.4: The results of comparing the universal models built using code metrics (CM),
code + process metrics (CPM), code metrics and context (CM-C), process met-
rics and context (PM-C), and code + process metrics + contexts (CPM-C), re-
spectively.

(a) The seven performance measures (mean ± std.dev).

Measures CM CPM CM-C PM-C CPM-C

prec 0.431 ± 0.067 0.437 ± 0.069 0.445 ± 0.061 0.438 ± 0.063 0.455 ± 0.065
pd 0.551 ± 0.020 0.548 ± 0.015 0.602 ± 0.048 0.557 ± 0.038 0.591 ± 0.040
fpr 0.404 ± 0.025 0.392 ± 0.020 0.419 ± 0.070 0.401 ± 0.073 0.396 ± 0.065
F-measure 0.480 ± 0.046 0.484 ± 0.048 0.508 ± 0.043 0.488 ± 0.048 0.510 ± 0.045
g-measure 0.572 ± 0.016 0.577 ± 0.013 0.587 ± 0.027 0.574 ± 0.029 0.594 ± 0.022
MCC 0.141 ± 0.032 0.150 ± 0.029 0.175 ± 0.047 0.150 ± 0.060 0.186 ± 0.045
AUC 0.600 ± 0.020 0.607 ± 0.019 0.636 ± 0.041 0.628 ± 0.046 0.641 ± 0.038

(b) The Cliff’s δ and p-value of Wilcoxon rank sum tests on the comparison of AUC
values. (* denotes statistical significance.)

Metric Sets CPM CM-C PM-C CPM-C

CM -0.572 0.07 -0.734 9.15e-03* -0.491 0.16 -0.804 5.89e-03*
CPM - - -0.606 0.04* -0.392 0.23 -0.707 8.00e-03*
CM-C - - - - 0.244 0.49 -0.631 0.02*
PM-C - - - - - - -0.406 0.13

using only code metrics. The Cliff’s δ is -0.734, indicating a large improvement (i.e.,

the absolute value of Cliff’s δ is greater than 0.474). In addition, adding context factors

yields significant improvement (Cliff’s δ is -0.707) in the performance over using just code

and process metrics. Hence, we conclude that the context factors are good predictors for

building a universal defect prediction model.

(RQ2.2) The boxplots of performance measures of within-project and universal models

are shown in Figure 6.5. Table 6.5 presents the Wilcoxon rank sum test results of per-

formance measures between within-project model and universal models built using rank

transformations. We reject the null hypothesis H022 for all measures except precision and

g-measure. The results show that the universal model and the within-project model have

similar precision, recall, false positive rate, g-measure, and MCC. The differences in these

five performance measures are neither significant (i.e., p-value is greater than 0.05) nor
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Figure 6.5: Boxplots of performance measures of within-project and universal models.

Table 6.5: The results for Wilcoxon rank sum tests and mean values of the seven perfor-
mance measures of within-project models and universal models. (* denotes sta-
tistical significance.)

Measures Within-project models Universal models p-value Cliff’s δ

prec 0.525 0.518 0.47 0.047
pd 0.580 0.570 6.60e-03* 0.031
fpr 0.359 0.365 0.04* -0.016
F-measure 0.534 0.474 < 2.2e-16* 0.291
g-measure 0.521 0.534 0.19 -0.054
MCC 0.214 0.184 1.32e-03* 0.113
AUC 0.615 0.655 < 2.2e-16* -0.219

observable (i.e., Cliff’s δ is less than 0.147). There is observable small (i.e., Cliff’s δ

is greater than 0.147, but less than 0.330) difference in F-measure and AUC value. The

universal model has lower F-measure but higher AUC value than within-project model.

F-measure is computed based on the confusion matrix (see Section 6.2.7) that is obtained

using a cut-off value. On the other hand, calculating AUC does not require a cut-off value.

The possible cause of lower F-measure but higher AUC value of the universal model is

that different cut-off values may be needed for different projects when applying the univer-

sal model. Understanding how to choose the best cut-off values might help improve the

F-measure of the universal model.

Moreover, the universal models yield similar percentage (i.e., 3.6%) of successful pre-

dictions (see RQ1) as Zimmermann et al. [210] who report a 3.4% success rate. If using
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loose criteria, the universal model achieves 13% of successful predictions, much higher

than He et al. [76] who report 0.32% of successful predictions. The universal model

achieves up to 48% (i.e., 13% against 27%) of the successful predictions by within-project

model. We conclude that our approach for building a universal model is promising.

The universal model yields similar predictive performance as within-project models.

RQ3: What is the performance of the universal defect prediction model on external

projects?

Motivation. In examining RQ2, we successfully build a universal model for a large set

of projects. The universal model slightly outperforms within-project models in terms of

recall and AUC. Although our experiments involve a large number of projects from various

contexts, the projects are selected from only two hosts: SourceForge and GoogleCode. It is

still unclear if the universal model is generalizable, i.e., whether it works well for external

projects that are not managed on the aforementioned two hosts. This research question aims

to investigate the capability of applying the universal model to predict defects for external

projects that are not hosted on SourceForge or GoogleCode.

Approach. To address the question, we choose to use the publicly available dataset4 that

was collected by D’Ambros et al. [44]. The dataset contains four Eclipse projects (i.e.,

Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, and Mylyn), and one Apache

project (i.e., Lucene). We present the descriptive statistics of the five external projects in

Table 6.6.

4http://bug.inf.usi.ch/download.php
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Table 6.6: The descriptive statistics of the five external projects used in this study.

Project TLOC TNC Number of classes Number of defects Percentage of defects

Eclipse 224, 055 45, 482 997 206 20.7%
Equinox 39, 534 3, 691 324 129 39.8%
Lucene 73, 184 4, 329 691 64 9.3%
Mylyn 156, 102 20, 451 1,862 245 13.2%
PDE 146, 952 20, 228 1,497 209 14.0%

Table 6.7: The performance measures for within-project model and the universal model.

Measures Eclipse Equinox Lucene Mylyn PDE Type

prec 0.323 0.621 0.197 0.252 0.220 within-project
0.222 0.607 0.128 0.168 0.155 universal

pd 0.782 0.775 0.531 0.473 0.732 within-project
0.937 0.899 0.922 0.767 0.914 universal

fpr 0.427 0.313 0.222 0.213 0.422 within-project
0.853 0.385 0.643 0.578 0.806 universal

F-measure 0.457 0.690 0.287 0.329 0.338 within-project
0.359 0.725 0.224 0.275 0.266 universal

g-measure 0.661 0.728 0.631 0.591 0.646 within-project
0.254 0.731 0.515 0.545 0.320 universal

MCC 0.287 0.453 0.207 0.204 0.216 within-project
0.101 0.512 0.172 0.131 0.098 universal

AUC 0.764 0.804 0.727 0.677 0.700 within-project
0.766 0.821 0.750 0.664 0.704 universal

We calculate the six context factors of the five aforementioned projects, and apply re-

lated ranking functions to convert their raw metric values to one of the ten levels. We predict

defects on each project using the universal model which is trained on 1,385 SourceForge

and GoogleCode projects. The seven performance measures of within-project models are

obtained via 10-folds cross-validation for each project.

Findings. Table 6.7 presents the average values of the seven performance measures of

the universal model and within-project models, respectively. Overall, there are clear dif-

ferences in the performance (all measures except AUC value) of the universal model and

within-project models. In particular, the universal model yields lower precision, larger false

positive rate, but higher recall than within-project models. However, these performance
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measures depend on the cut-off value that is used to determine if an entity is defective or

not (see Section 6.2.7). Such performance measures can be significantly changed by alter-

ing the cut-off value. The AUC value is independent of the cut-off value and is preferred for

cross-project defect prediction [157]. As the universal model achieves similar AUC values

to within-project models on the five subject projects, we conclude that the universal model

is as effective as within-project defect prediction models for the five subject projects. How-

ever, various cut-off values may be needed to yield high precision or low false positive rate,

when applying the universal model on different projects. We present further discussions on

dealing with high false positive rate as follows.

Discussions on false positive rate. In practice, high false positive is unacceptable, e.g.,

false positive rate is greater than 0.64 [188]. As shown in Table 6.7, the universal model

experiences high false positive rates in three projects (i.e., Eclipse, Lucene, and PDE). In

RQ2, we observe that the universal model exhibits similar false positive rate to within-

project defect prediction models in general. Hence, we conjecture that the high false pos-

itive rate in external projects is due to the different percentages of defects in the training

set (e.g., the median percentage of defects is 40%) and in the five external projects (e.g.,

the median percentage of defects is 14%). Nevertheless, it is of significant interest to seek

insights on how to determine cut-off values to reduce false positive rate.

1) Effort-aware estimation of the cut-off value. It is time consuming to examine all entities

that are predicted as defective. If a development team has limited resources or a tight sched-

ule, it is more realistic to inspect only the top X% of entities that are predicted as defective.

To this end, we choose the minimum predicted probability among the top X% of entities as

the cut-off value for each project. We recalculate the performance measures, and present

the detailed results in Table 6.8. We observe that the median false positive is reduced to
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Table 6.8: The performance measures for the universal model on external projects with cut-
off values determined by the minimum predicted probability by the universal
model among the top 10%, 20%, and 30% of defective entities.

Top % Measure Eclipse Equinox Lucene Mylyn PDE Median Average

10%

Cut-off 0.968 0.950 0.948 0.942 0.964 0.950 0.954
prec 0.722 0.844 0.309 0.404 0.331 0.404 0.522
pd 0.316 0.209 0.328 0.302 0.196 0.302 0.270
fpr 0.032 0.026 0.075 0.067 0.064 0.064 0.053
F-measure 0.439 0.335 0.318 0.346 0.246 0.335 0.337
g-measure 0.476 0.345 0.484 0.456 0.324 0.456 0.417
MCC 0.401 0.301 0.246 0.266 0.166 0.266 0.276
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

20%

Cut-off 0.958 0.912 0.905 0.903 0.946 0.912 0.925
prec 0.538 0.746 0.234 0.276 0.312 0.312 0.421
pd 0.510 0.364 0.500 0.412 0.435 0.435 0.444
fpr 0.114 0.082 0.167 0.164 0.156 0.156 0.137
F-measure 0.524 0.490 0.318 0.331 0.363 0.363 0.405
g-measure 0.647 0.522 0.625 0.552 0.574 0.574 0.584
MCC 0.404 0.349 0.242 0.211 0.244 0.244 0.290
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

30%

Cut-off 0.944 0.879 0.825 0.844 0.924 0.879 0.883
prec 0.444 0.680 0.198 0.225 0.274 0.274 0.364
pd 0.641 0.512 0.641 0.510 0.584 0.584 0.578
fpr 0.209 0.159 0.265 0.267 0.252 0.252 0.230
F-measure 0.525 0.584 0.303 0.312 0.373 0.373 0.419
g-measure 0.708 0.636 0.685 0.602 0.656 0.656 0.657
MCC 0.383 0.377 0.238 0.180 0.252 0.252 0.286
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

0.053, if considering only the top 10% of entities as defective. When considering only the

top 20% and 30% of entities as defective, the median false positive rate becomes 0.137

and 0.230, respectively. As cut-off values change, the other performance measures are also

updated. For instance, the median recall becomes 0.270, 0.444, and 0.578, respectively,

if considering only the top 10%, 20%, and 30% of entities as defective. The AUC values

remain the same when altering cut-off values. Therefore, we conclude that high false pos-

itive rate can be tamed by considering only the top 10%, 20%, or 30% of entities that are

predicted as defective by the universal model.

2) Other insights on selecting the cut-off value. Inspired by transfer learning [145], we

suppose that appropriate cut-off values may be inferred from target projects. Intuitively, we



6.4. CASE STUDY RESULTS 150

Table 6.9: The performance measures for the universal model on external projects with cut-
off values obtained by using ratio of defects or minimizing the error rates on the
entire set of entities.

Measure Eclipse Equinox Lucene Mylyn PDE Median Average

Cut-off 0.793 0.602 0.907 0.868 0.860 0.860 0.806
prec 0.265 0.625 0.235 0.241 0.219 0.241 0.317
pd 0.879 0.814 0.500 0.482 0.727 0.727 0.680

Percentage fpr 0.635 0.323 0.166 0.230 0.420 0.323 0.355
of defects F-measure 0.407 0.707 0.320 0.321 0.337 0.337 0.418

g-measure 0.516 0.739 0.625 0.593 0.645 0.625 0.624
MCC 0.213 0.481 0.244 0.193 0.214 0.214 0.269
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

Cut-off 0.936 0.519 0.851 0.893 0.923 0.893 0.824
prec 0.415 0.616 0.210 0.270 0.274 0.274 0.357
pd 0.699 0.884 0.609 0.449 0.593 0.609 0.647

Minimized fpr 0.257 0.364 0.234 0.184 0.255 0.255 0.259
error rates F-measure 0.521 0.726 0.312 0.337 0.375 0.375 0.454

g-measure 0.721 0.740 0.679 0.579 0.661 0.679 0.676
MCC 0.376 0.514 0.245 0.217 0.256 0.256 0.322
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

conjecture that the appropriate cut-off values might depend on the percentage of defective

entities in target projects. Alternatively, minimizing the total error rates (i.e., FP+FN) may

help reduce the false positive rate while maintaining the recall. Therefore, we examine

if it is feasible to reduce false positive rate by inferring the cut-off value based on: 1)

the percentage of defects in the target project; and 2) the minimized total error rates (i.e.,

FP+FN). Table 6.9 shows the detailed results of the two methods. In particular, using the

percentage of defects in the target project results in median false positive rate as 0.323

along with 0.727 of recall. Minimizing error rates yields median false positive rate as

0.255 along with 0.609 of recall. In both cases, the performances are similar as the work

by Turhan et al. [188] that successfully reduces high false positive rate to 0.33 along with

0.68 of recall by filtering the training set.

However, it is impractical to obtain the defectiveness of all entities in the target project.

Otherwise, a within-project defect prediction model can be constructed. Therefore, it is

necessary to investigate how many entities are required to estimate cut-off values. As using
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less entities may yield unstable cut-off values, we average the cut-off values determined by

the aforementioned two methods as the final cut-off values. We perform an exploratory ex-

periment by randomly sampling 10, 20, and 30 entities from each project. We further repeat

the experiment 100 times for each project, and report the average performance measures

in Table 6.10. In general, we can observe that increasing the number of randomly sampled

entities improves the performance of the universal model in terms of five measures (i.e.,

precision, false positive rate, F-measure, g-measure, and MCC). When randomly sampling

10 entities, the universal model achieves a median false positive of 0.344 and a median

recall of 0.723. Apart from the work by Turhan et al. [188] that customizes the prediction

model (i.e., filtering the training set) based on the target project, the universal model is not

altered for a particular target project. Software organizations do not need to provide their

data for customizing prediction models, but tune cut-off values for their goals. The univer-

sal model can help address the concern on sharing data or models across companies [150].

Although inspection of defectiveness in a target project is needed, the proportion of re-

quired entities is relatively low, such as 1% (10/997) for Eclipse, 3% (10/324) of Equinox,

1% (10/691) for Lucene, 1% (10/1862) for Mylyn, and 1% (10/1497) for PDE.

As a summary, the results show that our universal model can provide comparable per-

formances to within-project defect prediction models for the five subject projects. Consid-

ering the five projects might conduct different development strategies than SourceForge or

GoogleCode projects, there is a high chance to apply the universal model on more external

projects with acceptable predictive power.

The universal model can predict defects for external projects with acceptable false positive
rate.
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Table 6.10: The performance measures for the universal model on external projects with
cut-off values learnt from both the ratio of defects and the minimized error
rates, using a subset of randomly sampled entities.

Number of entities Measure Eclipse Equinox Lucene Mylyn PDE Median Average

10

prec 0.298 0.618 0.195 0.220 0.221 0.221 0.310
pd 0.832 0.815 0.644 0.575 0.723 0.723 0.718
fpr 0.537 0.344 0.298 0.342 0.445 0.344 0.393
F-measure 0.434 0.696 0.291 0.307 0.332 0.332 0.412
g-measure 0.573 0.712 0.647 0.585 0.596 0.596 0.623
MCC 0.249 0.472 0.225 0.174 0.202 0.225 0.264
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

20

prec 0.308 0.621 0.212 0.235 0.231 0.235 0.321
pd 0.816 0.824 0.593 0.545 0.687 0.687 0.693
fpr 0.498 0.338 0.259 0.310 0.402 0.338 0.361
F-measure 0.442 0.705 0.297 0.310 0.336 0.336 0.418
g-measure 0.608 0.727 0.629 0.578 0.607 0.608 0.630
MCC 0.265 0.483 0.228 0.182 0.210 0.228 0.274
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

30

prec 0.310 0.620 0.226 0.238 0.231 0.238 0.325
pd 0.814 0.836 0.559 0.529 0.690 0.690 0.686
fpr 0.488 0.344 0.231 0.290 0.399 0.344 0.350
F-measure 0.445 0.709 0.299 0.313 0.336 0.336 0.420
g-measure 0.618 0.730 0.615 0.583 0.614 0.615 0.632
MCC 0.270 0.488 0.232 0.185 0.212 0.232 0.277
AUC 0.766 0.821 0.750 0.664 0.704 0.750 0.741

RQ4: Do context factors affect the performance of the universal defect prediction model?

Motivation. In RQ3, we verified the capability of the universal model to predict defects

for five external projects. The universal model can interpret general relationships between

metrics and defect proneness, regardless of the place where projects are hosted. However,

the five external projects have limited diversity. For example, they are all written in Java.

The generalizability of the universal model is not deeply examined in RQ3. This threatens

the applicability of the universal model to projects from different contexts [130]. Hence,

it is essential to investigate whether the performance of the universal model varies across

projects with different context factors.

Approach. To address this question, we compare the performance of the universal model

across projects with different context factors (see Section 6.2.2). To train a universal model
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Table 6.11: Groups of projects split along different context factors.

Context factor Groups

Programming language (PL) Gc , Gc++, Gc#, G java , and Gpascal

Issue tracking (IT) GuseIT and GnoIT

Total lines of code (TLOC) GleastT LOC , GlessT LOC , GmoreT LOC , and GmostT LOC

Total number of files (TNF) GleastT NF , GlessT NF , GmoreTNF , and GmostT NF

Total number of commits (TNC) GleastT NC , GlessT NC , GmoreTNC , and GmostT NC

Total number of developers (TND) GleastT ND , GlessT ND , GmoreTND , and GmostT ND

with the largest number of projects, we apply leave-one-out cross validation (e.g., [207]).

For a particular project, we use all other projects to build a universal model and apply

the universal model on the project. We repeat this step for every project and obtain the

predictive power of the universal model on each project. As the findings of RQ2 and

RQ3 suggest that different projects may prefer different cut-off values, we choose to only

compare AUC values to avoid the impact of cut-off values on our observations.

We divide the entire set of projects along each context factor, respectively. There are

three types of context factors: categorical factor (i.e., programming language), boolean fac-

tor (i.e., issue tracking), and numerical factors (e.g., the total lines of code). For categorical

factor, we obtain a group per category. We get two groups for boolean factor. For numerical

factors, we compute quantiles of the numbers and then derive four groups. All groups are

listed in Table 6.11. The details on these groups are described in Section 6.2.3. Please note

that these groups are created solely based on context factors, other than the distribution of

software metrics.

For each pair of groups on a particular context factor, we test the following null hypoth-

esis:

H04: there is no difference in the performance of the universal model between projects

of the group-pair.

Hypothesis H04 is two-tailed, since it investigates if the universal model yields better
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or worse performance in one project group than the other project group of a group-pair. As

the size of two groups may be different, we apply two-tailed and unpaired Wilcoxon rank

sum test (95% confidence level) to examine the hypothesis.

Findings. For each context factor, we present our findings on the generalizability of the

universal model.

1) Programming language (PL). The average AUC values for groups Gc, Gc++, Gc#,

G java, and Gpascal are 0.64, 0.65, 0.61, 0.64, and 0.64, respectively. There are 5 groups

of projects divided by programming languages, and the number of pairwise comparisons

is 10. Hence, the threshold p-value is 5.00e-03 after Bonferroni correction. The p-

values of Wilcoxon rank sum test are always greater than 5.00e-03. We do not find

enough evidence to support that there are significant difference across projects with

different programming languages. In other word, the universal model yields similar

performance for projects written in any of the five studied programming languages.

There exist common relationships between software metrics and defect proneness, no

matter whether projects are developed using C, C++, C#, Java, or Pascal. Future work

is needed to understand such common relationships more deeply.

2) Issue tracking (IT). The average AUC values for groups GuseIT and GnoIT are 0.64 and

0.65, respectively. There is only one pair of groups of projects divided by the usage

of issue tracking systems, and therefore the threshold p-value is 0.05. The p-value of

Wilcoxon rank sum test is 0.14, indicating that there is no significant difference between

projects with or without usage of issue tracking systems.

3) Total lines of code (TLOC). The average AUC values for groups GleastT LOC , GlessT LOC ,

GmoreT LOC , and GmostT LOC are 0.63, 0.65, 0.65, and 0.64, respectively. There are 4
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groups of projects divided by the total lines of code, and the number of pairwise com-

parisons is 6. Hence, the threshold p-value is 8.33e-03 after Bonferroni correction. The

p-values of Wilcoxon rank sum test are always greater than 8.33e-03. The universal

model can reveal general relationships between software metrics and defect proneness

for small, medium, or large projects.

4) Total number of files (TNF). The average AUC values for groups GleastT NF , GlessT NF ,

GmoreT NF , and GmostT NF are 0.62, 0.65, 0.64, and 0.64, respectively. Similarly, the

threshold p-value is 8.33e-03 after Bonferroni correction. The p-values of Wilcoxon

rank sum test are always greater than 8.33e-03. We conclude that no matter how many

number of files a project has, the universal model can predict defect proneness without

significant difference in its performance.

5) Total number of commits (TNC). The average AUC values for groups GleastT NC ,

GlessT NC , GmoreT NC , and GmostT NC are 0.64, 0.65, 0.65, and 0.63, respectively. There

are 4 groups and 6 pair-wise comparisons. We correct the threshold p-value to 8.33e-

03. The p-values of Wilcoxon rank sum test are always greater than 8.33e-03. There is

no significant difference in the performance of the universal model across projects with

different total number of commits.

6) Total number of developers (TND). The average AUC values for groups GleastT N D,

GlessT N D, GmoreT N D, and GmostT N D are 0.63, 0.65, 0.64, and 0.64, respectively. There

are 4 groups and 6 pair-wise comparisons. We correct the threshold p-value to 8.33e-

03. The p-values of Wilcoxon rank sum test are always greater than 8.33e-03. The

performance of the universal model does not change significantly across projects with

different number of developers.
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As a summary, we can not find enough evidence to support the hypothesis that the

universal model performs significantly different for projects with different context factors.

Hence, we conclude that the universal model is applicable to projects with different context

factors.

The universal model yields similar performance when it is applied to projects with different
context factors, and therefore it is context-insensitive.

RQ5: What predictors should be included in the universal defect prediction model?

Motivation. The purpose of RQ3 and RQ4 is to show that our universal model is ap-

plicable to external projects, and is context-insensitive, respectively. Therefore in earlier

experiments, we use all metrics together for building Naive Bayes models. However, many

of these metrics may be strongly correlated. To build an interpretable model, we need to

select a subset of these metrics that are not strongly correlated. In within-project settings,

the importance of various metrics has been examined in depth (e.g., [176]). For the univer-

sal model, we aim to find an uncorrelated interpretable set of predictors that are associated

with the chances that a file will have a fix in the future. We do this to understand the general

relationship between predictors and defect proneness for the entire set of projects.

Approach. To make the model more interpretable, we chose to use logistic regression

to build the universal model. Our choice was motivated by the ease with which logistic

regression coefficients can be interpreted [211]. For instance, the sign of a coefficient

presents the direction of the impact, i.e., positive or negative. The magnitude indicates the

strength of the impact, i.e., how much the probability of defect proneness is affected by

a one-unit change in the corresponding predictor. Further details on the convention from
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coefficients to exact probabilities can be found in the book by Hosmer et al. [84].

Because predictors may be highly correlated, we first need to select an uncorrelated

subset of predictors. We use the following rules to select predictors:

(R1) Select well-known simplest predictors that are uncorrelated. We chose lines of code

(Loc) as code metrics and number of revisions (Nrev) as process metrics that have

been often associated with future fixes.

(R2) We analyzed the correlation among context factors, and found that context factors

are strongly associated. Hence, we chose the total number of files (TNF) as a context

measure of project size and the total number of developers (TND) as a context mea-

sure of project activity. Using the first, second, and third quartiles, we converted the

two context measures to four levels, respectively. We treat them as categorical vari-

ables (same as programming language) in the model because the odds of future fixes

may not increase by the same amount as we go from one level (defined by quartiles)

to the next.

(R3) We performed hierarchical clustering for all predictors using distance defined as 1 −

‖cor (p1,p2)‖2, where p1 and p2 are two predictors. We used R function hclust5 to

get clusters of predictors as shown in Figure 6.6. We then applied R function cutree6

to get eight distinct clusters of predictors.

(R4) For each cluster not containing the aforementioned predictors, we chose the first

predictor that used the simplest aggregation (avg).

5http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
6http://stat.ethz.ch/R-manual/R-patched/library/stats/html/cutree.html
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Figure 6.6: Cluster dendrogram of predictors.

Table 6.12: The Pearson correlation among selected code and process metrics. (* denotes
statistical significance.)

avgNoc avgNiv avgNpm avgNprm avgFanin Nrev avgAddedLoc

Loc -0.08* 0.18* 0.03* 0.15* 0.49* 0.32* 0.27*
avgNoc - 0.02* 0.00 0.01* -0.02* 0.03* 0.02*
avgNiv - - 0.20* 0.27* 0.07* 0.09* 0.04*
avgNpm - - - 0.05* -0.02* 0.04* -0.05*
avgNprm - - - - 0.05* 0.08* 0.06*
avgFanin - - - - - 0.18* 0.12*
Nrev - - - - - - 0.28*

We then used these selected predictors to build the universal model. The glm7 method

in R was used to build the logistic regression model. We then inspect the coefficients for

each metric to interpret the universal model.

Findings. There are eight code and process metrics selected, i.e., lines of code (Loc),

average number of immediate subclasses (avgNoc), average number of instance variables

(avgNiv), average number of protected methods (avgNpm), average number of private meth-

ods (avgNprm), average number of input data (avgFanin), the number of revisions (Nrev),

and average added lines of code (avgAddedloc). The correlation matrix of the selected

eight predictors in Table 6.12 does not show any correlations above 0.5.

7http://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html
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Table 6.13: The coefficients of each predictor in the logistic regression model. The numeri-
cal intercept is -2.68. For context factors PL, TNF and TND, “C”, “leastT NF”
and “leastT N D” are folded into the intercept term, respectively. (* denotes
statistical significance.)

Type Metric Name Coefficients p-value Deviance p-value of
explained χ2-test

(Intercept) -2.68 < 2.2e-16*

Context Factors

T
N

F lessT NF -0.24 < 2.2e-16*
4969.5 < 2.2e-16*moreT NF -0.44 < 2.2e-16*

mostT NF -1.33 < 2.2e-16*

T
N

D

lessT ND 0.05 9.03e-03*
508.9 < 2.2e-16*moreT ND 0.15 1.60e-15*

mostT ND 0.36 < 2.2e-16*

PL

C++ -0.28 < 2.2e-16*

549.0 < 2.2e-16*C# 0.07 0.01*
Java -0.29 < 2.2e-16*
Pascal -0.91 < 2.2e-16*

Code Metrics

Loc 0.10 < 2.2e-16* 4555.8 < 2e-16*
avgNoc 0.06 1.23e-03* 11.4 7.53e-04*
avgNiv -0.04 < 2.2e-16* 65.7 5.15e-16*
avgNpm 0.10 < 2.2e-16* 89.5 < 2.2e-16*
avgNprm -0.01 0.29 7.7 5.40e-03*
avgFanin 0.04 < 2.2e-16* 230.7 < 2.2e-16*

Process Metrics Nrev 0.10 < 2.2e-16* 1493.7 < 2.2e-16*
avgAddedLoc 0.01 1.35e-04* 12.0 5.27e-04*

Table 6.13 presents the coefficient for each predictor and the amount of deviance that

each predictor explains. The final model explains 7% of deviance of the probability of fixes

for the entire set of projects. The null deviance is 177,497 on 136160 degrees of freedom,

while residual deviance is 165003 on 136142 degrees of freedom. It is important to note

that each predictor should be considered as a representative of all tightly correlated pre-

dictors within the cluster. In particular, avgNiv represents a very large number of metrics,

including Cbo, Lcom, Wmc, Npbm, Nim, and Nom (see Table 6.2). Also, avgNprm is not

significantly different from zero, suggesting that all predictors in the small cluster are not

helping model defect proneness. Furthermore, coefficients for avgAddedLoc and avgNoc

do not explain as much variance as the remaining predictors and have coefficient values that

are barely significantly different from zero. All of these three predictors should be removed



6.4. CASE STUDY RESULTS 160

from the final model used for prediction in practice.

In models where each predictor is measured in different units, it is difficult to compare

coefficient magnitudes among predictors. In our study, coefficient magnitudes of code

and process metrics can be compared, as they have exactly the same units after the rank

transformation. In the resulting model, The most important code metric is lines of code

(Loc), followed by average number of input data (avgFanin) and average number of private

methods (avgNpm). The three code metrics can explain 4876 of deviance for the probability

of defect proneness for the entire set of projects. The most important process metrics is the

number of revisions (Nrev), which can explain 1493.7 of deviance.

Among context factors, the most important predictor is the total number of files, fol-

lowed by the programming languages and the total number of developers. The three con-

text factors explain 6027.4 of deviance in total. The R tool treats the alphabetically earliest

category of each categorical factor as the reference level, and folds it into the intercept

term. The intercept represents the base probability of defect proneness when all categorical

factors are at reference levels. In our case, “C” programming language, “leastTNF”, and

“leastTND” are the reference levels, therefore not shown in Table 6.13. There are differ-

ences among languages with “C” code having more fixes than “Java”, “C++”, and “Pascal”

code. Projects with more developers involved (relatively to other projects in the cluster) are

also more likely to contain a fix. But projects with more files (relative to other projects in

the cluster) are less likely to contain a fix. Future research is needed to fully understand

the mechanisms and causes that affect both the predictor values and the chances of future

fixes.

The final universal model can be obtained by the following standard equation of logistic
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regression models:

P =
1

1 + e−(β0+β1∗m1+...+βk∗mk ) (6.3)

where P is the probability of a file is defective, k is the total number of predictors (in our

case k=11, including three context factors and eight metrics), β0 is the intercept, and βi

is the coefficient of metric mi (i = 1, . . . , k). For instance, if m1 is metric Loc, then β1

is 0.10. This model can be implemented in an integrated development environment (IDE)

for instant evaluation of defect proneness, and be used to compare defect proneness across

projects.

Our universal model explains 7% of variance of the probability of defect proneness for the
entire set of projects. The most important code and process metrics are lines of code
(Loc) and the number of revisions (Nrev), respectively. The most influential context factor
is the total number of files, followed by programming languages and the total number of
developers.

6.5 Threats to Validity

We now discuss the threats to validity of our study following common guidelines [199].

Threats to conclusion validity concern the relation between the treatment and the out-

come. One conclusion validity threat comes from data cleaning methods. For instance, we

remove the projects with negligible fix-inducing or non-fixing commits (both using 75%

quantile as the threshold). We plan to investigate the impact of different thresholds in future

study. Another threat is due to the extraction of defect data. We mine defect data solely

based on commit messages, since 42% of our subject projects do not use issue tracking sys-

tems. To deal with this threat, we use a large set of subject projects [158] and apply Naive

Bayes as the modelling technique that have strong noise resistance with defect data [158].
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Threats to internal validity concern our selection of subject systems and analysis meth-

ods. SourceForge and GoogleCode are considered to have a large proportion of not well

managed projects. We believe our data cleaning step increases the data quality. The other

threats to internal validity is possible biases in the defect data. We plan to include well

managed projects (e.g., Linux projects, Eclipse projects, and Apache projects) in future

studies.

Threats to external validity concern the possibility to generalize our results. Although

we demonstrate the capability of the universal model on predicting defects for four Eclipse

projects and one Apache project, it is unclear if the universal model also performs well for

commercial projects. Future validation on commercial projects is recommended.

Threats to reliability validity concern the possibility of replicating this study. The

subject projects are publicly available from SourceForge and GoogleCode. We attempt to

provide all necessary details to replicate our study8.

6.6 Chapter Summary

In this study, we attempt to build a universal defect prediction model using a large set

of projects from various contexts. We first propose a context-aware rank transformation

method to pre-process the predictors. This step makes predictors (i.e., software metrics)

from the entire set of projects have the same scales. We compare our rank transformation

and widely used log transformation, and find that the rank transformation performs as good

as log transformation in within-project settings. We then build a universal model using

the rank-transformed metrics. For building a universal model, we add different metric sets

(i.e., code metrics, process metrics, and context factors) step by step. The studied context

8http://www.feng-zhang.com/replication/universalModel
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factors include programming languages, presence of issue tracking systems, the total lines

of code, the total number of files, the total number of commits, and the total number of

developers. The results show that the context factors further increase the predictive power

of the universal model besides code and process metrics.

To evaluate the performance of the universal defect prediction model, we compare with

within-project models. We find that the universal model has higher AUC values but lower

F-measures than within-project models, suggesting that different cut-off values may be

needed for different projects. We also study the generalizability of the universal model.

First, we apply the universal model that is built using projects from SourceForge and

GoogleCode on five external projects from Eclipse and Apache repositories. We observe

that the AUC values of the predictions by the universal model are very close to within-

project models built from each project. Moreover, we provide several insights on how to

select appropriate cut-off values to control false positive rate. For instance, the median false

positive rate is reduced to 0.053, if considering only the top 10% of entities as defective.

We further investigate if the universal model performs differently for projects with dif-

ferent contexts, and find there is no statistically significant difference for all context factors.

Based on our findings, we conclude that our universal model is context-insensitive and ap-

plicable to external projects. Finally, we investigate the importance of different metrics

using logistic regression model and present coefficients of each metric in the universal

model.
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er 7 Unsupervised Approach

Key Question

Is it feasible to generalize a defect pre-
diction model that is built using an un-
supervised approach?
?

7.1 Introduction

A typical solution of cross-project prediction is to apply defect prediction models that

are built using data from other training projects using supervised classifiers [187, 202].

The major challenge in cross-project prediction comes from the heterogeneity between the

training projects and the target project [43, 135]. Another heterogeneity problem in cross-

project prediction, as pointed out recently by Nam and Kim [134], is that different projects

may have different sets of metrics all together. To mitigate such challenge, an unsupervised

classifier could be used.

Unsupervised classifiers do not require any training data, and are therefore by nature

free of the problems that are due to heterogeneity of the training and target projects. To

this end, we investigate the feasibility of using unsupervised classifiers in a cross-project
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setting. We investigate two types of unsupervised classifiers: a) distance-based classi-

fiers (e.g., k-means clustering) that partition the data based on Euclidean distance; and b)

connectivity-based classifiers (e.g., spectral clustering) that partition the data based on the

connectivity among all entities. While distance-based unsupervised classifiers have shown

disappointing performance for within-project defect prediction (e.g., [59]), connectivity-

based unsupervised classifiers have never been explored before in our community.

In this thesis, we propose a new unsupervised connectivity-based classifier that is based

on spectral clustering [137, 194]. Spectral clustering has achieved empirical success in

many areas. Unlike distance-based classifiers that partition the data based on Euclidean

distance, spectral clustering considers the connectivity among all entities and therefore

has many advantages [117]. The connectivity among software entities can be determined

by their similarity in metric values. Our key intuition for exploring spectral clustering

is that defective entities tend to cluster around the same neighbourhoods (i.e., clusters), as

observed by Menzies et al. [124] and Bettenburg et al. [15] in their work on local prediction

models.

To evaluate the feasibility of using unsupervised classifiers for cross-project predic-

tion, we perform an experiment using three publicly available datasets (i.e., AEEEM [44],

NASA [136], and PROMISE [96]) that include 26 projects in total. Our major findings are

presented as follows:

• Unsupervised classifiers underperform supervised classifiers in general. However,

spectral clustering, as a connectivity-based unsupervised classifier, can compete with

supervised classifiers.

• Our connectivity-based unsupervised spectral classifier achieves an average AUC

value of 0.72, and ranks as one of the top classifiers in a cross-project setting.
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• We investigate the performance of our connectivity-based spectral classifier in a

within-project setting and we find that our connectivity-based unsupervised classi-

fier ranks in the second tier, the same as three commonly used supervised classifiers

(i.e., logistic regression, logistic model tree, and naive Bayes). The random forest

appears in the first rank.

• A deeper investigation shows that defective entities have significantly stronger con-

nections with other defective entities than with clean entities. Hence, our spectral

classifier can successfully separate defective entities from clean entities based on

their connectivity.

As a summary, we propose to tackle cross-project predictions from a different per-

spective, i.e., using unsupervised classifiers. Our connectivity-based unsupervised spectral

classifier is relatively simple and fully automated, and can be directly applied on a given

project without any training.

Chapter organization. Section 7.2 presents the background on spectral clustering. Sec-

tion 7.3 describes our connectivity-based unsupervised spectral classifier. Experimental

setup and case study results are presented in Sections 7.4 and 7.5, respectively. Section 7.6

examines the defect data in order to better understand the strong performance of our spec-

tral classifier. The threats to validity of our work are discussed in Section 7.7. We summa-

rize the chapter in Section 7.8.

7.2 Background on Unsupervised Classifiers

Unsupervised classifiers make use of clustering methods. Clustering is a common way

to explore groups of similar entities. Frequently applied clustering methods include hier-

archical clustering and k-means. Hierarchical clustering produces clusters based on the
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structure of a similarity or dissimilarity matrix. K-means clustering is used to cluster high-

dimensional data that are linearly separable [49].

In recent years, spectral clustering has become one of the most effective techniques for

clustering [137, 194]. Unlike distance-based classifiers (e.g., k-means clustering) that di-

vide a data set based on Euclidean distance, spectral clustering partitions a data set based on

the connectivity between its entities. Spectral clustering is performed on a graph consisting

of nodes and edges. In the context of defect prediction, each node represents a software

entity (e.g., file or class). Each edge represents the connection between software entities,

and its weight is measured by the similarity of metric values between its two ends.

Similarity definition. A widely used similarity is the dot product between vectors of

two nodes [2, 19, 47]. Each node can be represented by a vector of values of multiple

metrics of the node. The similarity between two software entities i and j is defined in

Equation (7.1).

wi j = xi · xj =

m∑
k=1

aik ak j (7.1)

where xi and xj denote the metric values of software entities i and j, respectively; aik is the

value of the kth metric on the ith software entity, and m is the total number of metrics.

From the geometric perspective, the similarity wi j can be interpreted as the cosine sim-

ilarity xi · xj = |xi | |xj |cosθi j , where |xi | and |x j | are the norms, and θi j is the angle between

two vectors. It is the length of the projection of one vector onto the other unit vector.

From a correlation perspective, the similarity wi j is basically the unnormalized Pearson

correlation coefficient [20] between nodes i and j. Each element in vector xi represents a

metric value. It is unnormalized, since it makes little sense to normalize the values across

metrics belonging to the same software entity. The similarity wi j can be positive, negative

or zero. A positive value indicates a positive correlation between two software entities, and
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Algorithm 7.1: Spectral clustering based defect prediction
Input: A matrix with rows as software entities and columns as metrics.
Output: A vector of defect proneness of all software entities.
1: Normalize software metrics using z-score.
2: Construct a weighted adjacency matrix W .
3: Calculate the graph Laplacian matrix Lsym .
4: Perform the eigendecomposition on Lsym .
5: Select the second smallest eigenvector v1.
6: Perform the bipartition on v1 using zero.
7: Label each cluster as defective or clean.

a negative value indicates a negative correlation. A value of zero indicates that there is no

linear correlation. It is meaningless to study the self-circle of a software entity, therefore

we set the self-similarity (i.e., all wii) to zero.

Spectral clustering steps. A popular algorithm for spectral clustering is to minimize

the normalized cut [174]. This algorithm partitions a graph into two subgraphs to gain high

similarity within each subgraph while achieving low similarity across the two subgraphs.

It has four major steps: 1) computing the graph Laplacian matrix L from a weighted adja-

cency matrix W that is constructed using software metrics; 2) performing an eigendecom-

position on L; and 3) selecting a threshold on the second smallest eigenvector v1 to obtain

the bipartitions of the graph. Appendix A.2 shows definitions of matrices W and L.

7.3 Our Spectral Classifier

In this section, we present details on our proposed spectral classifier. Our classifier is

described in Algorithm 7.1. As our approach is relatively simple to implement, we further

present its R1 implementation which consists of 17 lines of code in Appendix A.1. The

details are described as follows.

1https://www.r-project.org
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7.3.1 Preprocessing Software Metrics

Software metrics have varied scales. Hence, software metrics are often normalized before

further processing [73, 135, 140]. For instance, Nam et al. [135] find that applying z-

score to normalize software metrics can significantly improve the predictive power of defect

prediction models. The advantage of z-score is that a normalized software metric has a

mean value of zero and a variance of one.

Our spectral cluster uses the z-score for the normalization of each metric. We use the

original values of m metrics to construct matrix A, as shown in Equation (7.2). We use yj

to denote a vector of values of the jth metric in a project, i.e., yj = {a1 j , . . . ,an j }
T , where

n is the number of entities in the project, and ai j is the value of the jth metric on the ith

software entity. We normalize the vector yj as ŷj =
yj−ȳj

s j
, where ȳj is the average value of

yj and s j is the standard deviation of yj. This step corresponds to Line 1 in Algorithm 7.1.

A =

[
y1 . . . yj . . . ym

]
=



a11 . . . a1 j . . . a1m

. . . . . . . . .

an1 . . . an j . . . anm



(7.2)

7.3.2 Spectral Clustering

As aforementioned, spectral clustering is composed of the following three steps.

(S1) Calculate the graph Laplacian matrix Lsym. The symmetric graph Laplacian ma-

trix Lsym is derived from the adjacency matrix W that stores the similarity between

each pair of software entities. The adjacency matrix W is computed directly from the

normalized software metrics (i.e., Line 2 in Algorithm 7.1). In spectral clustering,

there is usually an assumption that all values of the similarity are non-negative [127].
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Hence, we set all negative wi j to zero.

Then the graph Laplacian matrix Lsym is calculated using Lsym = I−D−
1
2 W D−

1
2 (i.e.,

Line 3 in Algorithm 7.1), where the matrix I is the unit matrix with size n, the matrix

D is a diagonal matrix of row sums of W , and D−
1
2 = Diag(d

− 1
2

1 , . . . ,d
− 1

2
n ), where

d
− 1

2
i = (

∑n
j=1 wi j )−

1
2 .

(S2) Perform the eigendecomposition on the graph Laplacian matrix Lsym (i.e., Line

4 in Algorithm 7.1). Eigenvalues will always be ordered increasingly [117, 174].

We follow the normalized cut algorithm by Shi and Malik [174] and use the second

smallest eigenvector for clustering (i.e., Line 5 in Algorithm 7.1). We use v1 to denote

the second smallest eigenvector of Lsym.

(S3) Separate all entities into two clusters. Shi and Malik [174] propose to apply a

particular threshold (e.g., zero or median) on the second smallest eigenvector v1. If

the median is used, then 50% of entities are predicted as defective. Inspecting 50%

of entities requires significant effort. Thus we adopt zero as the threshold value of v1

(i.e., Line 6 in Algorithm 7.1) to create two non-overlapped clusters. We use v1i to

denote the ith value of v1, where i ∈ {1, . . . ,n}, and n is the total number of software

entities (e.g., files or classes) in the given project. The value v1i corresponds to the ith

software entity. All entities with v1 > 0 create a cluster called Cpos, and all entities

with v1 < 0 create the other cluster called Cneg. In the following subsection, we

describe how to determine the cluster (i.e., Cpos or Cneg) containing defective entities.

7.3.3 Labelling Defective Cluster

We use Cde f ective to denote the cluster that contains defective entities only, and use Cclean

to represent the cluster that contains clean entities only.
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To determine whether Cpos or Cneg is the defective cluster Cde f ective, we use the follow-

ing heuristic: For most metrics, software entities containing defects generally have larger

values than software entities without defects. This heuristic is based on our field’s extensive

empirical observations on the relationship between software metrics and defect proneness.

For instance, Gaffney [58] finds that larger files have a higher likelihood to experience de-

fects than smaller files. Kitchenham et al. [103] report that more complex files are more

likely to experience defects than files with lower complexity. Similar findings are also

observed in many other studies (e.g., [45, 75, 133]).

With this heuristic in mind, we use the average row sums of the normalized metrics of

each cluster to determine which cluster is defective. The row sum is the sum of all metric

values of the same entity. We compute the average row sum of all entities within each

cluster (i.e., either Cpos or Cneg). The cluster with larger average row sum is considered as

the cluster containing defective entities. We label all entities within this cluster as defective

(i.e., Cde f ective), and all the remaining entities as clean (i.e., Cclean).

7.4 Experiment Setup

In this section, we present the experimental setup to evaluate the performance of our ap-

proach.

7.4.1 Corpora

We examined data from three commonly studied datasets: AEEEM [44], NASA [136], and

PROMISE [96]. The three datasets are publicly available and have been commonly used in

defect prediction studies (e.g., [59, 68, 124, 135]). A brief description on each dataset and

our selected metrics are presented as follows.
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1) The AEEEM dataset was prepared by D’Ambros et al. [44] to compare the perfor-

mance of different sets of metrics. Accordingly, the AEEEM dataset contains the most

number of metrics. In particular, it has 61 metrics, including product, process, previous-

defect metrics, and entropy-based metrics.

All projects in the AEEEM dataset have 61 identical software metrics. We use all 61

metrics in our study.

2) The NASA dataset was collected by the NASA Metrics Data Program [136]. Shep-

perd et al. [172] observe that the original NASA dataset contains many repeated and

inconsistent data points, and they clean up the NASA dataset. In this study, we use the

cleaned NASA dataset that is available in the PROMISE repository.

In the NASA dataset, projects do not share the same set of metrics. For instance, project

KC3 has 39 metrics while project JM1 has 21 metrics. Since supervised classifiers

require exact the same sets of metrics, we only select the 20 metrics that commonly

exist in all of the 11 studied NASA projects.

3) The PROMISE dataset was prepared by Jureczko and Madeyski [96]. It contains open

source Java projects and has object-oriented metrics.

In the PROMISE dataset, projects do not have the same set of metrics. Hence, we only

select 20 metrics that exist in all of the 10 studied PROMISE projects.

In general, the selected projects have diverse size (i.e., having 125 to 7,782 entities) and

varied ratios of defects (i.e., ranging from 2.1% to 63.6%). The summary of all selected

projects is presented in Table 7.1. More details about these metrics can be found on the

corresponding website of each dataset.
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Table 7.1: An overview of the studied projects.

Data set Project Number of entities Defective
(#) (%)

AEEEM

Eclipse JDT Core 997 206 20.7%
Equinox 324 129 39.8%
Apache Lucene 691 64 9.3%
Mylyn 1,862 245 13.2%
Eclipse PDE UI 1,497 209 14.0%

NASA

CM1 327 42 12.8%
JM1 7,782 1,672 21.5%
KC3 194 36 18.6%
MC1 1,988 46 2.3%
MC2 125 44 35.2%
MW1 253 27 10.7%
PC1 705 61 8.7%
PC2 745 16 2.1%
PC3 1,077 134 12.4%
PC4 1,287 177 13.8%
PC5 1,711 471 27.5%

PROMISE

Ant v1.7 745 166 22.3%
Camel v1.6 965 188 19.5%
Ivy v1.4 241 16 6.6%
Jedit v4.0 306 75 24.5%
Log4j v1.0 135 34 25.2%
Lucene v2.4 340 203 59.7%
POI v3.0 442 281 63.6%
Tomcat v6.0 858 77 9.0%
Xalan v2.6 885 411 46.4%
Xerces v1.3 453 69 15.2%

Average 1,036 196 18.9%

7.4.2 Performance Measure

There are many performance measures, such as precision, recall, accuracy, F-measure and

the Area Under the receiver operating characteristic Curve (AUC). However, a cut-off value

on the predicted probability of defect proneness is required when computing precision,

recall, accuracy, and F-measure. The default cut-off is 0.5 which may not be the best cut-

off value in practice. On the other hand, the AUC value is independent of a cut-off value

and is not impacted by the skewness of defect data. Lessmann et al. [112] and Ghotra et al.

[59] suggest to use the AUC value for better cross-dataset comparability. Hence, we select

the AUC measure as our performance measure.
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When computing the AUC measure, a curve of the false positive rate is plotted against

the true positive rate. Accordingly, the AUC value measures the probability that a randomly

chosen defective entity ranks higher than a randomly chosen clean entity. An AUC value

of 0.5 implies that a classifier is no better than random guessing. A larger AUC value in-

dicates a better performance. In particular, Gorunescu [65] advises the following guideline

to interpret the AUC value: 0.90 to 1.00 as excellent prediction, 0.80 to 0.90 as a good

prediction, 0.70 to 0.80 as a fair prediction, 0.60 to 0.70 as a poor prediction, and 0.50 to

0.60 as a failed prediction.

7.4.3 Classifiers for Comparison

To find if our unsupervised spectral classifier is applicable in a cross-project setting, we

compare its performance with nine off-the-shelf classifiers. We not only select supervised

classifiers, but also choose distance-based unsupervised classifiers.

For supervised classifiers, we select five classifiers that have been commonly applied

to build defect prediction models. The five classifiers are random forest (RF), naive Bayes

(NB), logistic regression (LR), decision tree (J48), and logistic model tree (LMT).

For distance-based unsupervised classifiers, we choose four classifiers that have been

previously used in defect prediction [30, 206]. The four classifiers include k-means cluster-

ing (KM), partition around medoids (PAM), fuzzy C-means (FCM), and neural-gas (NG).

These classifiers are based on Euclidean distance, therefore employ a different clustering

mechanism than spectral clustering.
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7.4.4 Scott-Knott Test

To compare the performance across the large number of datasets, we apply the Scott-Knott

test [91] using the 95% confidence level (i.e., α = 0.05). The Scott-Knott test can overcome

the issue of overlapping multiple comparisons that are obtained from other tests, such as

the Mann-Whitney U test [173]. The Scott-Knott test has been used in defect prediction

studies to compare the performance across different classifiers [59].

The Scott-Knott test recursively ranks the evaluated classifiers through hierarchical

clustering analysis. In each iteration, the Scott-Knott test separates the evaluated clas-

sifiers into two groups based on the performance measure (i.e., the AUC value). If the

two groups have statistically significant difference in the AUC value, the Scott-Knott test

executes again within each group. If no statistically distinct groups can be created, the

Scott-Knott test terminates [59].

7.5 Case Study Results

We now present our research questions, along with our motivation, approach, and findings.

RQ1. How does the connectivity-based classifier perform in cross-project defect pre-

diction?

Motivation. Unlike supervised classifiers, unsupervised classifiers do not have the problem

of heterogeneity between the training projects and the target project. While distance-based

classifiers (e.g., k-means clustering) underperform supervised classifiers, connectivity-based

unsupervised classifiers have not been explored in our community. Hence, it is of signifi-

cant interest to investigate if our connectivity-based spectral classifier can provide compa-

rable performance as supervised classifiers in the context of cross-project prediction.
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Approach. To address this question, we need to get the performance of all studied classi-

fiers for each project. For each classifier, all entities of the target project are used to obtain

its performance.

Supervised classifiers require a training project. All supervised classifiers under study

require the exact same set of metrics. As the three studied datasets (i.e., AEEEM, NASA,

and PROMISE) have different sets of metrics, we make cross-project defect prediction

within the same dataset. For each target project, we select all other projects from the

same dataset for training. For instance, if the target project is “Eclipse JDT Core”, then

each supervised classifier is used to build four models using each of the remaining projects

within the AEEEM dataset (i.e., “Equinox”, “Apache Lucene”, “Mylyn”, and “Eclipse PDE

UI”), respectively. We compute the average AUC values of these four models to measure

the performance of the corresponding classifier on the target project, since it is unknown

which model performs the best on the target project prior to the prediction.

Unsupervised classifiers do not require training projects. We directly apply the studied

unsupervised classifiers on the target project. When we do clustering, we create k clusters.

We set k = 2 for clustering, since this setting yields the best performance in defect predic-

tion (e.g., [59]). In the resulting two clusters, one cluster is labelled as defective, and the

other cluster is labelled as clean, using the heuristic that is described in Section 7.3.3.

To compare the predictive power among all classifiers, we apply the Scott-Knott test

with the 95% confidence level to rank all classifiers across projects within the same dataset.

We examine the Scott-Knott ranks per dataset. Furthermore, we perform one large Scott-

Knott run where we input all the AUC values for all the classifiers across all datasets.

Findings. Our connectivity-based unsupervised classifier achieves good results in
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Figure 7.1: The boxplots of AUC values of all supervised (in blue color) and unsupervised

classifiers (in red color) under study (for the abbreviations, see Section 7.4.3).
Different colors represents different ranks (red > yellow > green > blue).

cross-project defect prediction. In general, our spectral classifier significantly outper-

forms all other unsupervised classifiers, and it has slightly better performance than the best

supervised classifier under study (i.e., random forest).

Our spectral classifier ranks the first in all the three studied datasets. The colors in

Figure 7.1 illustrate the ranks of all classifiers. The boxplots show the distribution of the

AUC values of each classifier under study. Classifiers with boxplots in the same color are

ranked at the same tier. The performances of classifiers in the same tier are not statistically

distinct. Among all supervised and unsupervised classifiers, only two supervised classifiers

(i.e., random forest and logistic model tree) are in the same ranking tier across all three

datasets as our connectivity-based unsupervised spectral classifier.

The exact AUC values of the top four classifiers (i.e., our spectral classifier, random

forest, naive Bayes, and logistic model tree) on each project are presented in Table 7.2. In

particular, the median AUC values of the top four classifiers across all projects under study

are: 0.71, 0.70, 0.68 and 0.68, respectively.
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Table 7.2: The AUC values of the top four classifiers in cross-project defect prediction
(Bold font highlights the best performance).

Dataset Project Spectral clustering Random forest Naive Bayes Logistic model tree

AEEEM

Eclipse JDT Core 0.83 0.81 0.68 0.75
Equinox 0.81 0.70 0.66 0.71
Apache Lucene 0.79 0.76 0.72 0.70
Mylyn 0.63 0.62 0.53 0.57
Eclipse PDE UI 0.72 0.71 0.65 0.67

NASA

CM1 0.67 0.66 0.66 0.62
JM1 0.66 0.62 0.64 0.60
KC3 0.64 0.65 0.62 0.63
MC1 0.69 0.71 0.66 0.67
MC2 0.68 0.62 0.64 0.59
MW1 0.70 0.67 0.70 0.67
PC1 0.71 0.73 0.70 0.70
PC2 0.78 0.76 0.73 0.79
PC3 0.72 0.70 0.70 0.68
PC4 0.65 0.67 0.63 0.67
PC5 0.71 0.66 0.66 0.63

PROMISE

Ant v1.7 0.79 0.75 0.77 0.75
Camel v1.6 0.62 0.60 0.60 0.61
Ivy v1.4 0.70 0.71 0.68 0.70
Jedit v4.0 0.79 0.74 0.75 0.73
Log4j v1.0 0.82 0.76 0.81 0.74
Lucene v2.4 0.67 0.68 0.69 0.66
POI v3.0 0.82 0.71 0.78 0.69
Tomcat v6.0 0.80 0.78 0.80 0.77
Xalan v2.6 0.54 0.66 0.60 0.62
Xerces v1.3 0.77 0.69 0.70 0.71

Median 0.71 0.70 0.68 0.68

We find that distance-based unsupervised classifiers (e.g., k-means) fail in the com-

petition with supervised classifiers. The poor performance of these distance-based classi-

fiers may explain why unsupervised classifiers are not widely applied in defect prediction.

As a summary, the results clearly show that applying connectivity-based unsupervised

classification is a promising way to tackle the heterogeneity problem in cross-project defect

prediction that is caused by the training and target data. Our connectivity-based unsuper-

vised classifier is based on spectral clustering. We suspect that the success of spectral clus-

tering is because defective entities are more similar to other defective entities than other

clean entities in terms of values of software metrics. Such intuition is supported through

recent work by Menzies et al. [124] and Bettenburg et al. [15] on local defect prediction

models.
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Our spectral classifier performs the best among all classifiers under study. Connectivity-
based unsupervised classification is a promising avenue to tackle the problem of hetero-
geneous data in cross-project defect prediction.

RQ2. Does the connectivity-based classifier perform well in within-project defect pre-

diction?

Motivation. RQ1 shows the impressive performance of our connectivity-based unsuper-

vised classifier in a cross-project setting. In comparison to a cross-project setting, the

chance of experiencing heterogeneous training and target data is much lower in a within-

project setting. As unsupervised classifiers can save significant effort in defect data col-

lection, we are interested to find if our connectivity-based unsupervised classifier can still

compete with supervised classifiers in a within-project setting.

Approach. To evaluate the performance of supervised classifiers in a within-project set-

ting, the essential step is to separate all entities of a project into two sets. One set is for

training a model and the other one is the target set to apply the model. Both supervised and

unsupervised classifiers are applied on the same target set of entities. The only difference

is that supervised classifiers require an additional step to build a model using the training

set of entities.

To create the training and target sets, we apply the two-fold cross validation (i.e., a

50:50 random split) that has been previously applied in the defect prediction literature [133,

152]. For a 50:50 random split, each classifier is evaluated twice: 1) the first half is used

as the training data while the other half is used as the target data; and 2) the second half

is used as the training data while the first half is used as the target data. To deal with the
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Table 7.3: Ranks within the same project.

Overall ranks Classifier Median rank Average rank Standard deviation

1 Random forest (RF) 1 1.42 0.64

2

Logistic regression (LR) 2 3.19 2.15
Spectral classifier (SC) 3 3.35 1.67
Logistic model tree (LMT) 3 3.42 1.94
Naive Bayes (NB) 3.5 3.54 1.27

3 Fuzzy C- means (FCM) 6 5.96 1.08

4

Partition around medoids (PAM) 6.5 6.73 1.69
Neural-gas (NG) 7 6.85 1.67
Decision tree (DT) 7 6.89 1.56
k-means (KM) 7.5 7.35 1.55

randomness of sampling, we repeat the random splits 500 times. In total, 1,000 evaluations

are performed for each classifier on each project. To get the performance of each classifier

on each project, we compute the average AUC value of the total 1,000 evaluations.

To find statistically distinct ranks of all classifiers, we follow the approach of Ghotra

et al. [59] and perform a double Scott-Knott test. The double Scott-Knott test ensures a

robust ranking of all classifiers across projects, regardless of their exact AUC values. The

first Scott-Knott test is performed on each individual project to rank all classifiers based on

their AUC values for that particular project. The obtained ranks are used in the second run

of the Scott-Knott test to yield a global ranking of all classifiers across all studied projects.

Findings. Generally speaking, supervised classifiers perform better than unsuper-

vised classifiers in a within-project setting. In the top five classifiers, there is only one

unsupervised classifier, our connectivity-based unsupervised classifier. It implies that the

performance of most supervised classifiers can be significantly improved, if the hetero-

geneity between the training and target projects is mitigated.

The detailed rankings are presented in Table 7.3, including the global ranks of all

classifiers across all projects, and the statistics (i.e., median, average, and standard devi-

ation) of the ranks of each classifier obtained in the first Scott-Knott test. In particular, our
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Table 7.4: The average AUC values of the top five classifiers in both cross-project (CP) and
within-project settings (WP). The column “diff ” shows the difference between
cross-project models and within-project models.

Dataset Project RF LR SC LMT NB
CP WP diff CP WP diff CP WP diff CP WP diff CP WP diff

AEEEM

Eclipse JDT Core 0.81 0.87 0.06 0.75 0.79 0.04 0.83 0.83 0 0.75 0.82 0.07 0.68 0.74 0.06
Equinox 0.70 0.84 0.14 0.61 0.64 0.03 0.81 0.80 -0.01 0.71 0.79 0.08 0.66 0.72 0.06
Apache Lucene 0.76 0.81 0.05 0.66 0.63 -0.03 0.79 0.79 0 0.70 0.78 0.08 0.72 0.74 0.02
Mylyn 0.62 0.82 0.20 0.56 0.79 0.23 0.63 0.63 0 0.57 0.78 0.21 0.53 0.65 0.12
Eclipse PDE UI 0.71 0.78 0.07 0.66 0.73 0.07 0.72 0.72 0 0.67 0.75 0.08 0.65 0.67 0.02

NASA

CM1 0.66 0.68 0.02 0.61 0.74 0.13 0.67 0.67 0 0.62 0.65 0.03 0.66 0.67 0.01
JM1 0.62 0.67 0.05 0.55 0.69 0.14 0.66 0.66 0 0.60 0.68 0.08 0.64 0.65 0.01
KC3 0.65 0.71 0.06 0.59 0.64 0.05 0.64 0.64 0 0.63 0.63 0 0.62 0.65 0.03
MC1 0.71 0.81 0.10 0.64 0.74 0.10 0.69 0.69 0 0.67 0.58 -0.09 0.66 0.68 0.02
MC2 0.62 0.65 0.03 0.54 0.66 0.12 0.68 0.67 -0.01 0.59 0.67 0.08 0.64 0.66 0.02
MW1 0.67 0.72 0.05 0.59 0.64 0.05 0.70 0.70 0 0.67 0.63 -0.04 0.70 0.71 0.01
PC1 0.73 0.83 0.10 0.68 0.82 0.14 0.71 0.71 0 0.70 0.75 0.05 0.70 0.68 -0.02
PC2 0.76 0.74 -0.02 0.65 0.66 0.01 0.78 0.78 0 0.79 0.53 -0.26 0.73 0.71 -0.02
PC3 0.70 0.78 0.08 0.65 0.81 0.16 0.72 0.72 0 0.68 0.71 0.03 0.70 0.73 0.03
PC4 0.67 0.91 0.24 0.63 0.88 0.25 0.65 0.65 0 0.67 0.88 0.21 0.63 0.74 0.11
PC5 0.66 0.76 0.10 0.60 0.73 0.13 0.71 0.71 0 0.63 0.72 0.09 0.66 0.68 0.02

PROMISE

Ant v1.7 0.75 0.82 0.07 0.74 0.80 0.06 0.79 0.79 0 0.75 0.81 0.06 0.77 0.78 0.01
Camel v1.6 0.60 0.71 0.11 0.61 0.73 0.12 0.62 0.62 0 0.61 0.69 0.08 0.60 0.67 0.07
Ivy v1.4 0.71 0.67 -0.04 0.69 0.55 -0.14 0.70 0.70 0 0.70 0.57 -0.13 0.68 0.64 -0.04
Jedit v4.0 0.74 0.80 0.06 0.72 0.77 0.05 0.79 0.78 -0.01 0.73 0.78 0.05 0.75 0.75 0
Log4j v1.0 0.76 0.80 0.04 0.74 0.69 -0.05 0.82 0.78 -0.04 0.74 0.81 0.07 0.81 0.81 0
Lucene v2.4 0.68 0.77 0.09 0.65 0.75 0.10 0.67 0.66 -0.01 0.66 0.75 0.09 0.69 0.73 0.04
POI v3.0 0.71 0.88 0.17 0.70 0.83 0.13 0.82 0.81 -0.01 0.69 0.83 0.14 0.78 0.82 0.04
Tomcat v6.0 0.78 0.81 0.03 0.75 0.82 0.07 0.80 0.80 0 0.77 0.81 0.04 0.80 0.80 0
Xalan v2.6 0.66 0.85 0.19 0.60 0.81 0.21 0.54 0.54 0 0.62 0.81 0.19 0.60 0.76 0.16
Xerces v1.3 0.69 0.83 0.14 0.72 0.77 0.05 0.77 0.77 0 0.71 0.74 0.03 0.70 0.79 0.09

Median 0.70 0.80 0.07 0.65 0.74 0.09 0.71 0.71 0 0.68 0.75 0.07 0.68 0.72 0.02

connectivity-based unsupervised spectral classifier has a median rank of 3, and is ranked in

the same tier as three widely used classifiers, i.e., logistic regression, logistic model tree,

and naive Bayes.

The actual AUC values of the top five classifiers (i.e., random forest, logistic regression,

our connectivity-based classifier, logistic model tree, and naive Bayes) on each project are

presented in Table 7.4. The AUC values in both cross-project and within-project settings

are presented, as well as their difference (i.e., the AUC value in a within-project setting

minus the AUC value in a cross-project setting).
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Our connectivity-based unsupervised classifier yields almost the same predictive

power in both cross-project and within-project settings across all studied projects, as

shown in Table 7.4. The size of the target project in a within-project setting is only half of

that in a cross-project setting, implying that our connectivity-based unsupervised classifier

tends to be robust when the size of the target project changes.

A within-project model can sometimes significantly underperform a cross-project

model, although a within-project model generally outperforms a cross-project model.

For example, looking at Table 7.4, and for project “Ivy v1.4”, the top four supervised clas-

sifiers experience a downgraded performance when changing from a cross-project setting

to a within-project setting. In particular, the random forest classifier achieves an AUC value

of 0.71 in a cross-project setting, but yields a lower AUC value of 0.67 in a within-project

setting. We conjecture that the decrease in performance when changing to a within-project

setting is caused by the low ratio of defects in the target project. For instance, project “Ivy

v1.4” has a ratio of defects of 6.6% with only 16 defective entities. Similar observations

are noted in other projects, such as “Apache Lucene” and “PC2”.

Supervised classifiers tend to experience a performance decrease, if the ratio of defects

becomes lower. To illustrate the relationships between the performance of each classifier

and the ratio of defects, we plot regression lines of the performance difference between a

within-project setting and a cross-project setting of the top five classifiers over the ratio of

defects in Figure 7.2.

In comparison to supervised classifiers, our connectivity-based unsupervised classi-

fier is more robust with varying ratio of defects. One possible reason is that supervised

classifiers experience a significant class-imbalance problem on these projects, while our

unsupervised classifier has no issue of class-imbalance. We conjecture that, for projects
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Figure 7.2: The regression lines of the performance difference of the top five classifiers
between a within-project setting and a cross-project setting over the ratio of
defects of each project. (The dotted line is the horizontal base line.)

with a low ratio of defects, our connectivity-based classifier may be more suitable than the

supervised classifiers.

In a within-project setting, our connectivity-based classifier ranks in the second tier with
only random forest ranking in the first tier. However, our approach may be more suitable
for projects with heavily imbalanced (i.e., very low count of defective entities) defect data.

7.6 Why Does It Work?

In this section, we present an in-depth analysis to understand why our connectivity-based

classifier achieves good results in defect prediction.

Our connectivity-based classifier is based on spectral clustering. As aforementioned,

spectral clustering separates all entities in a project based on the connections among en-

tities. We conjecture that software entities may reside within two “social network”-like

communities based on software metrics: 1) one community is formulated by defective en-

tities; and 2) the other one is established by clean entities.
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7.6.1 Essential Definitions

Community definition. We define a community as a set of members (i.e., software enti-

ties) that have much stronger connections with each other than with members from other

communities. A connection is basically an edge in a graph, as mentioned in Section 7.2.

We define an edge between entities i and j using Equation (7.3).

ei j = 1(wi j ) (7.3)

where 1(wi j ) = 1 if wi j > 0, and 1(wi j ) = 0 otherwise.

As described in Section 7.2, wi j represents the similarity or the correlation between

entities i and j. Hence, ei j equals to 1, if there is a positive correlation between entities i

and j. We denote the set of all edges as E, then E = {ei j }.

We construct the community as follows. For each project, we partition the entities into

two sets based on their defect proneness. We use Vd to denote the set of actual defective

entities, and Vc to denote the set of actual clean entities. A software entity can be either

defective or clean. Hence, there is no overlap between Vd and Vc, and the union of Vd and

Vc contains all entities within the same project.

Connectivity measurement. We define degdd , the total degree of all defective entities,

using Equation (7.4). We define degdd , the total degree of all clean entities, using Equa-

tion (7.5). Similarly, we define degcd , the total number of edges between each pair of

defective and clean entities, using Equation (7.6).

degdd =
∑
i∈Vd

∑
j∈Vd

ei j , j , i (7.4)

degcc =
∑
i∈Vc

∑
j∈Vc

ei j , j , i (7.5)

degcd =
∑
i∈Vc

∑
j∈Vd

ei j (7.6)
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Figure 7.3: Illustrating example of computing the ratio of edges (i.e., φdd , φcc, φcd).

To measure the connectivity among entities within Vd or Vc, or between Vd and Vc, we

further define the ratio of edges (i.e., connections) as follows.

φdd =
degdd

|Vd |(|Vd | − 1)
(7.7)

φcc =
degcc

|Vc |( |Vc | − 1)
(7.8)

φcd =
degcd

|Vc | |Vd |
(7.9)

To illustrate the computation, we present an example in Figure 7.3. There are three

defective and four clean entities. Each defective entity has connections to all other two

defective entities. Hence, degdd = 2 + 2 + 2 = 6 and φdd = 6
3×2 = 1.000. Similarly, we can

get degcc = 2+2+2+2 = 8 and φcc = 8
4×3 = 0.667, and degcd = 2 and φcd = 2

4×3 = 0.167.

7.6.2 Hypotheses

For each project, we compute the ratios φdd , φcc, and φcd based on the actual defect prone-

ness. To compare the connectivity among entities across all projects under study, we test

the following hypotheses:

H01: there is no difference in the ratios of connections φdd (i.e., among defective entities)

and φcd(i.e., between defective and clean entities).

H02: there is no difference in the ratios of connections φcc (i.e., among clean entities) and
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φcd (i.e., between defective and clean entities).

Hypotheses H01 and H02 are two sided and paired, since each project has three unique

values: φdd , φcc, and φcd . To test the hypotheses, we apply paired Mann-Whitney U test

using the 95% confidence level (i.e., α < 0.05). We further compute the Cliff’s δ [160] as

the effect size to quantify the difference. Both the Mann-Whitney U test and the Cliff’s δ are

non-parametric statistical methods, and do not require a particular distribution of assessed

variables. An effect size is large, if Cliff’s |δ | ≥ 0.474 [160].

7.6.3 Empirical Findings

We observe that in general the connections between defective and clean entities are

weaker than the connection among defective entities and the connections among clean

entities. Table 7.5 presents the detailed values of our three measures (i.e., φcc, φcd , and

φdd) for each project. For instance, in project “Eclipse JDT Core”, the ratio of connections

among defective entities φdd = 0.564. The ratio of connections among clean entities φcc =

0.614. These two ratios are significantly greater than the ratio of connections between clean

and defective entities which is φcd = 0.365.

Defective entities have significantly stronger connections with other defective entities

than with clean entities. The p-value of the Mann-Whitney U test is is 4.20e-05, when

comparing the ratios φdd and φcd across all projects. The difference is large, as the corre-

sponding Cliff’s |δ | is 0.654>0.474.

Similarly, clean entities have significantly stronger connections with other clean entities

than with defective entities (i.e., the p-value of the Mann-Whitney U test is 8.55e-06). The

difference is also large, as Cliff’s |δ | is 0.769>0.474.
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Table 7.5: The values of φcc, φcd , and φdd for each project. (Bold font highlights the mini-
mum value per row).

Dataset Project φcc φcd φdd

AEEEM

Eclipse JDT Core 0.614 0.365 0.564
Equinox 0.694 0.443 0.470
Apache Lucene 0.554 0.374 0.556
Mylyn 0.575 0.442 0.489
Eclipse PDE UI 0.576 0.426 0.512

NASA

CM1 0.616 0.497 0.502
JM1 0.628 0.515 0.519
KC3 0.585 0.498 0.477
MC1 0.572 0.437 0.540
MC2 0.646 0.495 0.496
MW1 0.551 0.439 0.546
PC1 0.594 0.470 0.556
PC2 0.594 0.442 0.602
PC3 0.586 0.450 0.593
PC4 0.583 0.489 0.577
PC5 0.714 0.574 0.588

PROMISE

Ant v1.7 0.522 0.398 0.606
Camel v1.6 0.487 0.455 0.481
Ivy v1.4 0.482 0.417 0.508
Jedit v4.0 0.504 0.402 0.536
Log4j v1.0 0.538 0.368 0.535
Lucene v2.4 0.542 0.438 0.459
POI v3.0 0.605 0.390 0.537
Tomcat v6.0 0.485 0.380 0.630
Xalan v2.6 0.540 0.439 0.438
Xerces v1.3 0.488 0.394 0.504

Median 0.576 0.439 0.536

As a summary, our observation indicates that either defective or clean entities are sim-

ilar in terms of metric values, but defective and clean entities are less likely to experience

similar metric values. In other words, there roughly exist two communities based on defect

proneness. Entities within the same community have stronger connections than cross com-

munities. This may be the reason as to why our connectivity-based unsupervised classifier

achieves empirically good results in defect prediction.

There roughly exist two communities of entities: a defective community and a clean com-
munity of entities. Within-community connections are significantly stronger than cross-
community connections.
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7.7 Threats to Validity

We now describe the threats to validity of our study under common guidelines [199].

Threats to conclusion validity concern the relation between the treatment and the out-

come. The major threat is that we only compare our approach with off-the-shelf classifiers.

Future work should explore state-of-the-art cross project defect classifiers. Unfortunately

the implementation of such specialized classifiers are rarely available and often required a

considerable amount of setup – making them hard for practitioners to easily adopt. Hence

we chose to compare against commonly used and readily available classifiers.

Threats to internal validity concern our selection of subject systems and analysis meth-

ods. We select 26 projects that have been heavily used in defect prediction literature.

These projects are from different domains, include both open source and industrial projects,

and have different sets of metrics. However, evaluating our approach on a large scale of

projects is always desirable. Nevertheless our findings highlight the importance of ex-

ploring connectivity-based unsupervised classifiers in future defection prediction research.

Moreover, the simplicity of our spectral classifier makes exploring it in future studies as a

very lightweight and simple step to perform.

Threats to external validity concern the possibility of generalizing our results. Our

approach requires software metrics that can be computed in a standard way by publicly

available tools. However, only metrics that are collected in the three data sets are applied

in our experiments. Replication studies using different sets of metrics would be advisable.

Threats to reliability validity concern the possibility of replicating this study. All the

three studied data sets are publicly available. Moreover, the R implementation of our ap-

proach is provided in Appendix A.1.
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7.8 Chapter Summary

This study brings a new insight to tackle this challenge using connectivity-based unsuper-

vised classifiers. Apart from distance-based unsupervised classifiers (e.g., k-means clus-

tering), the connectivity-based unsupervised classifiers assume that defective entities tend

to cluster around the same area.

The experiment results show that our connectivity-based unsupervised classifier achieves

impressive performance in a cross-project setting. Specifically, our spectral classifier ranks

as one of the top classifiers among five supervised classifiers (e.g., random forest) and five

unsupervised classifiers (e.g., k-means). In a within-project setting, our spectral classifier

ranks in the second tier the same as three widely used supervised classifiers (e.g., logistic

regression, logistic model tree, and naive Bayes) with random forest as the only classifier

in the first tier. Our contributions are summarized as follows:

• Demonstrating that connectivity-based unsupervised classification performs well

in a cross-project setting. Our experiments show that our connectivity-based unsu-

pervised classifier can achieve similar or better performance than several commonly

used supervised and unsupervised classifiers. We believe that unsupervised classifi-

cation holds great promise in defect prediction, especially in a cross-project setting

and for highly skewed within-project settings.

• Demonstrating the existence of two (defective and clean) separated communities

of software entities based on the connectivity between the metrics of the entities

in each community. We believe that this observation highlights the importance for

the software engineering research community to explore more techniques for unsu-

pervised defect prediction instead of current strong reliance on supervised classifiers.
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Part V

Conclusion and Future Work
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“The Heavens are in motion ceaselessly; The enlightened minds exert themselves constantly.”

— I Ching (Classic of Changes)

C
h
a
pt
er 8 Conclusions and Future Work

A defect prediction model can help prioritize instances (e.g., files or classes) for inspection.

It is beneficial to software organizations who often experience limited resources and tight

schedules for testing activities. However, the benefit of a defect prediction model comes at

a cost – additional effort is required to build an appropriate defect prediction model.

Due to the difficulty in transferring within-project and cross-project models, it is de-

sirable to generalize a defect prediction model to boost the adoption of defect prediction

models in practice. In this thesis, we aim to investigate how to generalize a defect predic-

tion model. In the following subsections, we present our major contributions and outline

promising directions for future research.

8.1 Contributions and Findings

The overall goal of this thesis is to generalize a defect prediction model. As the major

challenge towards generalizing a defect prediction model comes from the heterogeneity

across projects, we first investigate the distribution of metric values across projects. We

then examine if appropriate data pre-processing steps are helpful to mitigate the hetero-

geneity. Finally, we propose and evaluate both supervised and unsupervised approaches
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for building a generalized defect prediction model. We summarize the major contributions

of this thesis as follows.

(1) Analyze how the distribution of metric values varies across projects with varied

context factors (Chapter 3). This is a prerequisite analysis to deal with the hetero-

geneity problem between the training and target data. We find that the distribution of

metric values does vary across projects, but projects with different context factors can

experience similar distributions of metric values. Such findings inspire us to propose a

context-aware rank transformation (see Chapter 6) to pre-process software metrics.

(2) Examine the impact of data pre-processing on the performance of cross-project

defect prediction models. In particular, we study two commonly applied pre-processing

steps, i.e., transformation and aggregation of software metrics.

a) Transformation of software metrics. Although different transformations do not offer

significantly different benefit to cross-project prediction, they do retain non-redundant

information of the original metrics (Chapter 4). Therefore, we propose an approach

to combine models built with the three transformations, and our approach achieves

promising improvements.

b) Aggregation of software metrics. Broadly speaking, aggregating software metrics

by the widely used summation ([111, 112, 128, 138, 154, 202, 209]) tends to under-

estimate the performance of models that predict defect proneness (Chapter 5). The

conclusion is drawn from a large-scale empirical study on eleven aggregation schemes

(e.g., dispersion, central tendency, inequality, and entropy). Given that the computa-

tion cost for these additional aggregation schemes is negligible, we strongly suggest

researchers and practitioners experiment with many aggregation schemes when build-

ing defect prediction models.
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(3) Propose both supervised and unsupervised approaches towards generalizing de-

fect prediction models. Supervised classifiers are widely applied to build defect pre-

diction models. The use of supervised classifiers is challenging because of the hetero-

geneity between the training and target data. On the other hand, unsupervised classi-

fiers do not require any training data, and therefore have no issue of heterogeneity.

a) The supervised approach. To deal with the heterogeneity between the training and

target projects, we propose to transform software metrics by considering the context

factors of projects (Chapter 6). Specifically, we propose to group together projects with

a similar distribution of metric values, and apply rank transformation to convert metric

values into exactly the same scales. Then we build a single model upon the transformed

values using a large training set that contains 1,398 projects. We find that such a model

is generalizable, since it achieves comparable performance to within-project models

and is context-insensitive.

b) The unsupervised approach. We bring a new insight into tackling the heterogeneity

problem using connectivity-based unsupervised classifiers (Chapter 7). Our experi-

ments show that our connectivity-based unsupervised classifier can achieve similar or

better performance than several commonly used supervised and unsupervised classi-

fiers. Moreover, we demonstrate the existence of two (defective and clean) separated

communities of software entities based on the connectivity between the metrics of the

entities in each community.

As a summary, it is feasible to generalize defect prediction models.
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8.2 Future Research

Although we demonstrate the feasibility of the two proposed approaches towards general-

izing defect prediction models, there is plenty of room to further study the generalization

of defect prediction models. We highlight several potential avenues for future research.

8.2.1 Combining the Supervised and Unsupervised Approaches

Both the supervised approach (Chapter 6) and the unsupervised approach (Chapter 7) are

feasible to generalize defect prediction models, but they are applied separately. From the

findings reported in Chapter 4, we learn that models with similar performance do not nec-

essarily make wrong predictions on the same instance (e.g., file or class). Therefore, com-

bining both approaches may have a high chance to create a defect prediction model that is

more accurate and still generalizable. Future work can explore if there exists an appropriate

way to combine the supervised and unsupervised approaches together.

8.2.2 Integrating a Generalized Defect Prediction Model into the Integrated Devel-

opment Environment (IDE)

We envision a future that developers can get a list of defective files immediately after each

change. The files are ranked based on their probability to experience defects in future.

To achieve this goal, a defect prediction model should be integrated into the integrated

development environment (IDE). A generalized defect prediction model does not need to

be rebuilt for every project, thus making the integration easier. It may be interesting to

investigate how defect prediction models would shape the software development process.

For instance, does a defect prediction model help improve prioritizing testing resources?
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8.2.3 Examining the Impact of Other Pre-processing Methods on the Performance

of Defect Prediction Models

The treatment at each step of building a defect prediction model can threaten the general-

izability of defect prediction models. In this thesis, we only examine transformation and

aggregation. Other pre-processing steps have not yet been explored in the context of gener-

alizing defect prediction models, such as metric reduction. Different software metrics can

have varied capability to explain defect proneness across projects. Using the same set of

software metrics may distort the performance of the generalized defect prediction model

for some projects. Therefore, it is worth examining if metric reduction should be applied

on each subset of similar projects separately.

8.2.4 Exploring the Generalization of Other Types of Defect Prediction Models

As mentioned in Chapter 5, there are other types of defect prediction models that predict

defect count or rank. Apart from generalizing models that predict defect proneness, the

generalization of other types of defect prediction models is also important. Therefore,

future work is encouraged to explore approaches to generalize such models.

8.2.5 Evolution of a Generalized Defect Prediction Model

As technology evolves, the development environment may change. For instance, current

developers may utilize social networks (e.g., StackOverflow and Twitter) in their develop-

ment process. Such changes could alter the relationships between software metrics (e.g.,

the number of commits) and defect proneness. Hence, future researchers should pay at-

tention to the evolution of a generalized defect prediction model. Given the difficulties

encountered in the generalization, the evolution can be more challenging.
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[106] A. Güneş Koru and Hongfang Liu. Building Defect Prediction Models in Practice.

IEEE Software, 22(6):23–29, November 2005.

[107] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Yann-Gaël Guéhéneuc, and Giu-

liano Antoniol. Design evolution metrics for defect prediction in object oriented

systems. Empirical Software Engineering, 16(1):141–175, February 2011.

[108] Max Kuhn and Kjell Johnson. Data pre-processing. In Applied Predictive Modeling,

pages 27–59. Springer New York, 2013.

[109] D. Landman, A. Serebrenik, and J. Vinju. Empirical analysis of the relationship

between cc and sloc in a large corpus of java methods. In 30th IEEE International

Conference on Software Maintenance and Evolution, pages 221–230, 2014.

[110] Michele Lanza, Radu Marinescu, and Stéphane Ducasse. Object-Oriented Metrics

in Practice. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[111] Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In. Micro

interaction metrics for defect prediction. In Proceedings of the 19th ACM SIGSOFT



BIBLIOGRAPHY 210

Symposium and the 13th European Conference on Foundations of Software Engi-

neering, ESEC/FSE ’11, pages 311–321, New York, NY, USA, 2011. ACM.

[112] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification

models for software defect prediction: A proposed framework and novel findings.

IEEE Transactions on Software Engineering (TSE), 34(4):485–496, 2008.

[113] Ming Li, Hongyu Zhang, Rongxin Wu, and Zhi-Hua Zhou. Sample-based software

defect prediction with active and semi-supervised learning. Automated Software

Engineering, 19(2):201–230, June 2012.

[114] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing software metrics

tools. In Proceedings of the 2008 International Symposium on Software Testing

and Analysis, ISSTA ’08, pages 131–142, New York, NY, USA, 2008. ACM.

[115] Mark Lorenz and Jeff Kidd. Object-oriented software metrics: a practical guide.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[116] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power laws in soft-

ware. ACM Transactions on Software Engineering and Methodology, 18(1):2:1–

2:26, October 2008.

[117] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):

395–416, December 2007.

[118] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. Transfer learning for cross-

company software defect prediction. Information and Software Technology, 54(3):

248–256, March 2012.

[119] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering



BIBLIOGRAPHY 211

(TSE), SE-2(4):308 – 320, December 1976.

[120] Thilo Mende and Rainer Koschke. Revisiting the evaluation of defect prediction

models. In Proceedings of the 5th International Conference on Predictor Models in

Software Engineering, PROMISE ’09, pages 7:1–7:10, 2009.

[121] Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In Pro-

ceedings of the 2010 14th European Conference on Software Maintenance and

Reengineering, CSMR ’10, pages 107–116. IEEE Computer Society, 2010.

[122] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems with precision:

A response to “comments on ‘data mining static code attributes to learn defect pre-

dictors’". IEEE Transactions on Software Engineering (TSE), 33(9):637–640, 2007.

[123] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn

defect predictors. IEEE Transactions on Software Engineering (TSE), 33(1):2–13,

2007.

[124] Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas Zimmermann, and David

Cok. Local vs. global models for effort estimation and defect prediction. In Proceed-

ings of the 2011 26th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’11, pages 343–351. IEEE Computer Society, 2011.

[125] A. Mockus. Amassing and indexing a large sample of version control systems:

Towards the census of public source code history. In 6th IEEE International Working

Conference on Mining Software Repositories, MSR’09, pages 11 –20, May 2009.

[126] A. Mockus and L.G. Votta. Identifying reasons for software changes using historic



BIBLIOGRAPHY 212

databases. In Proceedings of the 16th International Conference on Software Main-

tenance, ICSM ’00, pages 120–130, 2000.

[127] Bojan Mohar. The laplacian spectrum of graphs. In Graph Theory, Combinatorics,

and Applications, pages 871–898. Wiley, 1991.

[128] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction. In 30th International

Conference on Software Engineering, pages 181–190. ACM, 2008.

[129] R.E. Mullen and S.S. Gokhale. Software Defect Rediscoveries: A Discrete Lognor-

mal Model. In 16th IEEE International Symposium on Software Reliability Engi-

neering (ISSRE’05), pages 203–212. IEEE, 2005.

[130] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in soft-

ware engineering research. In Proceedings of the 2013 9th Joint Meeting on Foun-

dations of Software Engineering, ESEC/FSE 2013, pages 466–476, 2013.

[131] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to

predict system defect density. In Proceedings of the 27th International Conference

on Software Engineering, ICSE ’05, pages 284–292, 2005.

[132] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict

component failures. In Proceedings of the 28th International Conference on Soft-

ware Engineering, ICSE ’06, pages 452–461, New York, NY, USA, 2006. ACM.

[133] Jaechang Nam and Sunghun Kim. Clami: Defect prediction on unlabeled datasets.

In Proceedings of the 30th IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE ’15, 2015.



BIBLIOGRAPHY 213

[134] Jaechang Nam and Sunghun Kim. Heterogeneous defect prediction. In Proceedings

of the European Software Engineering Conference and the ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering, ESEC/FSE ’15, 2015.

[135] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning. In

Proceedings of the 2013 International Conference on Software Engineering, ICSE

’13, pages 382–391, Piscataway, NJ, USA, 2013. IEEE Press.

[136] NASA. Metrics Data Program. http://openscience.us/repo/defect/

mccabehalsted, 2015. [Online; accessed 25-August-2015].

[137] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in Neural Information Processing Systems, pages

849–856. MIT Press, 2001.

[138] T.H.D. Nguyen, B. Adams, and Ahmed E. Hassan. Studying the impact of depen-

dency network measures on software quality. In Proceedings of the 26th IEEE Inter-

national Conference on Software Maintenance, ICSM ’10, pages 1–10, September

2010.

[139] Tung Thanh Nguyen, Tien N. Nguyen, and Tu Minh Phuong. Topic-based defect

prediction (nier track). In Proceedings of the 33rd International Conference on Soft-

ware Engineering, ICSE ’11, pages 932–935, New York, NY, USA, 2011. ACM.

[140] MC Ohlsson and P Runeson. Experience from replicating empirical studies on pre-

diction models. EIGHTH IEEE SYMPOSIUM ON SOFTWARE METRICS, PRO-

CEEDINGS, pages 217–226, 2002.

[141] Jason W. Osborne. Improving your data transformations: Applying the box-cox

http://openscience.us/repo/defect/mccabehalsted
http://openscience.us/repo/defect/mccabehalsted


BIBLIOGRAPHY 214

transformation. Practical Assessment, Research & Evaluation, 15(12), 2010.

[142] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large in-

dustrial software system. In Proceedings of the 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA ’02, pages 55–64. ACM, 2002.

[143] T.J. Ostrand and E.J. Weyuker. On the automation of software fault prediction. In

Testing: Academic and Industrial Conference - Practice And Research Techniques,

2006. TAIC PART 2006. Proceedings, pages 41–48, August 2006.

[144] T.J. Ostrand, E.J. Weyuker, and R.M. Bell. Predicting the location and number of

faults in large software systems. Software Engineering, IEEE Transactions on, 31

(4):340–355, April 2005.

[145] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.

[146] Sinno Jialin Pan, I.W. Tsang, J.T. Kwok, and Qiang Yang. Domain adaptation via

transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–

210, February 2011.

[147] Annibale Panichella, Rocco Oliveto, and Andrea De Lucia. Cross-project defect pre-

diction models: L’Union fait la force. In 2014 Software Evolution Week - IEEE Con-

ference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-

WCRE), pages 164–173. IEEE, February 2014.

[148] L. Pelayo and S. Dick. Applying novel resampling strategies to software defect pre-

diction. In Annual Conference of the North American Fuzzy Information processing

Society, NAFIPS ’07, pages 69–72, June 2007.



BIBLIOGRAPHY 215

[149] Lourdes Pelayo and Scott Dick. Evaluating Stratification Alternatives to Improve

Software Defect Prediction. IEEE Transactions on Reliability, 61(2):516–525, June

2012.

[150] F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing privacy and utility in

cross-company defect prediction. IEEE Transactions on Software Engineering, 39

(8):1054–1068, August 2013.

[151] Fayola Peters, Tim Menzies, and Andrian Marcus. Better cross company defect

prediction. In Proceedings of the 10th Working Conference on Mining Software

Repositories, MSR ’13, pages 409–418, Piscataway, NJ, USA, 2013. IEEE Press.

[152] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. Can developer-

module networks predict failures? In Proceedings of the 16th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-

16, pages 2–12, New York, NY, USA, 2008. ACM.

[153] Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. Ecological inference in

empirical software engineering. In Proceedings of the 26th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’11, pages 362–371, Wash-

ington, DC, USA, 2011. IEEE Computer Society.

[154] R. Premraj and K. Herzig. Network versus code metrics to predict defects: A repli-

cation study. In 2011 International Symposium on Empirical Software Engineering

and Measurement (ESEM), pages 215–224, 2011.

[155] Marie-Therese Puth, Markus Neuhäuser, and Graeme D. Ruxton. Effective use of

spearman’s and kendall’s correlation coefficients for association between two mea-

sured traits. Animal Behaviour, 102(0):77 – 84, 2015.



BIBLIOGRAPHY 216
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A
pp
en
d
ix A Additional Analysis

A.1 R Implementation of Our Spectral Classifier

Listing 1 presents the R implementation of our connectivity-based unsupervised spectral

classifier

Listing A.1: R implementation of our approach.
1 connectivity_based_defect_prediction <- function(A) {
2 # Normalize software metrics.
3 normA = apply(A, 2, function(x){(x-mean(x))/sd(x)})
4 # Construct the weighted adjacency matrix.
5 W = normA %*% t(normA)
6 # Set all negative values to zero.
7 W[W<0] = 0
8 # Set the self-similarity to zero.
9 W = W - diag(diag(W))

10 # Construct the graph Laplacian matrix.
11 Dnsqrt = diag(1/sqrt(rowSums(W)))
12 I = diag(rep(1, nrow(W)))
13 Lsym = I - Dnsqrt %*% W %*% Dnsqrt
14 # Perform the eigendecomposition.
15 ret_egn = eigen(Lsym, symmetric=TRUE)
16 # Pick up the second smallest eigenvector.
17 v1 = Dnsqrt %*% ret_egn$vectors[, nrow(W)-1]
18 v1 = v1 / sqrt(sum(v1^2))
19 # Divide the data set into two clusters.
20 defect_proneness = (v1>0)
21 # Label the defective and clean clusters.
22 rs = rowSums(normA)
23 if(mean(rs[v1>0])<mean(rs[v1<0]))
24 defect_proneness = (v1<0)
25 # Return the defect proneness.
26 defect_proneness
27 }
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A.2 Matrices in Spectra Clustering

1) Affiliation matrix A. In the context of defect prediction, an affiliation matrix A describes

the properties of all software entities (e.g., files or classes) in a software project. Each

software entity is represented using a row of the matrix, and its properties (e.g., lines of

code and other software metrics) are described in columns. If there are n entities in a

software project and each entity is measured using m metrics, then A is an n × m matrix.

We denote A = {ai j }, where ai j is the value of metric j of software entity i.

2) Adjacency matrix W . In the context of defect prediction, an adjacency matrix W de-

scribes the network among software entities in a software project. Each software entity is

a node, and edges represent the relations between nodes. The weight of an edge measures

the similarity between the corresponding pair of nodes. If there are n entities in a software

project, then W is an n × n matrix. We denote W = {wi j }, where wi j is the weight of edge

between nodes i and j, and wi j measures the similarity between the two nodes. As edges

have no direction, W is symmetric. An adjacency matrix W can be easily obtained from a

affiliation matrix A through a function that computes the similarity between nodes.

3) Graph Laplacian matrix L. Performing an eigendecomposition on a graph Laplacian

matrix L is the major step of spectral clustering. There is no exact definition of “graph

Laplacian matrix” in the literature [117]. A basic form is L = D − W [35], where D is

a diagonal matrix of row sums of W . The matrix L is unnormalized. In the normalized

cut algorithm [174], a symmetric graph Laplacian matrix Lsym is used to achieve a better

and more robust performance. It is defined as Lsym = D−
1
2 LD−

1
2 = I − D−

1
2 W D−

1
2 , where

I is the unit matrix with size n. The diagonal matrix D−
1
2 = Diag(d

− 1
2

1 , . . . ,d
− 1

2
n ), where

d
− 1

2
i = (

∑n
j=1 wi j )−

1
2 .
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